1 Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China; 2 National Energy Shale Gas R & D(Experiment)Center,Hebei Langfang 065007,China; 3 Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 102206,China; 4 Geology Research Institute,CNPC Great Wall Drilling Co.,Ltd.,Liaoning Panjing 124010,China; 5 Shale Gas Research Institute, Southwest Oil and Gas Field Company, PetroChina, Chengdu 610051, China
Abstract:Sedimentary structures can not only provide insights into the formation environment and hydrodynamics of marine fine-grained terrigenous clastic rocks,but also significantly influence the permeability and fracturability of shale gas reservoirs. Based on comprehensive analysis of relevant materials at home and abroad,the types and origins of marine fine-grained terrigenous clastic rocks were systematically summarized. The rocks exhibit physical,chemical and biological structures. The physical structures mainly include flow structures and soft-sediment deformation structures. Flow structures include cross lamination,horizontal bedding or lamination,massive structure,graded lamination,and composite lamination. Soft-sediment deformation structures include slumps and slides,load structures,flame structures,ball-and-pillow structures,convolute lamination,contorted lamination,disrupted lamination,and dropstones. Chemical structures comprise carbonate concretes and pyrites,with biogenic structures primarily consisting of trace fossils and bioturbation. The three major types of sedimentary structures are mainly the result of fine-grained turbidites,contourites,and pelagites-hemipelagites,with a few arising from sediment deformation. Variations in sedimentary structures directly influence the permeability of shale gas reservoirs and affect the generation and propagation direction of hydraulic fractures.
SHI Zhensheng,ZHANG Yaxiong,ZENG Fanhui et al. Main sedimentary structure types of marine fine-grained terrigenous clastic rocks and their significance for shale gas[J]. JOPC, 2025, 27(1): 32-54.
[1] 操应长,梁超,韩豫,葸克来,王俊然,籍士超,梅俊芳. 2023. 基于物质来源及成因的细粒沉积岩分类方案探讨. 古地理学报,25(4): 729-741. [Cao Y C,Liang C,Han Y,Xi K L,Wang J R,Ji S C,Mei J F.2023. Discussions on classification scheme for fine-grained sedimentary rocks based on sediments sources and genesis. Journal of Palaeogeography(Chinese Edition),25(4): 729-741] [2] 丁文龙,李超,李春燕,许长春,久凯,曾维特. 2012. 页岩裂缝发育主控因素及其对含气性的影响. 地学前缘,19(2): 212-220. [Ding W L,Li C,Li C Y,Xu C C,Jiu K,Zeng W T.2012. Dominant factor of fracture development in shale and its relationship to gas accumulation. Earth Science Frontiers,19(2): 212-220] [3] 陈治喜,陈勉,黄荣樽,沈忠厚. 1997. 层状介质中水力裂缝的垂向扩展. 石油大学学报(自然科学版),21(4): 23-26. [Chen Z X,Chen M,Huang R Z,Shen Z H.1997. Vertical growth of hydraulic fracture in layered formations. Journal of the University of Petroleum(Edition of Natural Science),21(4): 23-26] [4] 冯增昭. 1994. 沉积岩石学(第二版). 北京: 石油工业出版社,1-298. [Feng Z Z. 1994. Sedimentary Petrology(Second Edition). Beijing: Petroleum Industry Press,1-298] [5] 胡斌,王冠忠,齐永安. 1997. 痕迹学理论与应用. 江苏徐州: 中国矿业大学出版社,1-209. [Hu B,Wang G Z,Qi Y A. 1997. Theory of Ichnology and Its Application. Jiangsu Xuzhou: China University of Mining and Technology Press,1-209] [6] 胡斌,齐永安,宋慧波,牛永斌,张立军,郑伟,王长征. 2021. 中国遗迹学研究十年进展. 古地理学报,23(2): 284-320. [Hu B,Qi Y A,Song H B,Niu Y B,Zhang L J,Zheng W,Wang C Z.2021. Research progress of Chinese ichnology in recent ten years. Journal of Palaeogeography(Chinese Edition),23(2): 284-320] [7] 姜在兴,梁超,吴靖,张建国,张文昭,王永诗,刘惠民,陈祥. 2013. 