1 College of Energy,Chengdu University of Technology,Chengdu 610059,China; 2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China; 3 Research Institute of Exploration and Development, PetroChina Southwest Oil & Gas Field Company,Chengdu 610041,China
Abstract:The carbonate rocks of the Permian Maokou Formation in the Sichuan Basin are crucial for oil and gas exploration. Significant breakthroughs have been achieved in the exploration of the Maokou Formation in the Bajiaochang-Moxi-Longnüsi area of central Sichuan Basin. However,the unclear stratigraphic structure impedes the study of sedimentary evolution and reservoir prediction of the Maokou Formation. This research is based on high-precision lithofacies characteristics of the Maokou Formation at the Er’ya section in the Huaying Mountain of Guang’an in central Sichuan Basin. It integrates actual drilling data to analyze the sedimentary facies and sequence stratigraphic framework of the Maokou Formation,explaining the influence of the sequence framework on the development characteristics and distribution patterns of the reservoirs. The research findings indicate that: (1)The carbonate rocks of the Maokou Formation in the central Sichuan Basin can be divided into eight lithofacies. During the late stage of deposition of the Maokou Formation,tectonic activity facilitated the transition from a gentle slope sedimentary system to a “platform-platform interior sea trough” sedimentary system. (2)The upper sequence interface SB1 of the Qixia Formation and the upper sequence interface SB2 of the lower submember of Member 2 of the Maokou Formation are both classified as type II lithofacies transition interfaces. The top interface SB3 of the upper submember of Member 2 of the Maokou Formation is identified as a type I drowning unconformity interface,while the top interface SB4 of Member 3 of the Maokou Formation is classified as a type I erosion unconformity interface. (3)The Maokou Formation in the Er’ya section can be divided into three third-order sequences and five fourth-order sequences. Member 1 of the Maokou Formation constitutes the transgressive system tract of third-order sequence SQ1. The middle to lower parts of the lower submember of Member 2 correspond to the high-position system tract of third-order sequence SQ1,while the upper part develops the transgressive system tract of third-order sequence SQ2 at the margin of the continental shelf. The upper submember of Member 2 and Member 3 of the Maokou Formation correspond to third-order sequences SQ2 and SQ3,respectively. (4)In the Moxi-Longnüsi area,the dolomitized reservoirs of the lower submember of Member 2 of the Maokou Formation are distributed in the high-position system tract of third-order sequence SQ1 and the continental shelf margin system tract of third-order sequence SQ2. These reservoirs are primarily dominated by late diagenetic dolomitization and