[1] 陈旭东,许启鲁,郝芳,陈永权,易艳,胡方杰,王晓雪,田金强,王广伟. 2023. 塔里木盆地塔北地区上震旦统奇格布拉克组白云岩储层形成与成岩演化. 中国科学: 地球科学,66(10): 2311-2331.
[Chen X D,Xu Q L,Hao F,Chen Y Q,Yi Y,Hu F J,Wang X X,Tian J Q,Wang G W.2023. Dolomite reservoir formation and diagenesis evolution of the UpperEdiacaran Qigebrak Formation in the Tabei area,Tarim Basin. Scientia Sinica(Terrae),66(10): 2311-2331]
[2] 郝毅,周进高,陈旭,潘立银,胡圆圆,胡安平. 2015. 四川盆地灯影组“葡萄花边”状白云岩成因及地质意义. 海相油气地质,20(4): 57-64.
[Hao Y,Zhou J G,Chen X,Pan L Y,Hu Y Y,Hu A P.2015. Genesis and geological significance of Upper Sinian Dengying dolostone with grape-lace shaped cement,Sichuan Basin. Marine Origin Petroleum Geology,20(4): 57-64]
[3] 贺训云,寿建峰,沈安江,吴兴宁,王永生,胡圆圆,朱吟,韦东晓. 2014. 白云岩地特征及成因: 以鄂尔多斯盆地靖西马五段中组合为例. 石油勘探与开发,41(3): 375-384.
[He X Y,Shou J F,Shen A J,Wu X N,Wang Y S,Hu Y Y,Zhu Y,Wei D X.2014. Geochemical characteristics and origin of dolomite: a case study from the middle assemblage of Majiagou Formation Member 5 of the west of Jingbian Gas Field,Ordos Basin,North China. Petroleum Exploration and Development,41(3): 375-384]
[4] 胡安平,沈安江,王永生,潘立银,梁峰,罗宪婴,佘敏,陈薇,秦玉娟,王慧,韦东晓. 2020. 海相碳酸盐岩储层实验分析技术进展及应用. 海相油气地质,25(1): 1-11.
[Hu A P,Shen A J,Wang Y S,Pan L Y,Liang F,Luo X Y,She M,Chen W,Qin Y J,Wang H,Wei D X.2020. The progress and application of experimental analysis technology for marine carbonate reservoir. Marine Origin Petroleum Geology,25(1): 1-11]
[5] 胡安平,沈安江,陈亚娜,张建勇,梁峰,王永生. 2021. 基于 U-Pb 同位素年龄和团簇同位素(Δ47)温度约束的四川盆地震旦系灯影组构造—埋藏史重建. 石油实验地质,43(5): 896-905,914.
[Hu A P,Shen A J,Chen Y N,Zhang J Y,Liang F,Wang Y S.2021. Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(Δ47). Petroleum Geology and Experiment,43(5): 896-905,914]
[6] 黄思静. 2010. 碳酸盐岩的成岩作用. 北京: 地质出版社,117-123.
[Huang S J. 2010. Carbonate Diagenesis. Beijing: Geological Publishing House,117-123]
[7] 黄思静,李小宁,兰叶芳,成欣怡. 2013. 海水胶结作用对碳酸盐岩石组构的影响: 以四川盆地东北部三叠系飞仙关组为例. 中南大学学报: 自然科学版,44(12): 5007-5018.
[Huang S J,Li X N,Lan Y F,Cheng X Y.2013. Influences of marine cementation on carbonate textures: a case of Feixianguan carbonates of Triassic,NE Sichuan Basin. Journal of Central South University(Science and Technology),44(12): 5007-5018]
[8] 金民东,谭秀成,李毕松,朱祥,曾伟,连承波. 2019. 四川盆地震旦系灯影组白云岩成因. 沉积学报,37(3): 443-454.
[Jin M D,Tan X C,Li B S,Zhu X,Zeng W,Lian C B.2019. Genesis of dolomite in the Sinian Dengying Formation in the Sichuan Basin. Acta Sedimentologica Sinica,37(3): 443-454]
[9] 李波,颜佳新,刘喜停,薛武强. 2010. 白云岩有机成因模式: 机制、进展与意义. 古地理学报,12(6): 699-710.
[Li B,Yan J X,Liu X T,Xue W Q.2010. The organogenic dolomite model: mechanism,progress and significance. Journal of Palaeogeography(Chinese Edition),12(6): 699-710]
[10] 李红,柳益群. 2013. “白云石(岩)问题”与湖相白云岩研究. 沉积学报,31(2): 302-314.
[Li H,Liu Y Q.2013. “Dolomite Problem”and research of ancient lacustrine dolostones. Acta Sedimentologica Sinica,31(2): 302-314]
[11] 林孝先,彭军,闫建平,侯中健. 2015. 四川盆地震旦系灯影组葡萄状白云岩成因讨论. 古地理学报,17(6): 755-770.
[Lin X X,Peng J,Yan J P,Hou Z J.2015. A discussion about origin of botryoidal dolostone of the Sinian Dengying Formation in Sichuan Basin. Journal of Palaeogeography(Chinese Edition),17(6): 755-770]
[12] 林孝先,彭军,侯中健,韩浩东,李旭杰,马春疆. 2018. 四川汉源—峨边地区上震旦统灯影组藻白云岩特征及成因研究. 沉积学报,36(1): 57-71.
[Lin X X,Peng J,Hou Z J,Han H D,Li X J,Ma C J.2018. Study on characteristics and geneses of algal dolostone of the Upper Sinian Dengying Formation in the Hanyuan-Ebian area of Sichuan Province,China. Acta Sedimentologica Sinica,36(1): 57-71]
[13] 林雪梅,王旭,朱联强. 2019. 川西南峨边先锋剖面震旦系灯影组储层特征. 自然科学,7(3): 237-246.
