Characteristics and formation mechanism of patchy dolostone of the Cambrian Xiannüdong Formation in eastern Hannan-Micangshan area
LI Ying1, LI Fei1,2, LU Ziye1,2, LI Yangfan1, WANG Zengjun1, LI Yalan1, XIE Hui1, ZHANG Tianshu1
1 School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China; 2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Natural Gas Geology Key Laboratory of Sichuan Province,Southwest Petroleum University,Chengdu 610500,China
Abstract:Patchy dolostone,a common type of dolostone,is distinguished by its heterogeneity and complex internal structure,requiring a comprehensive investigation of its origins and formation mechanisms. In this study,the Yangjiagou section in the eastern Hannan-Micangshan area is selected as a representative example. Through comprehensive field observations and various methods including petrography,sedimentology and geochemistry,13 types of lithofacies and five dolomite types were identified in the Xiannüdong Formation. Geochemical methods were employed to analyze the carbon and oxygen isotopes as well as trace element compositions of these dolostone.Our findings indicate that the occurrence of patchy dolostone is strongly associated with the location of vertical tectonic fractures and transverse extension zones. The fractures within the patchy dolostone and surrounding limestones are filled by coarse-grained saddle dolomite. Notably,the δ18O values of the patchy dolomites (δ18O: -8.17‰ to-6.58‰) are lower than those of the contemporaneous seawater-derived dolomites. Additionally,in-situ trace element measurements reveal that dolomite crystals exhibit high Mn/Sr ratios(mean of 14.8),a positive Eu anomalies(mean of 1.3),and a middle rare earth elements-enriched pattern when normalized to shale. After excluding other possibilities,it is inferred that the formation of patchy dolostone in the study area can be attributed to the influence of regional fault-controlled hydrothermal fluids. The significance of this study lies in its ability to identify the distribution and development of Cambrian dolomites within the Xiannüdong Formation in the surrounding area,as well as to clarify the identification markers and formation processes of hydrothermal dolomites. This study may provide valuable insights for oil and gas exploration in the northern Sichuan Basin.
LI Ying,LI Fei,LU Ziye et al. Characteristics and formation mechanism of patchy dolostone of the Cambrian Xiannüdong Formation in eastern Hannan-Micangshan area[J]. JOPC, 2024, 26(5): 1235-1255.
[1] 陈代钊. 2008. 构造-热液白云岩化作用与白云岩储层. 石油与天然气地质, 29(5): 614-622. [Chen D Z.2008. Structure-controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs. Oil and Gas Geology, 29(5): 614-622] [2] 陈轩,赵文智,张利萍,赵宗举,刘银河,张宝民,杨雨. 2012. 川中地区中二叠统构造热液白云岩的发现及其勘探意义. 石油学报, 33(4): 562-569. [Chen X,Zhao W Z,Zhang L P,Zhao Z J,Liu Y H,Zhang B M,Yang Y.2012. Discovery and exploration significance of structure-controlled hydrothermal dolomites in the Middle Permian of the central Sichuan Basin. Acta Petrolei Sinica, 33(4): 562-569] [3] 程裕淇,项礼文,朱兆玲,李善姬. 1999. 