含油气细粒沉积岩研究的几个问题. 石油学报,34(6): 1031-1039. [Jiang Z X,Liang C,Wu J,Zhang J G,Zhang W Z,Wang Y S,Liu H M,Chen X.2013. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks. Acta Petrolei Sinica,34(6): 1031-1039] [8] 姜在兴,张建国,孙祥鑫,谢环羽,程浩,王力. 2023. 中国陆相页岩油气沉积储层研究进展及发展方向. 石油学报,44(1): 45-71. [Jiang Z X,Zhang J G,Kong X X,Xie H Y,Cheng H,Wang L.2023. Research progress and development direction of continental shale oil and gas deposition and reservoirs in China. Acta Petrolei Sinica,44(1): 45-71] [9] 李彦伟,朱超凡,曾壹坚,水浩澈,范存翰,郭威. 2023. 层理特征对油页岩水力压裂裂缝扩展规律影响的数值模拟研究. 煤田地质与勘探,51(11): 44-54. [Li Y W,Zhu C F,Zeng Y J,Shui H C,Fan C H,Guo W.2023. Numerical simulations of the effects of bedding planes on hydraulic fracture propagation law in oil shale. Coal Geology & Exploration,51(11): 44-54] [10] 李芷,贾长贵,杨春和,曾义金,郭印同,衡帅,王磊,侯振坤. 2015. 页岩水力压裂水力裂缝与层理面扩展规律研究. 岩石力学与工程学报,34(1): 12-20. [Li Z,Jia C G,Yang C H,Zeng Y J,Guo Y T,Heng S,Wang L,Hou Z K.2015. Propagation of hydraulic fissures and bedding planes in hydraulic fracturing of shale. Chinese Journal of Rock Mechanics and Engineering,34(1): 12-20] [11] 梁超,籍士超,操应长,刘可禹,吴靖,郝芳. 2024. 深水页岩黄铁矿特征、形成及意义. 中国科学: 地球科学,54(2): 327-359. [Liang C,Ji S C,Cao Y C,Liu K Y,Wu J,Hao F.2024. Characteristics,origins,and significance of pyrites in deep-water shales. Scientia Sinica (Terrae),54(2): 327-359] [12] 林春明. 2019. 沉积岩石学. 北京: 科学出版社,1-399. [Lin C M. 2019. Sedimentary Petrology. Beijing: Science Press,1-399] [13] 牛永斌,齐永安,胡斌,宋慧波,邢智峰,代明月,李妲. 2019. 遗迹组构的精细分析功能及其应用: 第15届国际遗迹组构专题研讨会综述. 古地理学报,21(5): 767-782. [Niu Y B,Qi Y A,Hu B,Song H B,Xing Z F,Dai M Y,Li D.2019. Fine analysis functions and their application of ichnofabric: outline of the 15th international ichnofabric workshop. Journal of Palaeogeography(Chinese Edition),21(5): 767-782] [14] 牛永斌,荆楚涵,邵威猛,程怡高,李志远. 2023. 生物扰动油气水储层的研究现状及展望. 沉积学报,41(6): 1934-1953. [Niu Y B,Jing C H,Shao W M,Cheng Y G,Li Z Y.2023. A review and perspective of bioturbated hydrocarbon and water reservoirs. Acta Sedimentologica Sinica,41(6): 1934-1953] [15] 庞艳春,林丽,徐可,薛园,郑世雯,隗延章. 2016. 贵州福泉牛蹄塘组蠕虫状化石组合的发现. 地球科学,41(4): 612-618. [Pang Y C,Lin L,Xu K,Xue Y,Zheng S W,Kui Y Z.2016. Worm-like fossil assemblage from Niutitang Formation of Fuquan County,Guizhou Province. Earth Science,41(4): 612-618] [16] 乔秀夫,李海兵. 2008. 枕、球—枕构造: 地层中的古地震记录. 地质论评,54(6): 721-730. [Qiao X F,Li H B.2008. Pillow,ball-and-pillow structures: paleo-seismic records within strata. Geological Review,54(6): 721-730] [17] 乔秀夫,郭宪璞. 2011. 新疆西南天山下侏罗统软沉积物变形研究. 地质论评,57(6): 761-769. [Qiao X F,Guo X P.2011. On the Lower Jurassic soft-sediment deformation of southwestern Tianshan Mountains,Xinjiang,China. Geological Review,57(6): 761-769] [18] 施振生,朱筱敏,王贵文,钟大康,张新培. 2005. 塔里木盆地塔中地区志留系塔塔埃尔塔格组潮坪沉积中的遗迹化石. 沉积学报,23(1): 91-99. [Shi Z S,Zhu X M,Wang G W,Zhong D K,Zhang X P.2005. Trace fossils of tidal flat Tataertage Formation(Silurian)in central Tarim Basin. Acta,Sedimentologica Sinica,23(1): 91-99] [19] 施振生,邱振,董大忠,卢斌,梁萍萍,张梦琪. 2018. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征. 石油勘探与开发,45(2): 339-348. [Shi Z S,Qiu Z,Dong D Z,Lu B,Liang P P,Zhang M Q.2018. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin,SW China. Petroleum Exploration and Development,45(2): 339-348] [20] 施振生,董大忠,王红岩,孙莎莎,武瑾. 2020. 含气页岩不同纹层及组合储集层特征差异性及其成因: 以四川盆地下志留统龙马溪组一段典型井为例. 石油勘探与开发,47(4): 829-840. [Shi Z S,Dong D Z,Wang H Y,Sun S S,Wu J.2020. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: a case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin,SW China. Petroleum Exploration and Development,47(4): 829-840] [21] 施振生,邱振. 2021. 海相细粒沉积层理类型及其油气勘探开发意义. 沉积学报,39(1): 181-196. [Shi Z S,Qiu Z.2021. Main bedding types of marine fine-grained sediments and their significance for oil and gas exploration and development. Acta Sedimentologica Sinica,39(1): 181-196] [22] 施振生,赵圣贤,周天琪,孙莎莎,袁渊,张成林,李博,祁灵. 2023a. 海相含气页岩水平层理类型、成因及其页岩气意义: 以川南地区古生界五峰组—龙马溪组为例. 石油与天然气地质,44(6): 1499-1514. [Shi Z S,Zhao S X,Zhou T Q,Sun S S,Yuan Y,Zhang C L,Li B,Qi L.2023. Types and genesis of horizontal bedding of marine gas-bearing shale and its significance for shale gas: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin,China. Oil & Gas Geology,44(6): 1499-1514] [23] 施振生,王红岩,赵圣贤,周天琪,赵群,祁灵. 2023b. 川南地区上奥陶统—下志留统五峰组—龙马溪组快速海进页岩特征及有机质分布. 古地理学报,25(4): 788-805. [Shi Z S,Wang H Y,Zhao S X,Zhou T Q,Zhao Q,Qi L.2023. Rapid transgressive shale characteristics and organic matter distribution of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in southern Sichuan Basin,China. Journal of Palaeogeography(Chinese Edition),25(4): 788-805] [24] 邵龙义,张天畅. 2023. 泥质岩定义及分类问题的探讨. 古地理学报,25(4): 742-751. [Shao L Y,Zhang T C.2023. Discussion on definition and classification of mudrock. Journal of Palaeogeography(Chinese Edition),25(4): 742-751] [25] 孙可明,冀洪杰,张树翠. 2020. 页岩层理方位及强度对水力压裂的影响. 实验力学,35(2): 343-348. [Sun K M,Ji H J,Zhang S C.2020. Influence of bedding azimuth and strength on hydraulic fracturing in shale. Journal of Experimental Mechanics,35(2): 343-348] [26] 熊周海,操应长,王冠民,梁超,石晓明,李明鹏,付尧,赵寿强. 2019. 湖相细粒沉积岩纹层结构差异对可压裂性的影响. 石油学报,40(1): 74-85. [Xiong Z H,Cao Y C,Wang G M,Liang C,Shi X M,Li M P,Fu Y,Zhao S Q.2019. Influence of laminar structure differences on the fracability of lacustrine fine-grained sedimentary rocks. Acta Petrolei Sinica,40(1): 74-85] [27] 许丹,胡瑞林,高玮,夏加国. 2015. 页岩纹层结构对水力裂缝扩展规律的影响. 石油勘探与开发,42(4): 523-528. [Xu D,Hu R L,Gao W,Xia J G.2015. Effects of laminated structure on hydraulic fracture propagation in shale. Petroleum Exploration and Development,42(4): 523-528] [28] 许晴旸,范若颖,龚一鸣. 2023. 海相遗迹化石对显生宙生物大辐射事件的响应. 古地理学报,25(2): 431-450. [Xu Q Y,Fan R Y,Gong Y M.2023. Marine ichnofossils as a record of major biodiversification events in the Phanerozoic. Journal of Palaeogeography(Chinese Edition),25(2): 431-450] [29] 曾允孚,夏文杰. 1986. 沉积岩石学. 北京: 地质出版社,1-142. [Zeng Y F,Xia W J. 1986. Sedimentary Petrology. Beijing: Geological Publishing House,1-142] [30] 张士万,孟志勇,郭战峰,张梦吟,韩驰宇. 2014. 涪陵地区龙马溪组页岩储层特征及其发育主控因素. 天然气工业,34(12): 16-24. [Zhang S W,Meng Z Y,Guo Z F,Zhang M Y,Han C Y.2014. Characteristics and major controlling factors of shale reservoirs in the Longmaxi Fm,Fuling area,Sichuan Basin. Natural Gas Industry,34(12): 16-24] [31] 张兴亮. 2022. 海洋惰性溶解有机碳库与海侵黑色页岩. 科学通报,67(15): 1607-1613. [Zhang X L.2022. Marine refractory dissolved organic carbon and transgressive black shales. Chinese Science Bulletin,67(15): 1607-1613] [32] 张立军,胡斌,齐永安,宋慧波,郑伟,牛永斌,邢智峰,范若颖. 2015. 连结过去、现在和未来的遗迹组构研究: 第13届国际遗迹组构专题研讨会综述. 古地理学报,17(5): 611-615. [Zhang L J,Hu B,Qi Y A,Song H B,Zheng W,Niu Y B,Xing Z F,Fan R Y.2015. Ichnofabric studies linking past,present and future: Outline of the 13th international ichnofabric workshop. Journal of Palaeogeography(Chinese Edition),17(5): 611-615] [33] 赵海峰,陈勉,金衍. 2009. 水力裂缝在地层界面的扩展行为. 石油学报,30(3): 450-454. [Zhao H F,Chen M,Jin Y.2009. Extending behavior of hydraulic fracture on formation interface. Acta Petrolei Sinica,30(3): 450-454] [34] 赵建华,金之钧,金振奎,温馨,耿一凯,颜彩娜. 2016. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究. 天然气地球科学,27(2): 377-386. [Zhao J H,Jin Z J,Jin Z K,Wen X,Geng Y K,Yan C N.2016. The genesis of quartz in Wufeng-Longmaxi gas shales,Sichuan Basin. Natural Gas Geoscience,27(2): 377-386] [35] 郑秀娟,杜远生,朱筱敏,刘招君,胡斌,吴胜和,邵龙义,旷红伟,罗静兰,钟大康,李华,何登发,朱如凯,鲍志东. 2021. 中国古地理学近十年主要进展. 矿物岩石地球化学通报,40(1): 94-114. [Zheng X J,Du Y S,Zhu X M,Liu Z J,Hu B,Wu S H,Shao L Y,Kuang H W,Luo J L,Zhong D K,Li H,He D F,Zhu R K,Bao Z D.2021. The main progresses of Chinese palaeogeography in the past decade. Bulletin of Mineralogy,Petrology and Geochemistry,40(1): 94-114] [36] Allen J R L.1985. Principles of Physical Sedimentology. London: George Allen & Unwin,272. [37] Aplin A C,MacQuaker J H S.2011. Mudstone diversity: origin and implications for source,seal,and reservoir properties in petroleum systems. AAPG Bulletin,95(12): 2031-2059. [38] Baas J H,Best J L.2008. The dynamics of turbulent,transitional and laminar clay-laden flow over a fixed current ripple. Sedimentology,55: 635-666. [39] Baas J H,Best J L,Peakall J,Wang M.2009. A phase diagram for turbulent,transitional,and laminar clay suspension flows. Journal of Sedimentary Research,79: 162-183. [40] Baas J H,Best J L,Peakall J.2011. Depositional processes,bedform development and hybrid bed formation in rapidly decelerated cohesive(mud-sand)sediment flows. Sedimentology,58: 1953-1987. [41] Baas J H,Best J L,Peakall J.2016. Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand. Journal of the Geological Society,173(1): 12-45. [42] Baioumy H,Anuar M N A B,Nordin M N M,Arifin M H,Al-Kahtany K.2020. Source and origin of Late Paleozoic dropstones from Peninsular Malaysia: First record of Mississippian glaciogenic deposits of Gondwana in Southeast Asia. Geological Journal,55: 6361-6375. [43] Bennett M R,Doyle P,Mather A E.1996. Dropstones: their origin and significance. Palaeogeography,Palaeoclimatology,Palaeoecology,121: 331-339. [44] Berra F.2024. Soft-sediment deformation structures and Neptunian dykes across a carbonate system: evidence for an earthquake-related origin(Norian,Dolomia Principale,Southern Alps,Italy). Sedimentology,71: 827-849. [45] Best J,Bridge J.1992. The morphology and dynamics of low amplitude bedwaves upon upper stage plane beds and the preservation of planar laminae. Sedimentology,39: 737-752. [46] Blanc E J P,Blanc-Alétru M C,Mojon P O.1998. Soft-sediment deformation structures interpreted as seismites in the uppermost Aptian to lowermost Albian transgressive deposits of the Chihuahua basin(Mexico). Geologische Rundschau,86: 875-883. [47] Blatt H.1982. Sedimentary Petrology. New York: Freeman,564. [48] Boggs Jr S. 2009. Petrology of Sedimentary Rocks(2nd Edition). Cambride: Cambridge University Press,194-219. [49] Bouma A H.1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Amsterdam: Elsevier,168. [50] Campbell C V.1967. Lamina,laminaset,bed and bedset. Sedimentology,8: 7-26. [51] Cojan I,Thiry M.1992. Seismically induced deformation structures in Oligocene shallow-marine and aeolian coastal sands(Paris Basin). Tectonophysics,206: 79-89. [52] Collinson J. 1994. Sedimentary deformational structures. In: Maltman A(ed). The Geological Deformation of Sediments. Dordrecht: Springer Netherlands,95-125. [53] Curtis C D,Petrowski C,Oertel G.1972. Stable carbon isotope ratios within carbonate concretions: a clue to place and