Fate of reactive iron in inner shelf sediments of the East China Sea in response to environmental evolution since the last deglaciation
KONG Fanxing1, ZHANG Zheyuan2, XU Fangjian3, DONG Jiang4, LI Anchun5, GU Yu1, HU Limin1, CHEN Tianyu2, LIU Xiting1
1 Key Laboratory of Submarine Geosciences and Prospecting Technology,College of Marine Geosciences,Ocean University of China, Shandong Qingdao 266100,China; 2 Center for Marine Geochemistry Research, State Key Laboratory for Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; 3 School of Marine Science and Engineering,Hainan University,Haikou 570228,China; 4 Key Laboratory of Marine Geology and Metallogeny,First Institute of Oceanography of Ministry of Natural Resources, Shandong Qingdao 266061,China; 5 Key Laboratory of Marine Geology and Environment,Institute of Oceanology of Chinese Academy of Sciences, Shandong Qingdao 266071,China
Abstract:The reactive iron in shelf sediments plays an important role in the marine iron biogeochemical cycle,however,its response mechanism to the evolution of shelf sedimentary environments is still unclear. This study focuses on shelf sediments of core EC2005 from the East China Sea inner shelf to explore the influence of sedimentary environmental evolution on the fate of reactive iron since the last deglaciation. The average ratio of total iron to aluminum(FeT/Al)in core EC2005 sediments is 0.54,and the average ratio of reactive iron to total iron(FeHR/FeT)is 0.29,indicating that terrigenous fine-grained sediments input from the Changjiang River are the main source of particulate iron in the study area. The average content of reactive iron speciation from high to low is easily reducible(oxyhydr)oxide iron(Feox1,0.64%),pyrite iron(Fepy,0.32%),reducible(oxyhydr)oxide iron(Feox2,0.23%)and carbonate iron(Fecarb,0.09%). The relative contents of Fepy and Fecarb exhibit opposite trends along the core depth,indicating competition between carbonate(bicarbonate)ions and sulfide ions for ferrous iron during the early diagenetic process. This competition is primarily controlled by the sedimentary environment and redox state of the East China Sea inner shelf since the last deglaciation. Feox1 is closely related to the change of organic carbon content and plays an important role in controlling the variations of Fepy and Fecarb contents. In continental environments(17.3-13.1 ka),Feox1 is mainly converted into Fecarb,and Fepy content is almost zero. In transitional environments(13.1-7.3 ka),Fecarb content decreases accompanied by an increase in Fepy content. In marine environments(7.3 ka to present),Fepy content reaches a maximum,and Fecarb content increases significantly in the surface layers. Our findings highlight the control of the sedimentary environment on the fate of reactive iron in shelf sediments,providing a new perspective for studying modern and deep-time marine C-S-Fe biogeochemical cycles.
KONG Fanxing,ZHANG Zheyuan,XU Fangjian et al. Fate of reactive iron in inner shelf sediments of the East China Sea in response to environmental evolution since the last deglaciation[J]. JOPC, 2024, 26(6): 1483-1497.