中国地层典·寒武系. 北京: 地质出版社,6-76. [Cheng Y Q,Xiang L W,Zhu Z L,Li S J.1999. Stratigraphical Lexicon of China: Cambrian. Beijing: Geological Publishing House,6-76] [4] 邓嘉婷,李飞,龚峤林,李红,易楚恒,连承波. 2021. 埃迪卡拉纪—寒武纪之交微生物岩特征对比及古海洋学意义: 以汉南—米仓山地区为例. 古地理学报, 23(5): 919-936. [Deng J T,Li F,Gong Q L,Li H,Yi C H,Lian C B.2021. Characteristics and palaeoceanographic significances of microbialite development in the Ediacaran-Cambrian transition: a case study from Hannan-Micangshan area. Journal of Palaeogeography(Chinese Edition), 23(5): 919-936] [5] 龚峤林,李飞,苏成鹏,曾楷,唐浩,谭秀成. 2018. 细粒浊积岩特征、分布及发育机制: 以川北唐家河剖面寒武系郭家坝组为例. 古地理学报, 20(3): 349-364. [Gong Q L,Li F,Su C P,Zeng K,Tang H,Tan X C.2018. Characteristics,distribution and mechanisms of fine-grained turbidite: a case study from the Cambrian Guojiaba Formation in Tangjiahe Section,northern Sichuan Basin. Journal of Palaeogeography(Chinese Edition), 20(3): 349-364] [6] 郭旭升,胡东风,黄仁春,魏志红,段金宝,魏祥峰,范小军,缪志伟. 2020. 四川盆地深层—超深层天然气勘探进展与展望. 天然气工业, 40(5): 1-14. [Guo X S,Hu D F,Huang R C,Wei Z H,Duan J B,Wei X F,Fan X J,Miao Z W.2020. Deep and ultra-deep natural gas exploration in the Sichuan Basin: progress and prospect. Natural Gas Industry, 40(5): 1-14] [7] 韩波,冯菊芳,何治亮,田海芹,朱爽,王晓涛. 2017. 四川盆地下寒武统豹斑灰岩成因机理及其对储层的影响. 石油与天然气地质, 38(4): 764-775,783. [Han B,Feng J F,He Z L,Tian H Q,Zhu S,Wang X T.2017. Origin of the Lower Cambrian leopard-pattern limestones and its influence on reservoirs in the Sichuan Basin. Oil and Gas Geology, 38(4): 764-775,783] [8] 韩月卿,张军涛,何治亮,金振奎,韩文彪,高平,郝运轻,孙炜,武重阳. 2023. 川西中二叠统栖霞组白云岩特征与成因. 石油与天然气地质, 44(1): 75-88. [Han Y Q,Zhang J T,He Z L,Jin Z K,Han W B,Gao P,Hao Y Q,Sun W,Wu C Y.2023. Characteristics and genesis of the Middle Permian Qixia Formation dolostone in western Sichuan Basin. Oil and Gas Geology, 44(1): 75-88] [9] 何治亮,马永生,张军涛,朱东亚,钱一雄,丁茜,陈代钊. 2020. 中国的白云岩与白云岩储层: 分布、成因与控制因素. 石油与天然气地质, 41(1): 1-14. [He Z L,Ma Y S,Zhang J T,Zhu D Y,Qian Y X,Ding Q,Chen D Z.2020. Distribution,genetic mechanism and control factors of dolomite and dolomite reservoirs in China. Oil and Gas Geology, 41(1): 1-14] [10] 胡文瑄,陈琪,王小林,曹剑. 2010. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式. 石油与天然气地质, 31(6): 810-818. [Hu W X,Chen Q,Wang X L,Cao J.2010. REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs. Oil and Gas Geology, 31(6): 810-818] [11] 胡忠贵,郑荣才,胡九珍,文华国,李瑜,文其兵,徐发波. 2009. 川东—渝北地区黄龙组白云岩储层稀土元素地球化学特征. 地质学报, 83(6): 782-790. [Hu Z G,Zheng R C,Hu J Z,Wen H G,Li Y,Wen Q B,Xu F B.2009. Geochemical characteristics of rare earth elements of Huanglong Formation dolomites reservoirs in eastern Sichuan-northern Chongqing area. Acta Geologica Sinica, 83(6): 782-790] [12] 黄思静,QING Hairuo,裴昌蓉,胡作维,吴素娟,孙治雷. 2006. 川东三叠系飞仙关组白云岩锶含量、锶同位素组成与白云石化流体. 岩石学报, 22(8): 2123-2132. [Huang S J,Qing H R,Pei C R,Hu Z W,Wu S J,Sun Z L.2006. Strontium concentration,isotope composition and dolomitization fluids in the Feixianguan Formation of Triassic,eastern Sichuan of China. Acta Petrologica Sinica, 22(8): 2123-2132] [13] 焦存礼,何治亮,邢秀娟,卿海若,何碧竹,李程成. 2011. 