time of formation. Nature,235: 98-100. [54] Droser M L,Bottjer D J.1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Research,56: 558-559. [55] Elliott C G,Williams P F.1988. Sediment slump structures: a review of diagnostic criteria and application to an example from Newfoundland. Journal of Structural Geology,10(2): 171-182. [56] Faugères J C,Stow D A V.1993. Bottom-current-controlled sedimentation: a synthesis of the contourite problem. Sedimentary Geology,82: 287-297. [57] Fisher Q J,Raiswell R,Marshall J D.1998. Siderite concretions from non-marine shales(Westphalian A)of the Pennines,England: controls on their growth and composition. Journal of Sedimentary Research,68: 1034-1045. [58] Gautier D L.1982. Siderite concretions: indicators of early diagenesis in the Gammon shale(Cretaceous). Journal of Sedimentary Petrology,52: 859-871. [59] Ghadeer S G,MacQuaker J H S.2011. Sediment transport processes in an ancient mud-dominated succession: a comparison of processes operating in marine offshore settings and anoxic basinal environments. Journal of the Geological Society,168(5): 1121-1132. [60] Gladstone C,McClelland H L O,Woodcock N H,Pritchard D,Hunt J E.2018. The formation of convolute lamination in mud-rich turbidites. Sedimentology,65(5): 1800-1825. [61] Guiraud M,Plaziat J C.1993. Seismites in the fluviatile Bima sandstones: identification of paleoseisms and discussion of their magnitudes in a Cretaceous synsedimentary strike slip basin(Upper Benue,Nigeria). Tectonophysics,225: 493-522. [62] Higgs R.2010. Hybrid sediment gravity flows-Classification,origin and significance: Comment. Marine and Petroleum Geology,27: 2062-2065. [63] Hiscott R N.1994. Traction-carpet stratification in turbidites: fact or fiction. Journal of Sedimentary Research,64: 204-208. [64] Hudson J D.1978. Concretions,isotopes and the diagenetic history of the Oxford Clay(Jurassic)of central England. Sedimentology,25: 339-370. [65] Irwin H,Curtis C D,Coleman M L.1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature,269: 209-213. [66] Krenmayr H G.1996. Hemipelagic and turbiditic mudstone facies associations in the Upper Cretaceous Gosau Group of the Northern Calcareous Alps(Austria). Sedimentary Geology,101: 149-172. [67] Krumbein W C.1932. The mechanical analysis of fine-grained sediments. Journal of Sedimentary Research,2(3): 140-149. [68] Kuenen P H.1966. Experimental turbidite lamination in a circular flume. The Journal of Geology,74: 523-545. [69] Large R R,Mukherjee I,Gregory D,Steadman J,Corkrey R,Danyushevsky L V.2019. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita,54: 485-506. [70] Lazar O R,Bohacs K M,MacQuaker J H S,Schieber J,Demko T M.2015. Capturing key attributes of fine-grained sedimentary rocks in outcrops,cores,and thin sections: nomenclature and description guidelines. Journal of Sedimentary Research,85: 230-246. [71] Liu X T,Fike D,Li A C,Dong J,Xu F J,Zhuang G C,Rendle-Bühring R,Wan S M.2019. Pyrite sulfur isotopes constrained by sedimentation rates: evidence from sediments on the East China Sea inner shelf since the late Pleistocene. Chemical Geology,505: 66-75. [72] Lobza V,Schieber J.1999. Biogenic sedimentary structures produced by worms in soupy,soft muds: observations from the Chattanooga Shale(Upper Devonian)and experiments. Journal of Sedimentary Research,69(5): 1041-1049. [73] Lowe D R.1975. Water escape structures in coarse-grained sediments. Sedimentology,22: 