[Lin X M,Wang X,Zhu L Q.2019. Characteristics of the Sinian Dengying Formation reservoir in Ebianxianfeng section,southwestern Sichuan Basin. Open Journal of Nature Science,7(3): 237-246]
[14] 刘大卫,蔡春芳,扈永杰,姜磊,彭燕燕,于瑞,覃勤. 2020. 深层白云岩多期白云石化及其对孔隙演化的影响: 以川中地区下寒武统龙王庙组为例. 中国矿业大学学报,49(6): 1150-1165.
[Liu D W,Cai C F,Hu Y J,Jiang L,Peng Y Y,Yu R,Qin Q.2020. Multi-stage dolomitization process of deep burial dolostones and its influence on pore evolution: a case study of Longwangmiao Formation in the Lower Cambrian of central Sichuan Basin. Journal of China University of Mining & Technology,49(6): 1150-1165]
[15] 牟传龙,王秀平,梁薇,王远翀,门欣. 2015. 上扬子区灯影组白云岩葡萄体特征及成因初探: 以南江杨坝地区灯影组一段为例. 沉积学报,33(6): 1097-1110.
[Mou C L,Wang X P,Liang W,Wang Y C,Men X.2015. Characteristics and genesis of grape-like stone of dolomite in Sinian Dengying Formation in Yangtze region: a case from the First section of Dengying Formation in Yangba,Nanjiang,Sichuan Province. Acta Sedimentologica Sinica,33(6): 1097-1110]
[16] 甯濛,黄康俊,沈冰. 2018. 镁同位素在 “白云岩问题”研究中的应用及进展. 岩石学报,34(12): 3690-3708.
[Ning M,Huang K J,Shen B.2018. Applications and advances of the magnesium isotope on the‘dolomite problem’. Acta Petrologica Sinica,34(12): 3690-3708]
[17] 钱一雄,冯菊芳,何治亮,张克银,金婷,董少峰,尤东华,张永东. 2017a. 从岩石学及微区同位素探讨四川盆地灯影组皮壳—葡萄状白云石成因. 石油与天然气地质,38(4): 665-676.
[Qian Y X,Feng J F,He Z L,Zhang K Y,Jin T,Dong S F,You D H,Zhang Y D.2017a. Applications of petrography and isotope analysis of micro-drill samples to the study of genesis of grape-like dolomite of the Dengying Formation in the Sichuan Basin. Oil & Gas Geology,38(4): 665-676]
[18] 钱一雄,何治亮,李慧莉,陈跃,金婷,沙旭光,李洪全. 2017b. 塔里木盆地北部上震旦统葡萄状白云岩的发现及成因探讨. 古地理学报,19(2): 197-210.
[Qian Y X,He Z L,Li H L,Chen Y,Jin T,Sha X G,Li H Q.2017b. Discovery and discussion on origin of botryoidal dolostone in the Upper Sinian in North Tarim Basin. Journal of Palaeogeography(Chinese Edition),19(2): 197-210]
[19] 沈安江,胡安平,程婷,梁峰,潘文庆,俸月星,赵建新. 2019. 激光原位 U-Pb 同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用. 石油勘探与开发,46(6): 1062-1074.
[Shen A J,Hu A P,Cheng T,Liang F,Pan W Q,Feng Y X,Zhao J X.2019. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Petroleum Exploration and Development,46(6): 1062-1074]
[20] 施泽进,梁平,王勇,胡修权,田亚铭,王长城. 2011. 川东南地区灯影组葡萄石地球化学特征及成因分析. 岩石学报,27(8): 2263-2271.
[Shi Z J,Liang P,Wang Y,Hu X Q,Tian Y M,Wang C C.2011. Geochemical characteristics and genesis of grapestone in Sinian Dengying Formation in south-eastern Sichuan basin. Acta Petrologica Sinica,27(8): 2263-2271]
[21] 施泽进,王勇,田亚铭,王长城. 2013. 四川盆地东南部震旦系灯影组藻云岩胶结作用及其成岩流体分析. 中国科学: 地球科学,43(2): 317-328.
[Shi Z J,Wang Y,Tian Y M,Wang C C.2013. Cementation and diagenetic fluid of algal dolomites in the Sinian Dengying Formation in southeastern Sichuan Basin. Scientia Sinica(Terrae),43(2): 317-328]
[22] 石书缘,刘伟,黄擎宇,王铜山,周慧,王坤,马奎. 2017. 塔里木盆地北部震旦系齐格布拉克组白云岩储层特征及成因. 天然气地球科学,28(8): 1226-1234.
[Shi S Y,Liu W,Huang Q Y,Wang T S,Zhou H,Wang K,Ma K.2017. Dolostone reservoir characteristic and its formation mechanism in Qigebulake Formtion,Sinian,north Tarim Basin. Natural Gas Geoscience,28(8): 1226-1234]
[23] 向芳,陈洪德,张锦泉. 1998. 资阳地区震旦系灯影组白云岩中葡萄花边的成因研究. 矿物岩石,18(S1): 150-152.
[Xiang F,Chen H D,Zhang J Q.1998. Studying on the origin of botryoidal lace in dolomite of Dengying Formation,Sinian from Ziyang,Sichuan. Journal of Mineralogy and Petrology,18(S1): 150-152]
[24] 许杨阳,刘邓,于娜,邱轩,王红梅. 2018. 微生物(有机)白云石成因模式研究进展与思考. 地球科学,43(S1): 63-70
[Xu Y Y,Liu D,Yu N,Qiu X,Wang H M.2018. Advance and review on microbial/organogenic dolomite model. Earth Science,43(S1): 63-70]
[25] 杨翰轩,胡安平,郑剑锋,梁峰,罗宪婴,俸月星,沈安江. 2020a. 面扫描和定年技术在古老碳酸盐岩储集层研究中的应用: 以塔里木盆地西北部震旦系奇格布拉克组为例. 石油勘探与开发,47(5): 935-946.