塔里木盆地构造热液白云岩及其储层意义. 岩石学报, 27(1): 277-284. [Jiao C L,He Z L,Xing X J,Qing H R,He B Z,Li C C.2011. Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim Basin. Acta Petrologica Sinica, 27(1): 277-284] [14] 雷国良,王长生,钱志鑫,张忠敏,杨正礼,漆亮. 1994. 贵州岩溶沉积物稀土元素地球化学研究. 矿物学报, 14(3): 298-308. [Lei G L,Wang C S,Qian Z X,Zhang Z M,Yang Z L,Qi L.1994. REE geochemistry of karst sediments in Guizhou Province. Acta Mineralogica Sinica, 14(3): 298-308] [15] 黎霆,诸丹诚,杨明磊,李平平,邹华耀. 2021. 热液活动对四川盆地中西部地区二叠系茅口组白云岩的影响. 石油与天然气地质, 42(3): 639-651. [Li T,Zhu D C,Yang M L,Li P P,Zou H Y.2021. Influence of hydrothermal activity on the Maokou Formation dolostone in the central and western Sichuan Basin. Oil and Gas Geology, 42(3): 639-651] [16] 李红,李飞,龚峤林,曾楷,邓嘉婷,王浩铮,苏成鹏. 2021. 混积岩中重矿物形貌学特征及物源意义: 以川北寒武系第二统仙女洞组为例. 沉积学报, 39(3): 525-539. [Li H,Li F,Gong Q L,Zeng K,Deng J T,Wang H Z,Su C P.2021. Morphological characteristics and provenance significance of heavy minerals in the mixed siliciclastic-carbonate sedimentation: a case study from the Xiannüdong Formation,Cambrian(Series 2),northern Sichuan. Acta Sedimentologica Sinica, 39(3): 525-539] [17] 李雅兰,李飞,吕月健,王夏,王曾俊,李红,易楚恒,李杨凡,曾伟,李怡霖. 2024. 陕南勉县寒武系仙女洞组生物礁岩相学及古环境分析. 沉积学报, 42(2): 608-618. [Li Y L,Li F,Lü Y J,Wang X,Wang Z J,Li H,Yi C H,Li Y F,Zeng W,Li Y L.2024. Petrographic features and paleoenvironmental significance of the Lower Cambrian reef in the Xiannüdong Formation,Mian County,Southern Shaanxi. Acta Sedimentologica Sinica, 42(2): 608-618] [18] 李杨凡,李飞,王夏,李翔,李怡霖,王曾俊,李雅兰,易楚恒,曾伟. 2023. 上扬子北缘寒武纪早期后生动物礁特征及古环境意义. 地球科学, 48(11): 4321-4334. [Li Y F,Li F,Wang X,Li X,Li Y L,Wang Z J,Li Y L,Yi C H,Zeng W.2023. Sedimentary characteristics and paleoenvironmental significance of Early Cambrian metazoan reefs in northern margin of Upper Yangtze Block. Earth Science, 48(11): 4321-4334] [19] 李耀西,宋礼生,周志强. 1975. 大巴山西段早古生代地层志. 北京: 地质出版社,1-232. [Li Y X,Song L S,Zhou Z Q.1975. Early Paleozoic Stratigraphy of Western Daba Mountains. Beijing: Geological Publishing House,1-232] [20] 刘梦瑶,齐永安,史云鹤,高星,苏中堂,张立军. 2020. 华北寒武纪—奥陶纪豹皮状碳酸盐岩系生物扰动成因. 沉积学报, 38(1): 91-103. [Liu M Y,Qi Y A,Shi Y H,Gao X,Su Z T,Zhang L J.2020. Formation mechanism of Cambrian-Ordovician bioturbated dolomites in North China. Acta Sedimentologica Sinica, 38(1): 91-103] [21] 刘树根,李智武,刘顺,罗玉宏,徐国强,戴国汗,龚昌明,雍自权. 2006. 大巴山前陆盆地—冲断带的形成演化. 北京: 地质出版社,51-75. [Liu S G,Li Z W,Liu S,Luo Y H,Xu G Q,Dai G H,Gong C M,Yong Z Q.2006. The Formation and Evolution of Foreland Basin-thrust Belt in Daba Mountains. Beijing: Geological Publishing House,51-75] [22] 马永生,蔡勋育,李国雄. 2005. 四川盆地普光大型气藏基本特征及成藏富集规律. 地质学报, 79(6): 858-865. [Ma Y S,Cai X Y,Li G X.2005. Basic characteristics and concentration of the Puguang Gas Field in the Sichuan Basin. Acta Geologica Sinica, 79(6): 858-865] [23] 齐永安,孟瑶,代明月,李妲. 2014. 豫西登封地区寒武系第二统朱砂洞组生物成因的豹斑构造. 