157-204. [74] MacQuaker J H S,Gawthorpe R L.1993. Mudstone lithofacies in the Kimmeridge Clay Formation,Wessex Basin,Southern England: implications for the origin and controls of the distribution of mudstones. Journal of Sedimentary Research,63(6): 1129-1143. [75] MacQuaker J H S,Howell J K.1999. Small-scale(<5.0 m)vertical heterogeneity in mudstones: implications for high-resolution stratigraphy in siliciclastic mudstone successions. Journal of the Geological Society,London,156: 105-112. [76] MacQuaker J H S,Adams A E.2003. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones. Journal of Sedimentary Research,73: 735-744. [77] MacQuaker J H S,Bohacs K M.2007. On the accumulation of mud. Science,318: 1734-1735. [78] MacQuaker J H S,Taylor K G,Gawthorpe R L.2007. High-resolution facies analyses of mudstones: implications for paleoenvironmental and sequence stratigraphic interpretations of offshore ancient mud-dominated successions. Journal of Sedimentary Research,77: 324-339. [79] MacQuaker J H S,Bentley S J,Bohacs K M.2010. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions. Geology,38(10): 947-950. [80] McCave I N,Jones K P N.1988. Deposition of ungraded muds from high-density non-turbulent turbidity currents. Nature,333: 250-252. [81] Melchin M J,Mitchell C E,Holmden C,Štorch P.2013. Environmental changes in the Late Ordovician-early Silurian: review and new insights from black shales and nitrogen isotopes. Geological Society of America Bulletin,125(11-12): 1635-1670. [82] Milliken K L.2014. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks. Journal of Sedimentary Research,84: 1185-1199. [83] Milliken K L,Zhang T W,Chen J P,Ni Y Y.2021. Mineral diagenetic control of expulsion efficiency in organic-rich mudrocks,Bakken Formation(Devonian-Mississippian),Williston Basin,North Dakota,U.S.A. Marine and Petroleum Geology,127: 104869. [84] Mozley P S.1996. The internal structure of carbonate concretions in mudrocks: a critical evaluation of the conventional concentric model of concretion growth. Sedimentary Geology,103: 85-91. [85] Mulder T,Alexander J.2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology,48: 269-299. [86] Mulder T,Syvitski J P M,Migeon S,Faugères J C,Savoye B.2003. Marine hyperpycnal flows: initiation,behavior and related deposits. A review. Marine and Petroleum Geology,20: 861-882. [87] Munnecke A,Calner M,Harper D A T,Servais T.2010. Ordovician and Silurian sea-water chemistry,sea level,and climate: a synopsis. Palaeogeography,Palaeoclimatology,Palaeoecology,296: 389-413. [88] O'Brien N R,Slatt R M.1990. Argillaceous Rock Atlas. New York: Springer-Verlag,141. [89] Obermeier S F.1996. Use of liquefaction-induced features for paleoseismic analysis: an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology,44: 1-76. [90] Ohfuji H,Rickard D.2005. Experimental syntheses of framboids: a review. Earth-Science Reviews,71: 147-170. [91] Owen G.1996. Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology,43: 279-293. [92] Owen G,Moretti M.2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology,235: 141-147. [93] Pettijohn F J,Potter P E.1964. Atlas and Glossary of Primary Sedimentary Structures. Berlin: Springer,1-370. [94] Plint A G,MacQuaker J H S,Varban B L.2012. Bedload transport of mud across a wide,storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation,Western Canada Foreland Basin. Journal of Sedimentary Research,82: 801-822. [95] Plint A G,MacQuaker J H S.2013. Bedload transport of mud across a wide,storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation,Western Canada Foreland Basin: Reply. Journal of Sedimentary Research,83: 1200-1201. [96] Potter P E,Maynard J B,Depetris P J.2005. Mud and mudstones: introduction and overview. Berlin,Germany: Springer,297. [97] Present T M,Paris G,Burke A,Fischer W W,Adkins J F.2015. Large Carbonate Associated Sulfate isotopic variability between brachiopods,micrite,and other sedimentary components in Late Ordovician strata. Earth and Planetary Science Letters,432: 187-198. [98] Qi L,Wang H Y,Shi Z S,Zhou T Q,Li G Z,Sun S S,Cheng F.2023. Mineralogical and geochemical characteristics of the deeply buried Wufeng-Longmaxi shale in the southern Sichuan Basin,China: implications for provenance and tectonic setting. Minerals,13: 1502. [99] Raiswell R.1971. The growth of Cambrian and Liassic concretions. Sedimentology,17: 147-171. [100] Rickard D.2019. Sedimentary pyrite framboid size-frequency distributions: a meta-analysis. Palaeogeography,Palaeoclimatology,Palaeoecology,522: 62-75. [101] Richard D. 2021. Framboids. Cambridge: Cambridge University Press,72. [102] Rodríguez-Pascua M A,Calvo J P,De Vicente G,Gómez-Gras D.2000. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone,SE Spain,and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology,135: 117-135. [103] Rossetti D D F.1999. Soft-sediment deformation structures in late Albian to Cenomanian deposits,São Luís Basin,northern Brazil: evidence for palaeoseismicity. Sedimentology,46: 1065-1081. [104] Schieber J.2003. Simple gifts and buried treasures: implications of finding bioturbation and erosion surfaces in black shales. The Sedimentary Record,1(2): 4-8. [105] Schieber J,Southard J,Thaisen K.2007. Accretion of mudstone beds from migrating floccule ripples. Science,318: 1760-1763. [106] Schieber J,Southard J B.2009. Bedload transport of mud by floccule ripples: direct observation of ripple migration processes and their implications. Geology,37(6): 483-486. [107] Schieber J,Southard J B,Schimmelmann A.2010. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds: interpreting the rock record in the light of recent flume experiments. Journal of Sedimentary Research,80: 119-128. [108] Schieber J.2011. Reverse engineering mother nature: shale sedimentology from an experimental perspective. Sedimentary Geology,238: 1-22. [109] Schmid-Röhl A,Röhl H J,Oschmann W,Frimmel A,Schwark L.2002. Palaeoenvironmental reconstruction of Lower Toarcian epicontinental black shales(Posidonia Shale,SW Germany): global versus regional control. Geobios,35(1): 13-20. [110] Schimmelmann A,Lange C B,Schieber J,Francus P,Ojala A E K,Zolitschka B.2016. Varves in marine sedimens: a review. Earth-Science Reviews,159: 215-246. [111] Scott C,Lyons T W,Bekker A,Shen Y,Poulton S W,Chu X,Anbar A D.2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature,452: 456-459. [112] Seilacher A. 1964. Biogenic sedimentary structures. In: Imbrie J, Newell N D(eds). Approaches to Paleoecology. New York: Wiley,413-428. [113] Seilacher A.1967. Bathymetry of trace fossils. Marine Geology,5: 413-428. [114] Sellés-Martínez J.1996. Concretion morphology,classification and genesis. Earth-Science Reviews,41: 177-210. [115] Shanmugam G.2011. Transport mechanisms of sand in deep-marine environments-insights based on laboratory experiments: discussion. Journal