[Yang H X,Hu A P,Zheng J F,Liang F,Luo X Y,Feng Y X,Shen A J.2020a. Application of mapping and dating techniques in the study of ancient carbonate reservoirs: a case study of Sinian Qigebrak Formation in northwestern Tarim Basin,NW China. Petroleum Exploration and Development,47(5): 935-946]
[26] 杨翰轩,沈安江,郑剑锋,胡安平. 2020b. 塔里木盆地西北缘震旦系奇格布拉克组微生物白云岩发育特征及储集意义. 海相油气地质,25(1): 44-54.
[Yang H X,Shen A J,Zheng J F,Hu A P.2020b. Sedimentary characteristics and reservoir significance of the microbial dolomite of Sinian Qigebrak Formation in the northwest margin of Tarim Basin. Marine Origin Petroleum Geology,25(1): 44-54]
[27] 由雪莲,孙枢,朱井泉,刘玲,何凯. 2011. 微生物白云岩模式研究进展. 地学前缘,18(4): 52-64.
[You X L,Sun S,Zhu J Q,Liu L,He K.2011. Progress in the study of microbial dolomite model. Earth Science Frontiers,18(4): 52-64]
[28] 曾德铭,王兴志,康保平. 2006. 川西北雷口坡组储层原生孔隙内胶结物研究. 天然气地球科学,17(4): 459-462.
[Zeng D M,Wang X Z,Kang B P.2006. A study on cement in primary pore of the Leikoupo Formation reservoir in the northwest of Sichuan Basin. Natural Gas Geoscience,17(4): 459-462]
[29] 张杰,Brian Jones,潘立银,周进高,秦玉娟,郝毅,武明德. 2014. 四川盆地震旦系灯影组葡萄状白云岩成因. 古地理学报,16(5): 715-725.
[Zhang J,Jones B,Pan L Y,Zhou J G,Qin Y J,Hao Y,Wu M D.2014. Origin of botryoidal dolostone of the Sinian Dengying Formation in Sichuan Basin. Journal of Palaeogeography(Chinese Edition),16(5): 715-725]
[30] 钟怡江,文华国,陈洪德,刘磊,陈安清,王兴龙,王志伟,白璇. 2022. 胞外聚合物在蓝细菌钙化过程中的作用及其地质意义. 沉积学报,40(1): 88-105.
[Zhong Y J,Wen H G,Chen H D,Liu L,Chen A Q,Wang X L,Wang Z W,Bai X.2022. The role of extracellular polymeric substances in cyanobacterial calcification and its geological significance. Acta Sedimentologica Sinica,40(1): 88-105]
[31] 朱光有,李茜,李婷婷,周磊,吴雨轩,沈冰,甯濛. 2023. 镁同位素示踪白云石化流体迁移路径: 以四川盆地石炭系黄龙组为例. 地质学报,97(3): 753-771.
[Zhu G Y,Li X,Li T T,Zhou L,Wu Y X,Shen B,Ning M.2023. Magnesium isotope trace dolomitization fluid migration path: a case study of the Carboniferous Huanglong Formation in the Sichuan Basin. Acta Geologica Sinica,97(3): 753-771]
[32] 祝海华,钟大康. 2013. 四川盆地龙岗气田三叠系飞仙关组储集层特征及成因机理. 古地理学报,15(2): 275-282.
[Zhu H H,Zhong D K.2013. Characteristics and formation mechanism of the Triassic Feixianguan Formation reservoir in Longgang Gas Field,Sichuan Basin. Journal of Palaeogeography(Chinese Edtion),15(2): 275-282]
[33] Algeo T J,Luo G M,Song H Y,Lyons T W,Canfield D E.2015. Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences,12(7): 2131-2151.
[34] Anbar A D,Knoll A H.2002. Proterozoic ocean chemistry and evolution: a bioinorganic bridge?Science,297(5584): 1137-1142.
[35] Azmy K,Lavoie D,Wang Z R,Brand U,Al-Aasm I,Jackson S,Girard I.2013. Magnesium-isotope and REE compositions of Lower Ordovician carbonates from eastern Laurentia: implications for the origin of dolomites and limestones. Chemical Geology,356: 64-75.
[36] Bartley J K,Kah L C,Frank T D,Lyons T W.2015. Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth,lithification,and implications for coniform stromatolites. Geobiology,13(1): 15-32.
[37] Bartley J K,Knoll A H,Grotzinger J P,Sergeev V N.2000. Lithification and fabric genesis in precipitated stromatolites and associated peritidal carbonates Mesoproterozoic billyakh Group,Siberia. Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. SEPM(Society for Sedimentary Geology): 59-73.
[38] Berner R A.1975. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica et Cosmochimica Acta,39(4): 489-504.
[39] Chang B,Li C,Liu D,Foster I,Tripati A,Lloyd M K,Maradiaga I,Luo G M,An Z H,She Z B,Xie S C,Tong J N,Huang J H,Algeo T J,Lyons T W,Immenhauser A.2020. Massive formation of early diagenetic dolomite in the Ediacaran Ocean: constraints on the “dolomite problem”. Proceedings of the National Academy of Sciences of the United States of America,117(25): 14005-14014.
[40] Coniglio M,James N,Aissaoui D.1988. Dolomitization of Miocene carbonates,Gulf of Suez,Egypt. Journal of Sedimentary Research,58(1): 100-119.