地质科技情报, 33(5): 1-8. [Qi Y A,Meng Y,Dai M Y,Li D.2014. Biogenic leopard patch structures from the Zhushadong Formation(Cambrian Series 2),Dengfeng area,western Henan. Geological Science and Technology Information, 33(5): 1-8] [24] 钱一雄,张克银,陈跃,陈强路,田蜜,尤东华,罗宇. 2016. 塔里木盆地东北部中上奥陶统却尔却克群深水碳酸盐岩及白云岩化. 古地理学报, 18(1): 21-38. [Qian Y X,Zhang K Y,Chen Y,Chen Q L,Tian M,You D H,Luo Y.2016. Deep-water carbonate rocks and their dolomitization of the Middle and Upper Ordovician Queerquek Formation in northeastern Tarim Basin. Journal of Palaeogeography(Chinese Edition), 18(1): 21-38] [25] 沈安江,赵文智,胡安平,佘敏,陈娅娜,王小芳. 2015. 海相碳酸盐岩储集层发育主控因素. 石油勘探与开发, 42(5): 545-554. [Shen A J,Zhao W Z,Hu A P,She M,Chen Y N,Wang X F.2015. Major factors controlling the development of marine carbonate reservoirs. Petroleum Exploration and Development, 42(5): 545-554] [26] 谭秀成,肖笛,陈景山,李凌,刘宏. 2015. 早成岩期喀斯特化研究新进展及意义. 古地理学报, 17(4): 441-456. [Tan X C,Xiao D,Chen J S,Li L,Liu H.2015. New advance and enlightenment of eogenetic karstification. Journal of Palaeogeography(Chinese Edition), 17(4): 441-456] [27] 魏柳斌,王宗延,李漪,庞志超,王前平,包洪平,杨琦琦,王振,苏中堂,张立军. 2023. 豹皮(斑)状碳酸盐岩分类与成因初探: 以鄂尔多斯盆地奥陶系马家沟组四段为例. 古地理学报, 26(4): 880-894. [Wei L B,Wang Z Y,Li Y,Pang Z C,Wang Q P,Bao H P,Yang Q Q,Wang Z,Su Z T,Zhang L J.2023. Classification of Leopard skin(spot)carbonate rock and their formation mechanism: a case study of the Member 4 of Middle Ordovician Majiagou Formation in Ordos Basin. Journal of Palaeogeography(Chinese Edition), 26(4): 880-894] [28] 魏显贵,杜思清,刘援朝,吴德超. 1997. 米仓山推覆构造的结构样式及演化特征. 矿物岩石,17(增): 114-122. [Wei X G,Du S Q,Liu Y C,Wu D C.1997. Tectonic styles and evolution of Micangshan Nappe tectonics. Mineralogy and Petrology,17(S): 114-122] [29] 徐妍,杨雪飞,唐浩,伍坤宇,唐锐锋,潘爽,杜忆. 2023. 川中地区龙王庙组花斑白云岩储层特征及成因机理. 天然气地球科学, 34(3): 402-417. [Xu Y,Yang X F,Tang H,Wu K Y,Tang R F,Pan S,Du Y.2023. Reservoir characteristics and genetic mechanism of mottled dolomite of Longwangmiao Formation in central Sichuan Basin. Natural Gas Geoscience, 34(3): 402-417] [30] 杨友运,叶俭. 1996. 陕西西乡杨家沟早寒武世的生物礁. 西北地质, 17(2): 1-5. [Yang Y Y,Ye J.1996. Early Cambrian reef in Yangjiagou,Xixiang,Shaanxi Province. Northwestern Geology, 17(2): 1-5] [31] 张岳桥,施炜,李建华,王瑞瑞,李海龙,董树文. 2010. 大巴山前陆弧形构造带形成机理分析. 地质学报, 84(9): 1300-1315. [Zhang Y Q,Shi W,Li J H,Wang R R,Li H L,Dong S W.2010. Formation mechanism of the Dabashan foreland arc-shaped structural belt. Acta Geologica Sinica, 84(9): 1300-1315] [32] 朱光有,李茜. 2023. 白云岩成因类型与研究方法进展. 石油学报, 44(7): 1167-1190. [Zhu G Y,Li X.2023. Progress in genetic types and research methods of dolomite. Acta Petrolei Sinica, 44(7): 1167-1190] [33] 邹才能,杜金虎,徐春春,汪泽成,张宝民,魏国齐,王铜山,姚根顺,邓胜徽,刘静江,周慧,徐安娜,杨智,姜华,谷志东. 2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发, 41(3): 278-293. [Zou C N,Du J H,Xu C C,Wang Z C,Zhang B M,Wei G Q,Wang T S,Yao G S,Deng S H,Liu J J,Zhou H,Xu A N,Yang Z,Jiang H,Gu Z D.2014. Formation,distribution,resource potential and discovery of the Sinian-Cambrian giant gas field,Sichuan Basin,SW China. Petroleum Exploration and Development, 41(3): 278-293] [34] 曾楷,李飞,龚峤林,唐浩,苏成鹏,车正强,邓嘉婷,胡广,李凌,曾伟,谭秀成. 2020. 寒武系第二统仙女洞组混合沉积特征及古环境意义: 以川北旺苍唐家河剖面为例. 