of Sedimentary Research,81(11): 841. [116] Shanmugam G.2017. Contourites: physical oceanography, process sedimentology,and petroleum geology. Petroleum Exploration and Development,44(2): 183-216. [117] Shi Z S,Zhao S X,Zhou T Q,Ding L H,Sun S S,Cheng F.2022a. Mineralogy and geochemistry of the Upper Ordovician and Lower Silurian Wufeng-Longmaxi shale on the Yangtze Platform,South China: implications for provenance analysis and shale gas sweet-spot interval. Minerals,12: 1190. [118] Shi Z S,Zhou T Q,Wang H Y,Sun S S.2022b. Depositional structures and their reservoir characteristics in the Wufeng-Longmaxi shale in southern Sichuan Basin,China. Energies,15: 1618. [119] Sims J D.1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics,29: 141-152. [120] Stow D A V,Bowen A J.1978. Origin of lamination in deep sea,fine-grained sediments. Nature,274: 324-328. [121] Stow D A V,Lovell J P B.1979. Contourites: their recognition in modern and ancient sediments. Earth-Science Reviews,14: 251-291. [122] Stow D A V,Bowen A J.1980. A physical model for the transport and sorting of fine-grained sediment by turbidity currents. Sedimentology,27: 31-46. [123] Stow D A V,Shanmugam G.1980. Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient flysch sediments. Sedimentary Geology,25: 23-42. [124] Stow D A V,Tabrez A R. 1998. Hemipelagites: processes,facies and model. In: Stoker M S,Evans D,Cramp A(eds). Geological Processes on Continental Margins: Sedimentation,Mass Wasting and Stability. Geological Society,London,Special Publications,129: 317-337. [125] Stow D A V. 2010. Sedimentary Rocks in the Field: A Colour Guide. Australia: CSIRO Publishing,1-318. [126] Stow D A V,Smillie Z.2020. Distinguishing between deep-water sediment facies: turbidites,contourites and hemipelagites. Geosciences,10: 68. [127] Talling P J,Masson D G,Sumner E J,Malgesini G.2012. Subaqueous sediment density flows: depositional processes and deposits types. Sedimentology,59: 1937-2003. [128] Talling P J.2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow: deposits,theoretical and experimental analyses,and generalized models. Geosphere,9: 460-488. [129] Tripsanas E K,Piper D J W,Jenner K A,Bryant W R.2008. Submarine mass-transport facies: new perspectives on flow processes from cores on the eastern North American margin. Sedimentology,55: 97-136. [130] Tucker M E.2001. Sedimentary Petrology.Wiley-Blackwell,92-93. [131] Van Loon A J.2009. Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos,15: 3-55. [132] Vernik L.1994. Hydrocarbon-generation-induced microcracking of source rocks. Geophysics,59(4): 555-563. [133] Vrolijk P J,Southard J B.1997. Experiments on rapid deposition of sand from high-velocity flows. Geoscience Canada,24: 45-54. [134] Wignall P B. 1994. Black shales. Oxford,U.K.: Oxford University Press, 130. [135] Wilckens H,Schwenk T,Lüdmann T,Betzler C,Zhang W Y,Chen J Y,Hernández-Molina F J,Lefebvre A,Cattaneo A,Spiess V,Miramontes E.2023. Factors controlling the morphology and internal sediment architecture of moats and their associated contourite drifts. Sedimentology,70: 1472-1495. [136] Wilkin R T,Barnes H L,Brantley S L.1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta,60(20): 3897-3912. [137] Wilkin R T,Barnes H L.1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta,61: 323-339. [138] Yawar Z,Schieber J.2017. On the origin of silt laminae in laminated shales. Sedimentary Geology,360: 22-34.