early diagenetic dolomitization,controlled by type II sequence boundary SB2. In the Guang’an-Bajiaochang area,the dolomite reservoirs of the upper submember of Member 2 of the Maokou Formation in the platform margin shoal facies are found in the high-position system tract of third-order sequence SQ2 and are controlled by type I sequence boundary SB3. These reservoirs undergo stages of early diagenetic matrix dolomitization,late diagenetic grain dissolution,and burial dolomitization. This study provides constraints on sequence and sedimentation for predicting the distribution patterns and investigating the genesis of dolomite reservoirs in the Maokou Formation in the Sichuan Basin,which is significant for oil and gas exploration in the Maokou Formation.
KUANG Mingzhi,ZHANG Xiaobing,YUAN Haifeng et al. Sequence stratigraphy and sedimentary facies characteristics of the Maokou Formation carbonate rocks in central Sichuan Basin[J]. JOPC, 2024, 26(5): 1201-1220.
[1] 杜远生,颜佳新. 1995. 碳酸盐准同生成岩作用分析在层序地层研究中的意义. 岩相古地理,15(1): 10-17. [Du Y S,Yan J X.1995. Implications of penecontemporneous diagenesis of carbonates for the study of sequence stratigraphy. Sedimentary Facies and Palaeogeography,15(1): 10-17] [2] 冯增昭. 1982. 碳酸盐岩分类. 石油学报,3(1): 11-18, 96-98. [Feng Z Z.1982. Classification of carbonate rocks. Acta Petrolei Sinica,3(1): 11-18, 96-98] [3] 胡明毅,胡忠贵,魏国齐,杨威,刘满仓. 2012. 四川盆地茅口组层序岩相古地理特征及储集层预测. 石油勘探与开发,39(1): 45-55. [Hu M Y,Hu Z G,Wei G Q,Yang W,Liu M C.2012. Sequence lithofacies paleogeography and reservoir prediction of the Maokou Formation in Sichuan Basin. Petroleum Exploration and Development,39(1): 45-55] [4] 何登发,李德生,张国伟,赵路子,樊春,鲁人齐,文竹. 2011. 四川多旋回叠合盆地的形成与演化. 地质科学,46(3): 589-606. [He D F,Li D S,Zhang G W,Zhao L Z,Fan C,Lu R Q,Wen Z.2011. Formation and evolution of multi-cycle superposed Sichuan Basin,China. Scientia Geologica Sinica,46(3): 589-606] [5] 何斌,徐义刚,王雅玫,肖龙. 2005. 东吴运动性质的厘定及其时空演变规律. 地球科学,30(1): 89-96. [He B,Xu Y G,Wang Y M,Xiao L.2005. Nature of the Dongwu movement and its temporal and spatial evolution. Earth Science,30(1): 89-96] [6] 何斌,徐义刚,肖龙,王雅玫,王康明,沙绍礼. 2006. 峨眉山地幔柱上升的沉积响应及其地质意义. 地质论评,52(1): 30-37. [He B,Xu Y G,Xiao L,Wang Y M,Wang K M,Sha S L.2006. Sedimentary responses to uplift of Emeishan mantle plume and its implications. Geological Review,52(1): 30-37] [7] 黄涵宇,何登发,李英强,王贝. 2017. 四川盆地及邻区二叠纪梁山—栖霞组沉积盆地原型及其演化. 岩石学报,33(4): 1317-1337. [Huang H Y,He D F,Li Y Q,Wang B.2017. The prototype and its evolution of the Sichuan sedimentary basin and adjacent areas during Liangshan and Qixia stages in Permian. Acta Petrologica Sinica,33(4): 1317-1337] [8] 韩月卿,郝运轻,韩文彪,林娟华,赵红琴,李双建. 2022. 川东南地区中二叠统茅口组一段眼球状灰岩成因机理. 油气地质与采收率,29(6): 12-21. [Han Y Q,Hao Y Q,Han W B,Lin J H,Zhao H Q,Li S J.2022. Genetic mechanism of eyeball-shaped limestone in First Member of Middle Permian Maokou Formation in southeast Sichuan Basin. Petroleum Geology and Recovery Efficiency,29(6): 12-21] [9] 罗进雄,何幼斌. 2010. 