沉积学报, 38(1): 166-181. [Zeng K,Li F,Gong Q L,Tang H,Su C P,Che Z Q,Deng J T,Hu G,Li L,Zeng W,Tan X C.2020. Characteristics and paleoenvironmental significance of mixed siliciclastic-carbonate sedimentation in the Xiannüdong Formation,Cambrian(Series 2): a case study from the Tangjiahe Section,Wangcang,northern Sichuan. Acta Sedimentologica Sinica, 38(1): 166-181] [35] Al-Aasm I S,Mrad C,Packard J.2019. Fluid compartmentalization of Devonian and Mississippian dolostones,Western Canada Sedimentary Basin: petrologic and geochemical evidence from fracture mineralization. Canadian Journal of Earth Sciences, 56(3): 265-305. [36] Allan J R,Wiggins W D.1993. Dolomite Reservoirs: Geochemical Techniques for Evaluating Origin and Distribution. American Association of Petroleum Geologists: 1-110. [37] Bau M.1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3-4): 219-230. [38] Bau M,Möller P.1992. Rare earth element fractionation in metamorphogenic hydrothermal calcite,magnesite and siderite. Mineralogy and Petrology, 45(3): 231-246. [39] Braithwaite C J,Rizzi G,Darke G.2004. The geometry and petrogenesis of dolomite hydrocarbon reservoirs: introduction. Geological Society,London,Special Publications, 235(1): 1-6. [40] Budd D A.1997. Cenozoic dolomites of carbonate islands: their attributes and origin. Earth-Science Reviews, 42(1): 1-47. [41] Cai C F,Li K K,Li H T,Zhang B S.2009. Evidence for cross-formational hot brine flow from integrated87Sr/86Sr,REE and fluid inclusions of the Ordovician veins in central Tarim,China. Applied Geochemistry, 23(8): 2226-2235. [42] Davies G R,Smith Jr L B.2006. Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG Bulletin, 90(11): 1641-1690. [43] Debruyne D,Hulsbosch N,Muchez P.2016. Unraveling rare earth element signatures in hydrothermal carbonate minerals using a source-sink system. Ore Geology Reviews, 72(1): 232-252. [44] Dong Y P,Liu X M,Santosh M,Chen Q,Zhang X N,Li W,He D F,Zhang G W.2012. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block,China: constraints from zircon U-Pb geochronology and geochemistry. Precambrian Research, 196-197: 247-274. [45] Folk R L.1980. Petrology of Sedimentary Rocks. Austin: Hemphill Publishing Company,1-182. [46] Gingras M K,Pemberton S G,Muelenbachs K,Machel H.2004. Conceptual models for burrow-related,selective dolomitization with textural and isotopic evidence from the Tyndall Stone,Canada. Geobiology, 2(1): 21-30. [47] Gong Q L,Li F,Lu C J,Wang H Z,Tang H.2021. Tracing seawater-and terrestrial-sourced REE signatures in detritally contaminated,diagenetically altered carbonate rocks. Chemical Geology, 570: 120169. [48] Gregg J M,Sibley D F.1984. Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Research, 54(3): 908-931. [49] Gregg J M,Bish D L,Kaczmarek S E,Machel H G.2015. Mineralogy,nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology, 62(6): 1749-1769. [50] Hirani J,Bastesen E,Boyce A,Corlett H,Eker A,Gawthorpe R,Hollis C,Korneva I,Rotevatn A.2018. Structural controls on non fabric-selective dolomitization within rift-related basin-bounding normal fault systems: insights from the Hammam Faraun Fault,Gulf of Suez,Egypt. Basin Research, 30(5): 990-1014. [51] Hollis C,Bastesen E,Boyce A,Corlett H,Gawthorpe R,Hirani J,Rotevatn A,Whitaker F.2017. Fault-controlled dolomitization in a rift basin. Geology, 45(3): 219-222. [52] Horita J.2014. Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures. Geochimica et Cosmochimica Acta, 129(1): 111-124. [53] Hsü K J,Siegenthaler C.1969. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology, 12(1-2): 11-25. [54] Jébrak M.1997. Hydrothermal breccias in vein-type ore deposits: a review of mechanisms,morphology and size distribution. Ore Geology Reviews, 12(3): 111-134. [55] Kendall A C.1977. Origin of dolomite mottling in Ordovician limestones from Saskatchewan and Manitoba. Bulletin of Canadian Petroleum Geology, 25(3): 480-504. [56] Koeshidayatullah A,Corlett H,Hollis C.2021. An overview of structurally-controlled dolostone-limestone transitions in the stratigraphic record. Earth-Science Reviews, 220: 103751. [57] Land L S.1985. The origin of massive dolomite. Journal of Geological Education, 33(2): 112-125. [58] Lawrence M G,Greig A,Collerson K D,Kamber B S.2006. Rare earth element and yttrium variability in South East Queensland waterways. Aquatic Geochemistry, 12(1): 39-72. [59] Li F,Webb G E,Algeo T J,Kershaw S,Lu C J,Oehlert A M,Gong Q L,Pourmand A,Tan X C.2019. Modern carbonate ooids preserve ambient aqueous REE signatures. Chemical Geology, 509: 163-177. [60] Li H,Li F,Li X,Zeng K,Gong Q L,Yi C H,Wang Z J.2021. Development and collapse of the early Cambrian shallow-water carbonate factories in the Hannan-Micangshan area,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 583: 110665. [61] Li Y L,Li F,Kershaw S,Burne R,Wang X,Lu C J,Liao J J,Li Y F,Wang Z J,Li Y L.2023. Extensive occurrences of lower Cambrian red beds in South China: composition,characteristics,and implications for global environmental change. Marine and Petroleum Geology, 157: 106475. [62] Lonnee J,Machel H G.2006. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field,Middle Devonian Slave Point Formation,British Columbia,Canada. AAPG Bulletin, 90(11): 1739-1761. [63] Lu C J,Koeshidayatullah A,Li F,Cui H,Zou H Y,Swart P K.2024. A clumped isotope diagenetic framework for the Ediacaran dolomites: insights to fabric-specific geochemical variabilities. Sedimentology, 71(2): 546-572. [64] Lu Z Y,Chen H H,Qing H R,Chi G X,Chen Q L,You D H,Yin H,Zhang S Y.2017. Petrography,fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area,Tarim Basin,NW China: implications for the nature and timing of silicification. Sedimentary Geology, 359: 29-43. [65] Maloof A C,Porter S M,Moore J L,Dudás F ö,Bowring S A,Higgins J A,Fike D A,Eddy M P.2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin, 122(11-12): 1731-1774. [66] Manche C J,Kaczmarek S E.2019. Evaluating reflux