[1] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 2020. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素. 地球科学进展, 35(12): 1306-1320. [Chang X,Zhang M Y,Gu Y,Wang H J,Liu X T.2020. Formation mechanism and controlling factors of authigenic pyrite in mud sediments on the shelf of the Yellow Sea and the East China Sea. Advances in Earth Science, 35(12): 1306-1320] [2] 陈成业,王钦贤,陈多福. 2022. 台湾国姓地区中新世海相菱铁矿的成因. 沉积学报, 40(6): 1691-1701. [Chen C Y,Wang Q X,Chen D F.2022. Genesis of siderite in Miocene marine shale in Kuohsing area,Taiwan. Acta Sedimentologica Sinica, 40(6): 1691-1701] [3] 陈天宇,蔡平河,李伟强,杨涛,凌洪飞,季峻峰. 2019. 大洋溶解铁的物质来源及其同位素示踪. 海洋地质与第四纪地质, 39(5): 46-57. [Chen T Y,Cai P H,Li W Q,Yang T,Ling H F,Ji J F.2019. The sources of dissolved iron in the global ocean and isotopic tracing. Marine Geology & Quaternary Geology, 39(5): 46-57] [4] 董宏坤,万世明,刘喜停. 2022. 海洋沉积物早期成岩作用研究进展. 沉积学报, 40(5): 1172-1187. [Dong H K,Wan S M,Liu X T.2022. Research progress on geochemical behavior of minerals and elements in early diagenesis of marine sediments. Acta Sedimentologica Sinica, 40(5): 1172-1187] [5] 董江,李安春,徐方建,黄朋,张凯棣. 2015. 东海内陆架EC2005孔重矿物组合特征及其物源指示意义. 海洋与湖沼, 46(6): 1292-1303. [Dong J,Li A C,Xu F J,Huang P,Zhang K D.2015. Heavy mineral assemblages in core EC2005 in the inner shelf of East China Sea and the origin. Oceanologia et Limnologia Sinica, 46(6): 1292-1303] [6] 郭柏,胡镕,魏广祎,曲扬,李达,殷一盛,凌洪飞,陈天宇. 2023. 东赤道太平洋高生产力和热液活动叠加沉积环境铁组分特征及其古海洋意义. 地球化学, 52(1): 120-134. [Guo B,Hu R,Wei G Y,Qu Y,Li D,Yin Y S,Ling H F,Chen T Y.2023. Characteristics of sedimentary Fe speciation under superimposed high productivity and hydrothermal activity in the eastern equatorial pacific and their paleoceanographic implications. Geochimica, 52(1): 120-134] [7] 胡利民,季钰涵,赵彬,刘喜停,杜佳宗,梁彦韬,姚鹏. 2023. 铁对海洋沉积有机碳保存的影响及其碳汇意义. 中国科学: 地球科学, 53(9): 1967-1981. [Hu L M,Ji Y H,Zhao B,Liu X T,Du J Z,Liang Y T,Yao P.2023. The effect of iron on the preservation of organic carbon in marine sediments and its implications for carbon sequestration. Scientia Sinica(Terrae), 53(9): 1967-1981] [8] 焦念志,梁彦韬,张永雨,刘纪化,张瑶,张锐,赵美训,戴民汉,翟惟东,高坤山,宋金明,袁东亮,李超,林光辉,黄小平,严宏强,胡利民,张增虎,王龙,曹纯洁,罗亚威,骆庭伟,王南南,党宏月,王东晓,张偲. 2018. 中国海及邻近区域碳库与通量综合分析. 中国科学: 地球科学, 48(11): 1393-1421. [Jiao N Z,Liang Y T,Zhang Y Y,Liu J H,Zhang Y,Zhang R,Zhao M X,Dai M H,Zhai H D,Gao K S,Song J M,Yuan D L,Li C,Lin G H,Huang X P,Yan H Q,Hu L M,Zhang Z H,Wang L,Cao C J,Luo Y W,Luo T W,Wang N N,Dang H Y,Wang D X,Zhang S.2018. Carbon pools and fluxes in the China Seas and adjacent oceans. Scientia Sinica(Terrae), 48(11): 1393-1421] [9] 金承胜,崔豪,程猛,张子虎,常华进,张弢,曹正琦. 2024. 华南寒武纪早期海水氧化还原状态对动物演化的影响. 地球科学, 49(10): 3674-3684. [Jin C S,Cui H,Cheng M,Zhang Z H,Chang H J,Zhang T,Cao Z Q.2024. The impact of marine redox conditions on animal evolution in early Cambrian Nanhua Basin,South China. Earth Science, 49(10): 3674-3684] [10] 金翔龙. 1992. 东海海洋地质. 北京: 海洋出版社. [Jin X L.1992. Marine Geology of East China Sea. Beijing: Ocean Press] [11] 李安春,张凯棣. 2020. 东海内陆架泥质沉积体研究进展. 海洋与湖沼, 51(4): 705-727. [Li A C,Zhang K D.2020. Research progress of mud wedge in the inner continental shelf of the East China Sea. Oceanologia et Limnologia Sinica, 51(4): 705-727] [12] 李超,舒劲松,许斐,杨守业. 2013. 沉积物中铁的化学相态分析进展. 地球科学, 38(3): 454-460. [Li C,Shu J S,Xu F,Yang S Y.2013. The analytical development of low-temperature particulate Fe speciation. Earth Science, 38(3): 454-460] [13] 刘喜停,颜佳新. 2011. 铁元素对海相沉积物早期成岩作用的影响. 地球科学进展, 26(5): 482-492. [Liu X T,Yan J X.2011. Advances in the role of iron in marine sediments during early diagenesis. Advances in Earth Science, 26(5): 482-492] [14] 秦蕴珊,赵一阳. 1987. 