中—上扬子地区二叠系眼球状石灰岩特征及成因研究. 地质论评,56(5): 629-637. [Luo J X,He Y B.2010. Origin and characteristics of Permian eyeball-shaped limestones in Middle-Upper Yangtze region. Geological Review,56(5): 629-637] [10] 李让彬,段金宝,潘磊,李红. 2021. 川东地区中二叠统茅口组白云岩储层成因机理及主控因素. 天然气地球科学,32(9): 1347-1357. [Li R B,Duan J B,Pan L,Li H.2021. Genetic mechanism and main controlling factors of the Middle Permian Maokou Formation dolomite reservoirs in the eastern Sichuan Basin. Natural Gas Geoscience,32(9): 1347-1357] [11] 李旭兵,曾雄伟,王传尚,刘安,白云山. 2011. 东吴运动的沉积学响应: 以湘鄂西及邻区二叠系茅口组顶部不整合面为例. 地层学杂志,35(3): 299-304. [Li X B,Zeng X W,Wang C S,Liu A,Bai Y S.2011. Sedimentary response to the Dongwu Movement: a case of the unconformity on top of the Permian Maokou Formation in the western Hubei-Hunan and neighboring areas. Journal of Stratigraphy,35(3): 299-304] [12] 罗志立,金以钟,朱夔玉,赵锡奎. 1988. 试论上扬子地台的峨眉地裂运动. 地质论评,34(1): 11-24. [Luo Z L,Jin Y Z,Zhu K Y,Zhao X K.1988. On Emei taphrogenesis of the upper Yangtze Platform. Geological Review,34(1): 11-24] [13] 梅仕龙,史晓颖,陈学方,孙克勤,颜佳新. 1999. 黔南桂中二叠系Cisuralian统和Guadalupian统层序地层及其与牙形石演化的关系. 地球科学,24(1): 23-33. [Mei S L,Shi X Y,Chen X F,Sun K Q,Yan J X.1999. Permian Cisuralian and Guadalupian sequence stratigraphy in south Guizhou and central Guangxi and its relation to conodont evolution. Earth Science,24(1): 23-33] [14] 覃建雄,曾允孚,陈洪德,田景春,李余生,钱奕中,寿建峰,沈安江. 1998. 西南地区二叠纪层序地层及海平面变化. 岩相古地理,18(1): 21-25,28-37. [Qin J X,Zeng Y F,Chen H D,Tian J C,Li Y S,Qian Y Z,Shou J F,Shen A J.1998. Permian sequence stratigraphy and sea-level changes in southwestern China. Sedimentary Facies and Palaeogeography,18(1): 21-25,28-37] [15] 邱振,窦立荣,吴建发,韦恒叶,刘雯,孔维亮,张琴,蔡光银,张淦,吴伟,李世臻,曲天泉,高万里. 2024. 川北—鄂西地区中二叠统层序岩相古地理演化及页岩气勘探潜力. 地球科学,49(2): 712-748. [Qiu Z,Dou L R,Wu J F,Wei H Y,Liu W,Kong W L,Zhang Q,Cai G Y,Zhang G,Wu W,Li S Z,Qu T Q,Gao W L.2024. Lithofacies palaeogeographic evolution of the Middle Permian sequence stratigraphy and its implications for shale gas exploration in the northern Sichuan and western Hubei Provinces. Earth Science,49(2): 712-748] [16] 苏旺,江青春,陈志勇,汪泽成,姜华,卞从胜,冯庆付,吴育林. 2015. 四川盆地中二叠统茅口组层序地层特征及其对源储的控制作用. 天然气工业,35(7): 34-43. [Su W,Jiang Q C,Chen Z Y,Wang Z C,Jiang H,Bian C S,Feng Q F,Wu Y L.2015. Sequence stratigraphic features of Middle Permian Maokou Formation in the Sichuan Basin and their controls on source rocks and reservoirs. Natural Gas Industry,35(7): 34-43] [17] 苏成鹏,李蓉,石国山,贾霍甫,宋晓波. 2021. 四川盆地及周缘中二叠统茅口组一段储集层特征及对油气勘探的启示. 石油勘探与开发,48(6): 1150-1161. [Su C P,Li R,Shi G S,Jia H F,Song X B.2021. Reservoir characteristics of the first member of Middle Permian Maokou Formation in Sichuan Basin and its periphery and inspirations to petroleum exploration,SW China. Petroleum Exploration and Development,48(6): 1150-1161] [18] 王良军,李红,曾韬,柳益群,潘磊,李让彬,李文厚,张冬冬,焦鑫,杨康,董杨坤. 2022. 四川盆地东部茅口组白云岩成因: 来自岩石学、矿物学和地球化学的证据. 