dolomitization using a novel high-resolution record of dolomite stoichiometry: a case study from the Cretaceous of central Texas,USA. Geology, 47(6): 586-590. [67] Martín-Martín J D,Travé A,Gomez-Rivas E,Salas R,Sizun J-P,Vergés J,Corbella M,Stafford S L,Alfonso P.2015. Fault-controlled and stratabound dolostones in the Late Aptian-earliest Albian Benassal Formation(Maestrat Basin,E Spain): petrology and geochemistry constrains. Marine and Petroleum Geology, 65: 83-102. [68] Nicolaides S.1995. Origin and modification of Cambrian dolomites(Red Heart Dolomite and Arthur Creek Formation),Georgina Basin,central Australia. Sedimentology, 42(2): 249-266. [69] Nozaki Y,Zhang J,Amakawa H.1997. The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148(1-2): 329-340. [70] Petrash D A,Bialik O M,Bontognali T R R,Vasconcelos C,Roberts J A,McKenzie J A,Konhauser K O.2017. Microbially catalyzed dolomite formation: from near-surface to burial. Earth-Science Reviews, 171: 558-582. [71] Qing H R,Mountjoy E.1992. Large-scale fluid flow in the Middle Devonian Presqu’ile barrier,Western Canada Sedimentary Basin. Geology, 20(10): 903-906. [72] Radke B M,Mathis R L.1980. On the formation and occurrence of saddle dolomite. Journal of Sedimentary Research, 50(4): 1149-1168. [73] Saller A H.1984. Petrologic and geochemical constraints on the origin of subsurface dolomite,Enewetak Atoll: an example of dolomitization by normal seawater. Geology, 12(4): 217-220. [74] Shah M M,Nader F H,Garcia D,Swennen R,Ellam R.2012. Hydrothermal dolomites in the early Albian(Cretaceous)Platform Carbonates(N.W. Spain): nature and origin of dolomites and dolomitising fluids. Oil & Gas Science and Technology-Rev.IFP Energies nouvelles, 67(1): 97-122. [75] Shelton K L,Gregg J M,Johnson A W.2009. Replacement dolomites and ore sulfides as recorders of multiple fluids and fluid sources in the Southeast Missouri Mississippi Valley-type district: halogen-87Sr/86Sr-δ18O-δ34S systematics in the Bonneterre Dolomite. Economic Geology, 104(5): 733-748. [76] Smith Jr L B,Davies G R.2006. Structurally controlled hydrothermal alteration of carbonate reservoirs: introduction. AAPG Bulletin, 90(11): 1635-1640. [77] Swart P K.2015. The geochemistry of carbonate diagenesis: the past,present and future. Sedimentology, 62(5): 1233-1304. [78] Vasconcelos C,McKenzie J A,Bernasconi S,Grujic D,Tiens A J.1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377(6546): 220-222. [79] Warren J.2000. Dolomite: occurrence,evolution and economically important associations. Earth-Science Reviews, 52(1-3): 1-81. [80] Webb G E,Nothdurft L D,Kamber B S,Kloprogge J,Zhao J X.2009. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite. Sedimentology, 56(5): 1433-1463. [81] Wei A Y,Xue C D,Xiang K,Li J,Liao C,Akhter Q J.2015. The ore-forming process of the Maoping Pb-Zn deposit,northeastern Yunnan,China: constraints from cathodoluminescence(CL)petrography of hydrothermal dolomite. Ore Geology Reviews, 70: 562-577.