[41] Coogan L A,Parrish R R,Roberts N M.2016. Early hydrothermal carbon uptake by the upper oceanic crust: insight from in situ U-Pb dating. Geology,44(2): 147-150.
[42] Coogan L A,Gillis K M.2018. Low-temperature alteration of the seafloor: impacts on ocean chemistry. Annual Review of Earth and Planetary Sciences,46(1): 21-45.
[43] Corsetti F A,Kidder D L,Marenco P J.2006. Trends in oolite dolomitization across the Neoproterozoic-Cambrian boundary: a case study from Death Valley,California. Sedimentary Geology,191(3-4): 135-150.
[44] Creveling J R,Bergmann K D,Grotzinger J P.2016. Cap carbonate platform facies model,Noonday Formation,SE California. Geological Society of America Bulletin,128(7-8): 1249-1269.
[45] Cui H,Kaufman A J,Xiao S,Peek S,Cao H,Min X,Cai Y,Siegel Z,Liu X M,Peng Y,Schiffbauer J D,Martin A J.2016. Environmental context for the terminal Ediacaran biomineralization of animals. Geobiology,14(4): 344-363.
[46] Cui H,Xiao S H,Cai Y P,Peek S,Plummer R E,Kaufman A J.2019. Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan section,South China. Geological Magazine,156(11): 1924-1948.
[47] Denniston R F,Asmerom Y,Polyak V Y,McNeill D F,Klaus J S,Cole P,Budd A F.2008. Caribbean chronostratigraphy refined with U-Pb dating of a Miocene coral. Geology,36(2): 151-154.
[48] Dickson J.1983. Graphical modelling of crystal aggregates and its relevance to cement diagnosis. Philosophical Transactions of the Royal Society of London, Series A,Mathematical and Physical Sciences,309: 465-502.
[49] Dickson J.1993. Crystal growth diagrams as an aid to interpreting the fabrics of calcite aggregates. Journal of Sedimentary Research,63(1): 1-17.
[50] Ding Y,Chen D Z,Zhou X Q,Guo C,Huang T Y,Zhang G J.2019. Cavity-filling dolomite speleothems and submarine cements in the Ediacaran Dengying microbialites,South China: responses to high-frequency sea-level fluctuations in an‘aragonite-dolomite sea’. Sedimentology,66(6): 2511-2537.
[51] Dodd M S,Papineau D,She Z B,Fogel M L,Nederbragt S,Pirajno F.2018. Organic remains in late Palaeoproterozoic granular iron formations and implications for the origin of granules. Precambrian Research,310: 133-152.
[52] Fairchild I J,Hambrey M J.1984. The Vendian succession of northeastern Spitsbergen: petrogenesis of a dolomite-tillite association. Precambrian Research,26(2): 111-167.
[53] Fairchild I J,Spiro B.1987. Petrological and isotopic implications of some contrasting Late Precambrian carbonates,NE Spitsbergen. Sedimentology,34(6): 973-989.
[54] Fairchild I,Marshall J,Bertrand-Sarfati J.1990. Stratigraphic shifts in carbon isotopes from Proterozoic stromatolitic carbonates(Mauritania): influences of primary mineralogy and diagenesis. American Journal of Science,290: 46-79.
[55] Fairchild I J,Knoll A H,Swett K.1991. Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification(Draken Formation,Upper Riphean,Svalbard). Precambrian Research,53(3-4): 165-197.
[56] Fang Y H,Zhang F F,Farfan G A,Xu H F.2021. Low-temperature synthesis of disordered dolomite and high-magnesium calcite in ethanol-water solutions: the solvation effect and implications. ACS Omega,7(1): 281-292.
[57] Fang Y H,Xu H F.2022. Dissolved silica-catalyzed disordered dolomite precipitation. American Mineralogist,107(3): 443-452.
[58] Fantle M S,Higgins J.2014. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: implications for the geochemical cycles of Ca and Mg. Geochimica et Cosmochimica Acta,142: 458-481.
[59] Flügel E. 2010. Microfacies and Archaeology. In: Microfacies of Carbonate Rocks: Analysis,Interpretation and Application. Berlin,Heidelberg: Springer Berlin Heidelberg,903-915.
[60] Folk R L.1974. The natural history of crystalline calcium carbonate: effect of magnesium content and salinity. Journal of Sedimentary Research,44(1): 40-53.
[61] Frank T D,Fielding C R.2003. Marine origin for Precambrian,carbonate-hosted magnesite?Geology,31(12): 1101-1104.
[62] Gabriel N W,Papineau D,She Z B,Leider A,Fogel M L.2021. Organic diagenesis in stromatolitic dolomite and chert from the late Palaeoproterozoic McLeary Formation. Precambrian Research,354: 106052.
[63] Gammon P R.2012. An organodiagenetic model for Marinoan-age cap carbonates. Sedimentary Geology,243: 17-32.
[64] Gan T,Zhou G H,Luo T Y,Pang K,Zhou M Z,Luo W J,Wang S J,Xiao S H.2022. Earliest Ediacaran speleothems and their implications for terrestrial life after the Marinoan snowball Earth. Precambrian Research,376: 106685.
[65] Geske A,Zorlu J,Richter D K,Buhl D,Niedermayr A,Immenhauser A.2012. Impact of diagenesis and low grade metamorphosis on isotope(δ26Mg,δ13C,δ18O and 87Sr/86Sr)and elemental(Ca,Mg,Mn,Fe and Sr)signatures of Triassic sabkha dolomites. Chemical Geology,332: 45-64.