古地理学报,24(5): 989-1016. [Wang L J,Li H,Zeng T,Liu Y Q,Pan L,Li R B,Li W H,Zhang D D,Jiao X,Yang K,Dong Y K.2022. Origins of dolostones of the Maokou Formation in eastern Sichuan Basin: evidence from lithology,mineralogy,and geochemistry. Journal of Palaeogeography(Chinese Edition),24(5): 989-1016] [19] 王兴志,李博,杨西燕,文龙,徐亮,谢圣阳,杜垚,冯明友,杨雪飞,王雅萍,裴森奇. 2021. 四川盆地北部中二叠世晚期“广元—旺苍”海槽特征及其油气地质意义. 石油勘探与开发,48(3): 562-574. [Wang X Z,Li B,Yang X Y, Wen L,Xu L,Xie S Y,Du Y,Feng M Y,Yang X F,Wang Y P,Pei S Q.2021. Characteristics of “Guangyuan-Wangcang”trough during late Middle Permian and its petroleum geological significance in northern Sichuan Basin,SW China. Petroleum Exploration and Development,48(3): 562-574] [20] 徐婷,袁海锋,陈聪,张玺华,山述娇,匡明志,谌辰,叶子旭,李天军,阳聪. 2024. 川中磨溪—龙女寺构造中二叠统茅口组白云岩成因分析. 天然气地球科学,35(1): 13-29. [Xu T,Yuan H F,Chen C,Zhang X H,Shan S J,Kuang M Z,Chen C,Ye Z X,Li T J,Yang C.2024. Genesis of dolomite reservoirs in the Middle Permian Maokou Formation of the Moxi-Longnvsi structure,central Sichuan Basin. Natural Gas Geoscience,35(1): 13-29] [21] 肖钦仁,袁海锋,叶子旭,陈聪,张玺华,徐婷. 2023. 川中北部地区八角场构造二叠系茅口组白云岩储层成因机制. 天然气地球科学,34(7): 1218-1236. [Xiao Q R,Yuan H F,Ye Z X,Chen C,Zhang X H,Xu T.2023. Genetic mechanism of dolomite reservoir in Permian Maokou Formation in Bajiaochang structure in North Central Sichuan. Natural Gas Geoscience,34(7): 1218-1236] [22] 殷鸿福. 1994. 二叠系—三叠系研究的进展. 地球科学进展,9(2): 1-10. [Yin H F.1994. Advancements of Permian and Triassic research. Advances in Earth Science,9(2): 1-10] [23] 殷鸿福,童金南,丁梅华,张克信,赖旭龙. 1994. 扬子区晚二叠世—中三叠世海平面变化. 地球科学,19(5): 627-632. [Yin H F,Tong J N,Ding M H,Zhang K X,Lai X L.1994. Late Permian-Middle Triassic sea level changes of Yangtze platform. Earth Science,19(5): 627-632] [24] 杨帅,陈安清,张玺华,李乾,徐胜林,陈聪,孙诗,李富祥,罗倩,文龙,陈洪德. 2021. 四川盆地二叠纪栖霞—茅口期古地理格局转换及勘探启示. 沉积学报,39(6): 1466-1477. [Yang S,Chen A Q,Zhang X H,Li Q,Xu S L,Chen C,Sun S,Li F X,Luo Q,Wen L,Chen H D.2021. Paleogeographic transition of the Permian Chihsia-Maokou period in the Sichuan Basin and indications for oil-gas exploration. Acta Sedimentologica Sinica,39(6): 1466-1477] [25] 杨雨,谢继容,赵路子,黄平辉,张玺华,陈聪,张本健,文龙,汪华,高兆龙,山述娇. 2021. 四川盆地茅口组滩相孔隙型白云岩储层天然气勘探的突破及启示: 以川中北部地区JT1井天然气立体勘探为例. 天然气工业,41(2): 1-9. [Yang Y,Xie J R,Zhao L Z,Huang P H,Zhang X H,Chen C,Zhang B J,Wen L,Wang H,Gao Z L,Shan S J.2021. Breakthrough of natural gas exploration in the beach facies porous dolomite reservoir of Middle Permian Maokou Formation in the Sichuan Basin and its enlightenment: a case study of the tridimensional exploration of Well JT1 in the central-northern Sichuan Basin. Natural Gas Industry,41(2): 1-9] [26] Ahr W M.1973. The carbonate remp: an alternative to the shelf model. Gcags Transactions,23: 221-225. [27] Borgomano J,Lanteaume C,Léonide P,Fournier F,Montaggioni L F,Masse J P.2020. Quantitative carbonate sequence stratigraphy: insights from stratigraphic forward models. AAPG Bulletin,104(5): 1115-1142. [28] Burchette T P,Wright V P.1992. Carbonate ramp depositional systems. Sedimentary Geology,79(1-4): 3-57. [29] Chen