东海地质. 北京: 科学出版社. [Qin Y S,Zhao Y Y.1987. Geology of East China Sea. Beijing: Science Press] [15] 石学法,乔淑卿,杨守业,李景瑞,万世明,邹建军,熊志方,胡利民,姚政权,董林森,王昆山,刘升发,刘焱光. 2021. 亚洲大陆边缘沉积学研究进展(2011-2020). 矿物岩石地球化学通报, 40(2): 319-336. [Shi X F,Qiao S Q,Yang S Y,Li J R,Wan S M,Zou J J,Xiong Z F,Hu L M,Yao Z Q,Dong L S,Wang K S,Liu S F,Liu Y G.2021. Progress in sedimentology research of the Asian continental margin(2011-2020). Bulletin of Mineralogy,Petrology and Geochemistry, 40(2): 319-336] [16] 徐方建,李安春,肖尚斌,万世明,刘建国,张永超. 2009. 末次冰消期以来东海内陆架古环境演化. 沉积学报, 27(1): 118-127. [Xu F J,Li A C,Xiao S B,Wan S M,Liu J G,Zhang Y C.2009. Paleoenvironmental evolution in the inner shelf of the East China Sea since the last deglaciation. Acta Sedimentologica Sinica, 27(1): 118-127] [17] 徐方建,李安春,李铁刚,万世明,陈世悦,操应长. 2010. 末次冰消期以来东海内陆架沉积物地球化学特征及其古环境意义. 地球化学, 39(3): 240-250. [Xu F J,Li A C,Li T G,Wan S M,Chen S Y,Cao Y C.2010. Geochemical characteristics of sediments on the inner shelf of the East China Sea: implications for paleoenvironment since the last deglaciation. Geochimica, 39(3): 240-250] [18] 杨守业,贾琦,许心宁,武雪超,连尔刚. 2023. 海底反风化作用与关键元素循环. 海洋地质与第四纪地质, 43(3): 26-34. [Yang S Y,Jia Q,Xu X N,Wu X C,Lian E G.2023. Submarine reverse weathering and its effect on oceanic elements cycling. Marine Geology & Quaternary Geology, 43(3): 26-34] [19] 由雪莲,贾文强,徐帆,刘仪. 2018. 铁白云石矿物学特征及原生次生成因机制. 地球科学, 43(11): 4046-4055. [You X L,Jia W Q,Xu F,Liu Y.2018. Mineralogical characteristics of ankerite and mechanisms of primary and secondary origins. Earth Science, 43(11): 4046-4055] [20] Aller R C,Mackin J E,Cox R T.1986. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. Continental Shelf Research, 6(1): 263-289. [21] Berner R A.1970. Sedimentary pyrite formation. American Journal of Science, 268(1): 1-23. [22] Berner R A.1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Research, 51(2): 359-365. [23] Berner R A.1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48(4): 605-615. [24] Canfield D E.1989. Reactive iron in marine sediments. Geochimica et Cosmochimica Acta, 53(3): 619-632. [25] Canfield D E,Raiswell R,Bottrell S H.1992. The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292(9): 659. [26] Canfield D E,Thamdrup B,Hansen J W.1993. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction,manganese reduction,and sulfate reduction. Geochimica et Cosmochimica Acta, 57(16): 3867-3883. [27] Chen C T A,Sheu D D.2006. Does the Taiwan Warm Current originate in the Taiwan Strait in wintertime?Journal of Geophysical Research,111(C4): C04005. [28] Chen W H,Kemp D B,He T C,Newton R J,Xiong Y J,Jenkyns H C,Izumi K,Cho T,Huang C J,Poulton S W.2023. Shallow- and deep-ocean Fe cycling and redox evolution across the Pliensbachian-Toarcian boundary and Toarcian Oceanic Anoxic Event in Panthalassa. Earth and Planetary Science Letters, 602: 117959. [29] Clarkson M O,Poulton S W,Guilbaud R,Wood R A.2014. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chemical Geology, 382: 111-122. [30] Conway T M,John S G.2014. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature, 511(7508): 212-215. [31] Dean W E,Arthur M A.1989. Iron-sulfur-carbon relationships in organic-carbon-rich sequences;I,Cretaceous Western Interior Seaway. American Journal of Science, 289(6): 708-743. [32] Fan D J,Neuser R D,Sun X G,Yang Z S,Guo Z G,Zhai S K.2008. Authigenic iron oxide formation in the estuarine mixing zone of the Yangtze River. Geo-Marine Letters, 28(1): 7-14. [33] Froelich P N,Klinkhammer G P,Bender M L,Luedtke N A,Heath G R,Cullen D,Dauphin P,Hammond D,Hartman B,Maynard