[66] Geske A,Goldstein R H,Mavromatis V,Richter D K,Buhl D,Kluge T,John C M,Immenhauser A.2015a. The magnesium isotope(δ26Mg)signature of dolomites. Geochimica et Cosmochimica Acta,149: 131-151.
[67] Geske A,Lokier S,Dietzel M,Richter D K,Buhl D,Immenhauser A.2015b. Magnesium isotope composition of sabkha porewater and related(Sub-)recent stoichiometric dolomites,Abu Dhabi(UAE). Chemical Geology,393: 112-124.
[68] Ginsburg R N,James N P.1976. Submarine botryoidal aragonite in Holocene reef limestones,Belize. Geology,4(7): 431-436.
[69] Godeau N,Deschamps P,Guihou A,Leonide P,Tendil A,Gerdes A,Hamelin B,Girard J P.2018. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian limestone,France. Geology,46(3): 247-250.
[70] Grammer G M,Ginsburg R N,Swart P K,McNeill D F,Jull A T,Prezbindowski D R.1993. Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits,Bahamas and Belize. Journal of Sedimentary Research,63(5): 983-989.
[71] Grotzinger J P,Watters W A,Knoll A H.2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group,Namibia. Paleobiology,26(3): 334-359.
[72] Han Z Z,Li J,Zhao Y Y,Chen Q Y,Gao X,Hu K M,Guo N,Wei X Y,Meng R R,Zhu C L,Tucker M E,Han C.2024. Dissolved Mn2+ promotes microbially-catalyzed protodolomite precipitation in brackish oxidized water. Chemical Geology,650: 121986.
[73] Hansman R J,Albert R,Gerdes A,Ring U.2018. Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite. Geology,46(3): 207-210.
[74] Hardie L.1977. Layering: the origin and environmental significance of lamination and thin bedding. Sedimentation on the modern carbonate tidal flats of Northwest Andros Island,Bahamas.
[75] Hardie L A.1996. Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology,24(3): 279-283.
[76] Hardie L A.2003. Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas. Geology,31(9): 785-788.
[77] Hoffman P F,MacDonald F A.2010. Sheet-crack cements and early regression in Marinoan(635 Ma)cap dolostones: regional benchmarks of vanishing ice-sheets?Earth and Planetary Science Letters,300(3-4): 374-384.
[78] Hood A S,Wallace M W,Drysdale R N.2011. Neoproterozoic aragonite-dolomite seas?widespread marine dolomite precipitation in Cryogenian reef complexes. Geology,39(9): 871-874.
[79] Hood A S,Wallace M W.2012. Synsedimentary diagenesis in a Cryogenian reef complex: ubiquitous marine dolomite precipitation. Sedimentary Geology,255: 56-71.
[80] Hood A S,Wallace M W.2014. Marine cements reveal the structure of an anoxic,ferruginous Neoproterozoic ocean. Journal of the Geological Society,171(6): 741-744.
[81] Hood A S,Wallace M W.2015. Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia. Precambrian Research,261: 96-111.
[82] Hood A S,Wallace M W,Reed C,Hoffmann K H,Freyer E.2015. Enigmatic carbonates of the Ombombo Subgroup,Otavi Fold Belt,Namibia: a prelude to extreme Cryogenian anoxia?Sedimentary Geology,324: 12-31.
[83] Hood A S,Planavsky N J,Wallace M W,Wang X L,Bellefroid E J,Gueguen B,Cole D B.2016. Integrated geochemical-petrographic insights from component-selective δ238U of Cryogenian marine carbonates. Geology,44(11): 935-938.
[84] Hood A S,Wallace M W.2018. Neoproterozoic marine carbonates and their paleoceanographic significance. Global and Planetary Change,160: 28-45.
[85] Hu Y J,Cai C F,Liu D W,Pederson C L,Jiang L,Shen A J,Immenhauser A.2020. Formation,diagenesis and palaeoenvironmental significance of upper Ediacaran fibrous dolomite cements. Sedimentology,67(2): 1161-1187.
[86] Hu Y J,Cai C F,Li Y,Zhou R,Lu F C,Hu J F,Ren C B,Jia L Q,Zhou Y Q,Lippert K,Immenhauser A.2022. Upper Ediacaran fibrous dolomite versus Ordovician fibrous calcite cement: origin and significance as a paleoenvironmental archive. Chemical Geology,609: 121065.
[87] Hu Z Y,Hu W X,Liu C,Sun F N,Liu Y L,Li W Q.2019. Conservative behavior of Mg isotopes in massive dolostones: from diagenesis to hydrothermal reworking. Sedimentary Geology,381: 65-75.
[88] Hu Z Y,Li W Q,Zhang H,Krainer K,Zheng Q F,Xia Z G,Hu W X,Shen S Z.2021. Mg isotope evidence for restriction events within the Paleotethys ocean around the Permian-Triassic transition. Earth and Planetary Science Letters,556: 116704.
[89] Huang K J,Shen B,Lang X G,Tang W B,Peng Y,Ke S,Kaufman A J,Ma H R,Li F B.2015. Magnesium isotopic compositions of the Mesoproterozoic dolostones: implications for Mg isotopic systematics of marine carbonates. Geochimica et Cosmochimica Acta,164: 333-351.
[90] Hurtgen M T,Arthur M A,Suits N S,Kaufman A J.2002. The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth?Earth and Planetary Science Letters,203(1): 413-429.
[91] Jennings S,Bell R C.2010. Technical Report on Recent Exploration at the Kaoko Copper-Silver Property in Northwest Namibia. INV Metals Report,88.
[92] Jiang G Q,Kennedy M J,Christie-Blick N.2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature,426(6968): 822-826.