B,Joachimski M M,Sun Y D,Shen S Z,Lai X L.2011. Carbon and conodont apatite oxygen isotope records of Guadalupian-Lopingian boundary sections: climatic or sea-level signal? Palaeogeography,Palaeoclimatology,Palaeoecology,311(3): 145-153. [30] Flügel E.2010. Microfacies of Carbonate Rocks: Analysis,Interpretation and Application. Berlin: Springer. [31] Glenister B F,Wardlaw B R,Lambert L L,Spinosa C,Wilde G L.1999. Proposal of Guadalupian and component Roadian,Wordian,and Capitanian stages as international standards for the Middle Permian Series. Permophiles,34: 3-11. [32] Haq B U,Hardenbol J,Vail P R.1988. Mesozoic and Cenozoic Chronostratigraphy and Cycles of Sea-level Change. Special Publications,Society of Economic Paleotologists and Mineralogists,42: 71-108. [33] Haq B U,Schutter S R.2008. A chronology of Paleozoic sea-level changes. Science,322(5898): 64-68. [34] Hunt D,Tucker M E.1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level’fall.Sedimentary Geology,81(1-2): 1-9. [35] Jin Y G,Zhang J,Shang Q H.1994. Two phases of the end-Permian mass extinction. Pangea: global environments and resources. Canadian Society of Petroleum Geologists Memoir, 17: 813-822. [36] Jin Y G,Wardlaw B R,Glenister B F,Kotlyar G V.1997. Permian chronostratigraphic subdivisions. Episodes,20(1): 10-15. [37] Jin Y G,Shang Q H,Wang X D,Wang Y,Sheng J Z.1999. Chronostratigraphic subdivision and correlation of the Permian in China. Acta Geologica Sinica(English Edition),73(2): 127-138. [38] Kofukuda D,Isozaki Y,Igo H.2014. A remarkable sea-level drop and relevant biotic responses across the Guadalupian-Lopingian(Permian)boundary in low-latitude mid-Panthalassa: irreversible changes recorded in accreted paleo-atoll limestones in Akasaka and Ishiyama,Japan. Journal of Asian Earth Sciences,82: 47-65. [39] Lai X L,Wang W,Wignall P B,Bond D P G,Jiang H S,Ali J R,John E H,Sun Y D.2008. Palaeoenvironmental change during the end-Guadalupian(Permian)mass extinction in Sichuan,China. Palaeogeography,Palaeoclimatology,Palaeoecology,269(1-2): 78-93. [40] Lei H,Jiang Q C,Huang W H,Luo P.2024. Middle Permian astronomically forced upwelling in the Yangtze carbonate platform: implications for organic matter preservation and benthic biomass. Marine and Petroleum Geology,160: 106575. [41] Meng Q,Xue W Q,Chen F Y,Yan J X,Cai J H,Sun Y D,Wignall P B,Liu K,Liu Z C,Chen D.2022. Stratigraphy of the Guadalupian(Permian)siliceous deposits from central Guizhou of South China: regional correlations with implications for carbonate productivity during the Middle Permian biocrisis. Earth-Science Reviews,228: 104011. [42] Peng Y F,Li H,BouDagher-Fadel M,Wang L J,Zhang D D,Zheng T Y,Yang K.2022. Benthic foraminifera distribution and sedimentary environmental evolution of a carbonate platform: a case study of the Guadalupian(middle Permian)in eastern Sichuan Basin. Marine Micropaleontology,170: 102079. [43] Qiu