V.1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43(7): 1075-1090. [34] Hardisty D S,Lyons T W,Riedinger N,Isson T T,Owens J D,Aller R C,Rye D M,Planavsky N J,Reinhard C T,Gill B C,Masterson A L,Asael D,Johnston D T.2018. An evaluation of sedimentary molybdenum and iron as proxies for pore fluid paleoredox conditions. American Journal of Science, 318(5): 527-556. [35] Henkel S,Kasten S,Poulton S W,Staubwasser M.2016. Determination of the stable iron isotopic composition of sequentially leached iron phases in marine sediments. Chemical Geology, 421: 93-102. [36] Huang W H,Guo X Z,Zhao J,Li D,Hu J,Zhang H F,Zhang C,Han Z B,Sun W P,Sun Y G,Pan J M.2023. Low content of highly reactive iron in sediments from Prydz Bay and the adjacent Southern Ocean: controlling factors and implications for sedimentary organic carbon preservation. Frontiers in Marine Science, 10: 1142061. [37] Koschinsky A,Hein J R.2003. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Marine Geology, 198(3): 331-351. [38] Lalonde K,Mucci A,Ouellet A,Gélinas Y.2012. Preservation of organic matter in sediments promoted by iron. Nature, 483(7388): 198-200. [39] Lambeck K,Rouby H,Purcell A,Sun Y,Sambridge M.2014. Sea level and global ice volumes from the last glacial maximum to the Holocene. Proceedings of the National Academy of Sciences, 111(43): 15296-15303. [40] Li C,Cheng M,Algeo T J,Xie S C.2015. A theoretical prediction of chemical zonation in early oceans(>520 Ma). Science China Earth Sciences, 58(11): 1901-1909. [41] Li C,Yang S Y,Lian E G,Wang Q,Fan D D,Huang X T.2017. Chemical speciation of iron in sediments from the Changjiang estuary and East China Sea: iron cycle and paleoenvironmental implications. Quaternary International, 452: 116-128. [42] Li C,Shi W,Cheng M,Jin C S,Algeo T J.2020. The redox structure of Ediacaran and early Cambrian oceans and its controls. Science Bulletin, 65(24): 2141-2149. [43] Li G X,Li P,Liu Y,Qiao L L,Ma Y Y,Xu J S,Yang Z G.2014. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum. Earth-Science Reviews, 139: 390-405. [44] Lin S,Huang K M,Chen S K.2000. Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments. Continental Shelf Research, 20(4): 619-635. [45] Liu J P,Xu K H,Li A C,Milliman J D,Velozzi D M,Xiao S B,Yang Z S.2007. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology, 85(3): 208-224. [46] Liu J P,Xue Z G,Ross K,Wang H J,Yang Z S,Li A L,Gao S.2009. Fate of sediments delivered to the sea by Asian large rivers: long-distance transport and formation of remote alongshore clinothems. The Sedimentary Record, 7(4): 4-9. [47] Liu X T,Li A C,Dong J,Lu J,Huang J,Wan S M.2018a. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt,East China Sea: implications for the development of the mud depocenter. Journal of Asian Earth Sciences, 151: 1-15. [48] Liu X T,Li A C,Dong J,Zhuang G C,Xu F J,Wan S M.2018b. Nonevaporative origin for gypsum in mud sediments from the East China Sea shelf. Marine Chemistry, 205: 90-97. [49] Liu X T,Fike D,Li A C,Dong J,Xu F J,Zhuang G C,Rendle-Bühring R,Wan S M.2019. Pyrite sulfur isotopes constrained by sedimentation rates: evidence from sediments on the East China Sea inner shelf since the late Pleistocene. Chemical Geology, 505: 66-75. [50] Liu X T,Li A C,Fike D A,Dong J,Xu F J,Zhuang G C,Fan D D,Yang Z S,Wang H J.2020. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation. Marine Geology, 429: 106307. [51] Liu X T,Zhang M Y,Li A C,Fan D D,Dong J,Jiao C Q,Chang X,Gu Y,Zhang K D,Wang H J.2021. Depositional control on carbon and sulfur preservation onshore and offshore the Oujiang estuary: implications for the C/S ratio as a salinity indicator. Continental Shelf Research, 227: 104510. [52] Liu X T,Zhang M Y,Li A C,Dong J,Zhang K D,Gu Y,Chang X,Zhuang G C,Li Q,Wang H J.2022. Sedimentary pyrites and C/S ratios of mud sediments on the East China Sea inner shelf indicate late Pleistocene-Holocene environmental evolution. Marine Geology, 450: 106854. [53] Liu X T,Gu Y,Dong J,Li A C,Zhuang G C,Wang H J.2023. Iron-bearing minerals indicate sea-level rise of the East China Sea inner shelf since the last deglaciation. Science Bulletin, 68(4): 364-366. [54] Lovley D R,Phillips E J.1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology, 51(4): 683-689. [55] Lyons T W,Severmann S.2006. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta, 70(23): 5698-5722. [56] Mackenzie F T,Andersson A J.2013. The marine carbon system and ocean acidification during Phanerozoic time. Geochemical Perspectives, 2(1): 1-3. [57] Mayer L M.1982. Aggregation of colloidal iron during estuarine mixing: kinetics,mechanism,and seasonality. Geochimica et Cosmochimica Acta, 46(12): 2527-2535. [58] Mazumdar A,Peketi A,Joao H,Dewangan P,Borole D V,Kocherla M.2012. Sulfidization in a shallow coastal depositional setting: diagenetic and palaeoclimatic implications. Chemical Geology, 322-323: 68-78. [59] Michalopoulos P,Aller R C.1995. Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science, 270: 614-617. [60] Michalopoulos P,Aller R C.2004. Early diagenesis of biogenic silica in the Amazon delta: alteration,authigenic clay formation,and storage. Geochimica et Cosmochimica Acta, 68(5): 1061-1085. [61] Michalopoulos P,Aller R C,Reeder R J.2000. Conversion of diatoms to clays during early diagenesis in tropical,continental shelf muds. Geology, 28: 1095-1098. [62] Milliman J D,Shen H T,Yang Z S,Mead R H.1985. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continental Shelf Research, 4(1): 37-45. [63] Nickel M,Vandieken V,Brüchert V,Jørgensen B B.2008. Microbial Mn(Ⅳ)and Fe(Ⅲ)reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 55(20): 2390-2398. [64] Pasquier V,Fike D A,Revillon S,Halevy I.2022. A global reassessment of the controls on iron speciation in modern sediments and sedimentary rocks: a dominant role for diagenesis. Geochimica et Cosmochimica Acta, 335: 211-230. [65] Petrash D A,Bialik O M,Bontognali T R R,Vasconcelos C,Roberts J A,McKenzie J A,Konhauser K O.2017. Microbially catalyzed dolomite formation: from near-surface to burial. Earth-Science Reviews, 171: 558-582. [66] Poulton S W.2021. The Iron Speciation Paleoredox Proxy. Cambridge: Cambridge University Press. [67] Poulton S W,Raiswell R.2002. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. American Journal of Science, 302(9): 774-805. [68] Poulton S W,Canfield D E.2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology, 214(3): 209-221. [69] Poulton S W,Raiswell R.2005. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments. Chemical Geology, 218(3-4): 203-221. [70] Poulton S W,Canfield D E.2011. Ferruginous conditions: a dominant feature of the ocean through earth's history. Elements, 7(2): 107-112. [71] Poulton S W,Fralick P W,Canfield D E.2004a. The transition to a sulphidic ocean~1.84 billion years ago. Nature, 431(7005): 173-177. [72] Poulton S W,Krom M D,Raiswell R.2004b. A revised scheme for the reactivity of iron(oxyhydr)oxide minerals towards dissolved sulfide. Geochimica et Cosmochimica Acta, 68(18): 3703-3715. [73] Raiswell R.2006. Towards a global highly reactive iron cycle. Journal of Geochemical Exploration, 88(1-3): 436-439. [74] Raiswell R,Canfield D E.1998. Sources of iron for pyrite formation in marine sediments. American Journal of Science, 298(3): 219-245. [75] Raiswell R,Hardisty D S,Lyons T W,Canfield D E,Owens J D,Planavsky N J,Poulton S W,Reinhard C T.2018. The iron paleoredox proxies: a guide to the pitfalls,problems and proper practice. American Journal of Science, 318(5): 491-526. [76] Riedel T,Zak D,Biester H,Dittmar T.2013. Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proceedings of the National Academy of Sciences, 110(25): 10101-10105. [77] Romanek C S,Jiménez-López C,Navarro A R,Sánchez-Román M,Sahai N,Coleman M.2009. Inorganic synthesis of Fe-Ca-Mg carbonates at low temperature. Geochimica et Cosmochimica Acta, 73(18): 5361-5376. [78] Rude P D,Aller R C.1989. Early diagenetic alteration of lateritic particle coatings in Amazon continental shelf sediment. Journal of Sedimentary Research, 59(5): 704-716. [79] Saito Y,Katayama H,Ikehara K,Kato Y,Matsumoto E,Oguri K,Oda M,Yumoto M.1998. Transgressive and highstand systems tracts and post-glacial transgression,the East China Sea. Sedimentary Geology, 122(1): 217-232. [80] Stumm W,Morgan J J.1970. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters,third ed. New York: Wiley Interscience. [81] Vandieken V,Nickel M,Jørgensen B B.2006. Carbon mineralization in Arctic sediments northeast of Svalbard: Mn(Ⅳ)and Fe(Ⅲ)reduction as principal anaerobic respiratory pathways. Marine Ecology Progress Series, 322: 15-27. [82] Vosteen P,Spiegel T,Gledhill M,Frank M,Zabel M,Scholz F.2022. The fate of sedimentary reactive iron at the land-ocean interface: a case study from the Amazon shelf. Geochemistry,Geophysics,Geosystems, 23(11): e2022GC010543. [83] Wei G Y,Chen T Y,Poulton S W,Lin Y B,He T C,Shi X F,Chen J F,Li H L,Qiao S Q,Liu J H,Li D,Ling H F.2021. A chemical weathering control on the delivery of particulate iron to the continental shelf. Geochimica et Cosmochimica Acta, 308: 204-216. [84] Wen L S,Santschi P,Gill G,Paternostro C.1999. Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Marine Chemistry, 63(3): 185-212. [85] Wu Y B,Zhang J,Liu S M,Zhang Z F,Yao Q Z,Hong G H,Cooper L.2007. Sources and distribution of carbon within the Yangtze River system. Estuarine,Coastal and Shelf Science, 71(1-2): 13-25. [86] Yang S Y,Bi L,Li C,Wang Z B,Dou Y G.2016. Major sinks of the Changjiang(Yangtze River)-derived sediments in the East China Sea during the late Quaternary. Geological Society London Special Publications, 429: 137-152. [87] Zhang K D,Li A C,Huang P,Lu J,Liu X T,Zhang J.2019. Sedimentary responses to the cross-shelf transport of terrigenous material on the East China Sea continental shelf. Sedimentary Geology, 384: 50-59. [88] Zhao B,Yao P,Bianchi T S,Wang X C,Shields M R,Schröder C,Yu Z G.2023. Preferential preservation of pre-aged terrestrial organic carbon by reactive iron in estuarine particles and coastal sediments of a large river-dominated estuary. Geochimica et Cosmochimica Acta, 345: 34-49. [89] Zhu M X,Hao X C,Shi X N,Yang G P,Li T.2012. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf. Applied Geochemistry, 27(4): 892-905. [90] Zhu M X,Huang X L,Yang G P,Chen L J.2015. Iron geochemistry in surface sediments of a temperate semi-enclosed bay,North China. Estuarine,Coastal and Shelf Science, 165: 25-35. [91] Zhu M X,Chen K K,Yang G P,Fan D J,Li T.2016. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical mobile mud belts(MMBs): S and Fe diagenesis in sediments. Journal of Geophysical Research: Biogeosciences, 121: 2811-2828.