[93] Jiang G Q,Kennedy M J,Christie-Blick N,Wu H,Zhang S.2006. Stratigraphy,sedimentary structures,and textures of the late Neoproterozoic Doushantuo cap carbonate in South China. Journal of Sedimentary Research,76(7): 978-995.
[94] Jiang L,Cai C F,Worden R H,Crowley S F,Jia L Q,Zhang K,Duncan I J.2016. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs,Tarim Basin,north-west China. Sedimentology,63(7): 2130-2157.
[95] Kaczmarek S E,Sibley D F.2011. On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: an alternative model for the geochemical evolution of natural dolomites. Sedimentary Geology,240(1-2): 30-40.
[96] Kaczmarek S E,Thornton B P.2017. The effect of temperature on stoichiometry,cation ordering,and reaction rate in high-temperature dolomitization experiments. Chemical Geology,468: 32-41.
[97] Kah L C,Bartley J K,Teal D A.2012. Chemostratigraphy of the Late Mesoproterozoic Atar Group,Taoudeni Basin,Mauritania: muted isotopic variability,facies correlation,and global isotopic trends. Precambrian Research,200: 82-103.
[98] Kalderon-Asael B,Katchinoff J A R,Planavsky N J,Hood A V S,Dellinger M,Bellefroid E J,Jones D S,Hofmann A,Ossa F O,MacDonald F A,Wang C J,Isson T T,Murphy J G,Higgins J A,West A J,Wallace M W,Asael D,Pogge von Strandmann P A E.2021. A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature,595(7867): 394-398.
[99] Kendall A C.1977. Fascicular-optic calcite: a replacement of bundled acicular carbonate cements. Journal of Sedimentary Research,47(3): 1056-1062.
[100] Kennedy M J.1996. Stratigraphy,sedimentology,and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones: deglaciation, δ13C excursions,and carbonate precipitation. Journal of Sedimentary Research,66(6): 1050-1064.
[101] Kennedy M J,Christie-Blick N,Sohl L E.2001. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals?Geology,29(5): 443-446.
[102] Kenward P A,Fowle D A,Goldstein R H,Ueshima M,González L A,Roberts J A.2013. Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls. AAPG Bulletin,97(11): 2113-2125.
[103] Kim J,Kimura Y,Puchala B,Yamazaki T,Becker U,Sun W H.2023. Dissolution enables dolomite crystal growth near ambient conditions. Science,382(6673): 915-920.
[104] Kimmig S R,Holmden C.2017. Multi-proxy geochemical evidence for primary aragonite precipitation in a tropical-shelf‘calcite sea'during the Hirnantian glaciation. Geochimica et Cosmochimica Acta,206: 254-272.
[105] Kiprijanov K S.2016. Chaos and beauty in a beaker: the early history of the Belousov-Zhabotinsky reaction. Annalen der Physik,528(3-4): 233-237.
[106] Knoll A H,Fairchild I J,Swett K.1993. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition. Palaios,8: 512-525.
[107] Knoll A H,Javaux E J,Hewitt D,Cohen P.2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences,361(1470): 1023-1038.
[108] Krause S,Liebetrau V,Gorb S,Sánchez-Román M,McKenzie J A,Treude T.2012. Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: new insight into an old enigma. Geology,40(7): 587-590.
[109] Lamothe K G,Wallace M W,Hood A V,Rose C V.2024. An earliest Ediacaran oxygenation episode in the Wilpena Group,Adelaide Superbasin,South Australia. Precambrian Research,409: 107433.
[110] Land L S.1980. The isotopic and trace element geochemistry of dolomite: the state of the art. Concepts and Models of Dolomitization. SEPM(Society for Sedimentary Geology): 87-110
[111] Land L S.1998. Failure to precipitate dolomite at 25 ℃ from dilute solution despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry,4(3): 361-368.
[112] Li F B,Teng F Z,Chen J T,Huang K J,Wang S J,Lang X G,Ma H R,Peng Y B,Shen B.2016. Constraining ribbon rock dolomitization by Mg isotopes: implications for the‘dolomite problem’. Chemical Geology,445: 208-220.
[113] Li Q,Parrish R R,Horstwood M S A,McArthur J M.2014. U-Pb dating of cements in Mesozoic ammonites. Chemical Geology,376: 76-83.
[114] Li Z X,Evans D A,Halverson G P.2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology,294: 219-232.
[115] Liu D,Xu Y Y,Papineau D,Yu N,Fan Q G,Qiu X,Wang H M.2019. Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals. Geochimica et Cosmochimica Acta,247: 83-95.
[116] Logan B W,Hoffman P,Gebelein C D.1974. Algal mats,cryptalgal fabrics,and structures,Hamelin Pool,Western Australia. American Association of Petroleum Geologists Memoir,22: 140-194.
[117] Lucia F,Major R. 1994. Porosity evolution through hypersaline reflux dolomitization. In: Purser B,Tucker M,Zenger D(eds). Dolomites: A Volume in Honor of Dolomieu. The International Association of Sedimentologists, Special Publication 21: 325-341.
[118] Lyons T W,Reinhard C T,Planavsky N J.2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature,506(7488): 307-315.
[119] Mavromatis V,Meister P,Oelkers E H.2014. Using stable Mg isotopes to distinguish dolomite formation mechanisms: a case study from the Peru margin. Chemical Geology,385: 84-91.
[120] Mazzullo S.1980. Calcite pseudospar replacive of marine acicular aragonite,and implications for aragonite cement diagenesis. Journal of Sedimentary Research,50(2): 409-422.
[121] McKenzie J A,Vasconcelos C.2009. Dolomite mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology,56(1): 205-219.
[122] Meister P.2013. Two opposing effects of sulfate reduction on carbonate precipitation in normal marine,hypersaline,and alkaline environments. Geology,41(4): 499-502.