Z,Wang Q C,Zou C N,Yan D T,Wei H Y.2014. Transgressive-regressive sequences on the slope of an isolated carbonate platform(Middle-Late Permian,Laibin,South China). Facies,60(1): 327-345. [44] Ross C A,Ross J R P.1987. Late Paleozoic sea levels and depositional sequences. Cushman Foundation for Foraminiferal Research: 137. [45] Shen S Z,Wang Y,Henderson C M,Cao C Q,Wang W.2007. Biostratigraphy and lithofacies of the Permian System in the Laibin-Heshan area of Guangxi,South China. Palaeoworld,16(1-3): 120-139. [46] Shen S Z,Yuan D X,Henderson C M,Wu Q,Zhang Y C,Zhang H,Mu L,Ramezani J,Wang X D,Lambert L L,Erwin D H,Hearst J M,Xiang L,Chen B,Fan J X,Wang Y,Wang W Q,Qi Y P,Chen J,Qie W K,Wang T T.2020. Progress,problems and prospects: an overview of the Guadalupian Series of South China and North America. Earth-Science Reviews,211: 103412. [47] Su W,Hu S Y,Jiang Q C,Zhang J,Huang S P,Jiang H,Shi S Y,Wang K,Chen X Y,Zhang H R,Ren M Y.2020a. Sedimentary responses to the Dongwu Movement and the influence of the Emeishan mantle plume in Sichuan Basin,Southwest China: significance for petroleum geology. Carbonates and Evaporites,35(4): 108. [48] Su C P,Li F,Tan X C,Gong Q L,Zeng K,Tang H,Li M L,Wang X F.2020b. Recognition of diagenetic contribution to the formation of limestone-marl alternations: a case study from Permian of South China. Marine and Petroleum Geology,111: 765-785. [49] Vail P R.1977. Seismic stratigraphy and global changes of sea-level,part 4: global cycles of relative changes of sea-level. Seismic stratigraphy-applications to hydrocarbon exploration. AAPG Memoir,26: 49-212. [50] Vail P R,Hardenbol J,Todd R G.1984. Jurassic Unconformities,Chronostratigraphy,and Sea-level Changes from Seismic Stratigraphy and Biostratigraphy. AAPG Memoir, 36: 129-144. [51] Wignall P B,Védrine S,Bond D P G,Wang W,Lai X L,Ali J R,Jiang H S.2009. Facies analysis and sea-level change at the Guadalupian-Lopingian global stratotype(Laibin,South China),and its bearing on the end-Guadalupian mass extinction. Journal of the Geological Society,166(4): 655-666. [52] Wang Y,Jin Y G.2000. Permian palaeogeographic evolution of the Jiangnan Basin,South China. Palaeogeography,Palaeoclimatology,Palaeoecology,160(1-2): 35-44. [53] Wang X T,Shao L Y,Eriksson K A,Yan Z M,Wang J M,Li H,Zhou R X,Lu J.2020. Evolution of a plume-influenced source-to-sink system: an example from the coupled central Emeishan large igneous province and adjacent western Yangtze cratonic basin in the Late Permian,SW China. Earth-Science Reviews,207: 103224. [54] Ziegler A M,Eshel G,Rees P M,Rothfus T A,Rowley D B,Sunderlin D.2003. Tracing the tropics across land and sea: Permian to present. Lethaia,36(3): 227-254. [55] Zheng H,Liu B.2020. Structural Differentiation and Sedimentary System of the Permian Sichuan Cratonic Basin. In: René M, Ambrosino G A, Bahariya G E (eds). Geochemistry. IntechOpen. doi: 10.5772/intechopen.87688.