[123] Melzer S E,Budd D A.2008. Retention of high permeability during shallow burial(300 to 500 m)of carbonate grainstones. Journal of Sedimentary Research,78(8): 548-561.
[124] Ning M,Lang X G,Huang K J,Li C,Huang T Z,Yuan H L,Xing C C,Yang R Y,Shen B.2020. Towards understanding the origin of massive dolostones. Earth and Planetary Science Letters,545: 116403.
[125] Nuriel P,Weinberger R,Kylander-Clark A R C,Hacker B R,Craddock J P.2017. The onset of the Dead Sea transform based on calcite age-strain analyses. Geology,45(7): 587-590.
[126] Papineau D.2020. Chemically oscillating reactions in the formation of botryoidal malachite. American Mineralogist,105(4): 447-454.
[127] Papineau D,De Gregorio B,Fearn S,Kilcoyne D,McMahon G,Purohit R,Fogel M.2016. Nanoscale petrographic and geochemical insights on the origin of the Palaeoproterozoic stromatolitic phosphorites from Aravalli Supergroup,India. Geobiology,14(1): 3-32.
[128] Papineau D,She Z B,Dodd M S.2017. Chemically-oscillating reactions during the diagenetic oxidation of organic matter and in the formation of granules in late Palaeoproterozoic chert from Lake Superior. Chemical Geology,470: 33-54.
[129] Papineau D,Yin J Y,Devine K G,Liu D,She Z B.2021. Chemically oscillating reactions during the diagenetic formation of Ediacaran siliceous and carbonate botryoids. Minerals,11(10): 1060.
[130] Peng B,Li Z X,Li G R,Liu C L,Zhu S F,Zhang W,Zuo Y H,Guo Y C,Wei X J.2018a. Multiple dolomitization and fluid flow events in the Precambrian Dengying Formation of Sichuan Basin,southwestern China. Acta Geologica Sinica-English Edition,92(1): 311-332.
[131] Peng J,Zhang H B,Lin X X.2018b. Study on characteristics and genesis of botryoidal dolostone of the Upper Sinian Dengying Formation: a case study from Hanyuan region,Sichuan,China. Carbonates and Evaporites,33: 285-299.
[132] Peng Y,Shen B,Lang X G,Huang K J,Chen J T,Yan Z,Tang W B,Ke S,Ma H R,Li F B.2016. Constraining dolomitization by Mg isotopes: a case study from partially dolomitized limestones of the middle Cambrian Xuzhuang Formation,North China. Geochemistry,Geophysics,Geosystems,17(3): 1109-1129.
[133] Peters S E,Husson J M,Wilcots J.2017. The rise and fall of stromatolites in shallow marine environments. Geology,45(6): 487-490.
[134] Petrash D A,Bialik O M,Bontognali T R,Vasconcelos C,Roberts J A,McKenzie J A,Konhauser K O.2017. Microbially catalyzed dolomite formation: from near-surface to burial. Earth-Science Reviews,171: 558-582.
[135] Pisapia C,Deschamps P,Battani A,Buschaert S,Guihou A,Hamelin B,Brulhet J.2018. U/Pb dating of geodic calcite: new insights on Western Europe major tectonic events and associated diagenetic fluids. Journal of the Geological Society,175(1): 60-70.
[136] Planavsky N J,Reinhard C T,Wang X L,Thomson D,McGoldrick P,Rainbird R H,Johnson T,Fischer W W,Lyons T W.2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science,346(6209): 635-638.
[137] Putnis A.2009. Mineral replacement reactions. Reviews in Mineralogy and Geochemistry,70(1): 87-124.
[138] Putnis A,Austrheim H.2010. Fluid-induced processes: metasomatism and metamorphism. Geofluids,10(1-2): 254-269.
[139] Roberts N M,Walker R J.2016. U-Pb geochronology of calcite-mineralized faults: absolute timing of rift-related fault events on the northeast Atlantic margin. Geology,44(7): 531-534.
[140] Roberts N M,Rasbury E T,Parrish R R,Smith C J,Horstwood M S,Condon D J.2017. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochemistry,Geophysics,Geosystems,18(7): 2807-2814.
[141] Rodriguez-Blanco J D,Shaw S,Benning L G.2015. A route for the direct crystallization of dolomite. American Mineralogist,100(5-6): 1172-1181.
[142] Schneidermann N,Harris P M.1985. Carbonate cements: based on a symposium sponsored by the society of economic paleontologists and mineralogists. SEPM Society for Sedimentary Geology.
[143] Shinn E A.1968. Burrowing in recent lime sediments of Florida and the Bahamas. Journal of Paleontology,42: 879-894.
[144] Shuster A M,Wallace M W,van Smeerdijk Hood A,Jiang G Q.2018. The Tonian Beck Spring dolomite: marine dolomitization in a shallow,anoxic sea. Sedimentary Geology,368: 83-104.
[145] Sibley D F.1991. Secular changes in the amount and texture of dolomite. Geology,19(2): 151-154.
[146] Stacey J,Hood A S,Wallace M W.2023. Persistent late Tonian shallow marine anoxia and euxinia. Precambrian Research,397: 107207.
[147] Stanley S M,Hardie L A.1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography,Palaeoclimatology,Palaeoecology,144(1-2): 3-19.
[148] Swett K,Knoll A H.1989. Marine pisolites from upper Proterozoic carbonates of East Greenland and Spitsbergen. Sedimentology,36(1): 75-93.
[149] Tang P,Chen D Z,Wang Y Z,Ding Y,El-Shafeiy M,Yang B.2022. Diagenesis of microbialite-dominated carbonates in the Upper Ediacaran Qigebrak Formation,NW Tarim Basin,China: implications for reservoir development. Marine and Petroleum Geology,136: 105476.
[150] Tewari V C,Tucker M E.2011. Ediacaran Krol carbonates of the Lesser Himalaya,India: stromatolitic facies,depositional environment and diagenesis. Cellular Origin,Life in Extreme Habitats and Astrobiology. Dordrecht: Springer Netherlands: 133-156.
[151] Tucker M E.1982. Precambrian dolomites: petrographic and isotopic evidence that they differ from Phanerozoic dolomites. Geology,10(1): 7-12.
[152] Tucker M E.1983. Diagenesis,geochemistry,and origin of a Precambrian dolomite: the Beck Spring Dolomite of eastern California. Journal of Sedimentary Research,53(4): 1097-1119.
[153] Tucker M E,Wright V P.2009. Carbonate Sedimentology. John Wiley & Sons.
[154] Van Tuyl F M.1916a. New points on the origin of dolomite. American Journal of Science,42(249): 249-260.
[155] Van Tuyl F M.1916b. The origin of dolomite,26. Henderson,State Printer.
[156] Varkouhi S,Papineau D,Guo Z X.2022. Botryoidal quartz as an abiotic signature in Palaeoarchean cherts of the Pilbara Supergroup,Western Australia. Precambrian Research,383: 106876.
[157] Vasconcelos C,McKenzie J A,Bernasconi S,Grujic D,Tiens A J.1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature,377(6546): 220-222.
[158] Vousdoukas M I,Velegrakis A F,Plomaritis T A.2007. Beachrock occurrence,characteristics,formation mechanisms and impacts. Earth-Science Reviews,85(1-2): 23-46.
[159] Wallace M W,Hood A S,Shuster A,Greig A,Planavsky N J,Reed C P.2017. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters,466: 12-19.
[160] Wallace M W,Hood A S,Fayle J,Hordern E S,O'Hare T F.2019. Neoproterozoic marine dolomite hardgrounds and their relationship to cap dolomites. Precambrian Research,328: 269-286.
[161] Wang J B,He Z L,Zhu D Y,Liu Q Y,Ding Q,Li S J,Zhang D W.2020. Petrological and geochemical characteristics of the botryoidal dolomite of Dengying Formation in the Yangtze Craton,South China: constraints on terminal Ediacaran “dolomite seas”. Sedimentary Geology,406: 105722.
[162] Warren J.2000. Dolomite: occurrence,evolution and economically important associations. Earth-Science Reviews,52(1-3): 1-81.
[163] Wood R,Curtis A.2015. Extensive metazoan reefs from the Ediacaran Nama Group,Namibia: the rise of benthic suspension feeding. Geobiology,13(2): 112-122.
[164] Wood R,Zhuravlev A Y,Sukhov S,Zhu M Y,Zhao F C.2017. Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform. Geology,45(1): 27-30.
[165] Wood R,Bowyer F,Penny A,Poulton S W.2018. Did anoxia terminate Ediacaran benthic communities?evidence from early diagenesis. Precambrian Research,313: 134-147.
[166] Xiao S H,Knoll A H,Kaufman A J,Yin L M,Zhang Y.1997. Neoproterozoic fossils in Mesoproterozoic rocks? chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Research,84(3-4): 197-220.
[167] Zempolich W G,Wilkinson B H,Lohmann K C.1988. Diagenesis of late Proterozoic carbonates: the Beck Spring Dolomite of eastern California. Journal of Sedimentary Research,58(4): 656-672.
[168] Zempolich W G,Baker P A.1993. Experimental and natural mimetic dolomitization of aragonite ooids. Journal of Sedimentary Research,63(4): 596-606.
[169] Zhai X F,Luo P,Gu Z D,Jiang H,Zhang B M,Wang Z C,Wang T S,Wu S T.2020. Microbial mineralization of botryoidal laminations in the Upper Ediacaran dolostones,western Yangtze Platform,SW China. Journal of Asian Earth Sciences,195: 104334.
[170] Zhang F F,Xu H F,Konishi H,Kemp J M,Roden E E,Shen Z Z.2012a. Dissolved sulfide-catalyzed precipitation of disordered dolomite: implications for the formation mechanism of sedimentary dolomite. Geochimica et Cosmochimica Acta,97: 148-165.
[171] Zhang F F,Xu H F,Konishi H,Shelobolina E S,Roden E E.2012b. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: a potential precursor of sedimentary dolomite. American Mineralogist,97(4): 556-567.
[172] Zhang F F,Xiao S H,Kendall B,Romaniello S J,Cui H,Meyer M,Gilleaudeau G J,Kaufman A J,Anbar A D.2018. Extensive marine anoxia during the terminal Ediacaran Period. Science Advances,4(6): eaan8983.
[173] Zhang P,Huang K J,Luo M,Cai Y P,Bao Z A.2022. Constraining the terminal Ediacaran seawater chemistry by Mg isotopes in dolostones from the Yangtze Platform,South China. Precambrian Research,377: 106700.
[174] Zhao D F,Tan X C,Hu G,Wang L C,Wang X F,Qiao Z F,Luo S C,Tang H.2021. Characteristics and primary mineralogy of fibrous marine dolomite cements in the end-Ediacaran Dengying Formation,South China: implications for aragonite-dolomite seas. Palaeogeography,Palaeoclimatology,Palaeoecology,581: 110635.
[175] Zhou Y,Yang F L,Ji Y L,Zhou X F,Zhang C H.2020. Characteristics and controlling factors of dolomite karst reservoirs of the Sinian Dengying Formation,central Sichuan Basin,southwestern China. Precambrian Research,343: 105708. |