Abstract:Dolomites of the Ordovician Yingshan Formation,which exhibit significant exploration potential,are found in the Shunbei area of the Tarim Basin. However,there is no systematic explanation on the genesis and physical property variations of the stratified dolomite in this region. Based on detailed petrology observation,carbon and oxygen isotopes,rare earth element analysis,carbonate U-Pb chronology dating,and porosity and permeability testing under different stress states,this study discussed the types and genetic mechanisms of the inner stratified dolomites of the Yingshan Formation. Furthermore,it provides a preliminary evaluation of the differences in physical properties among dolomites of various origin. The findings can be summarized as follows: (1)The relative development of dolomites in the lower part of the Yingshan Formation located in the northern region of Shunbei area primarily consists of two types of stratified dolomites,including the buried pressure-dissolved dolomite(Class I)and the penecontemporaneous seepage reflux dolomite(Class Ⅱ). (2)The Class I dolomites,which are predominantly distributed in low-energy sedimentary facies,have their origin in burial dolomitization. This is attributed to the genetic mechanism of clay mineral transformation,driven by the formation of stylolites during the burial process. These dolomites are relatively more developed in the central part of the Shunbei area. (3)The Class II dolomites are characterized by penecontemporaneous seepage reflux dolomitization in sedimentary facies that display high geomorphology and relatively high energy. These dolomites are primarily distributed and well developed in the western and southern Shunbei area. (4)The measured physical properties of Class Ⅰ dolomites(φ: 0.3%~1.0%;K: 0.003×10-3~0.074×10-3 μm2)are lower than those of Class Ⅱ dolomites(φ: 0.4%~2.0%;K: 0.009×10-3~0.055×10-3 μm2). However,Class I dolomites can enhance the ratio of dolomite-limestone interbedding,and there are fractures to transform into reservoir potential. This study is of significant reference value for ultra-deep dolomite oil and gas exploration in the Shunbei area of the Tarim Basin.
LIU Dawei,LI Yingtao,HAN Jun et al. Ultra-deep dolomite types and their reservoirs potential of the Ordovician Yingshan Formation in Shunbei area,Tarim Basin[J]. JOPC, 2025, 27(1): 126-140.
[1] 陈代钊,钱一雄. 2017. 深层—超深层白云岩储集层: 机遇与挑战. 古地理学报,19(2): 187-196. [Chen D Z,Qian Y X.2017. Deep or super-deep dolostone reservoirs: opportunities and challenges. Journal of Palaeogeography(Chinese Edition),19(2): 187-196] [2] 樊秋爽,夏国清,李高杰,伊海生. 2022. 古海洋氧化还原条件分析方法与研究进展. 沉积学报,40(5): 1151-1171. [Fan Q S,Xia G Q,Li G J,Yi H S.2022. Analytical methods and research progress of redox conditions in the paleo-ocean. Acta Sedimentologica Sinica,40(5): 1151-1171] [3] 冯军,张亚金,张振伟,付晓飞,王海学,王雅春,刘洋,张君龙,李强,冯子辉. 2022. 塔里木盆地古城地区奥陶系滩相白云岩气藏特征及主控因素. 石油勘探与开发,49(1): 45-55. [Feng J,Zhang Y J,Zhang Z W,Fu X F,Wang H X,Wang Y C,Liu Y,Zhang J L,Li Q,Feng Z H.2022. Characteristics and main control factors of Ordovician shoal dolomite gas reservoir in Gucheng area,Tarim Basin,NW China. Petroleum Exploration and Development,49(1): 45-55] [4] 冯增昭,鲍志东,吴茂炳,金振奎,时晓章,骆艾荣. 2007. 塔里木地区奥陶纪岩相古地理. 古地理学报,9(5): 447-460. [Feng Z Z,Bao Z D,Wu M B,Jin Z K,Shi X Z,Luo A R.2007. Lithofacies Palaeogeography of the Ordovician in Tarim area. Journal of Palaeogeography(Chinese Edition),9(5): 447-460] [5] 郭春涛,李如一,陈树民. 2018. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因. 吉林大学学报(地球科学版),48(4): 1121-1134. [Guo C T,Li R Y,Chen S M.2018. Rare earth element geochemistry and genetic model of dolomite of Yingshan Formation in Gucheng area,Tarim Basin. Journal of Jilin University(Earth Science Edition),48(4): 1121-1134] [6] 何登发,贾承造,李德生,张朝军,孟庆任,石昕. 2005. 塔里木多旋回叠合盆地的形成与演化. 石油与天然气地质,26(1): 64-77. [He D F,Jia C Z,Li D S,Zhang C J,Meng Q R,Shi X.2005. Formation and evolution of polycyclic superimposed Tarim Basin. Oil and Gas Geology,26(1): 64-77] [7] 康仁东,孟万斌,肖春晖. 2020. 塔里木盆地顺南地区奥陶系鹰山组白云岩形成机制及其发育模式. 石油实验地质,42(6): 900-909. [Kang R D,Meng W B,Xiao C H.2020. Formation mechanisms and development models of dolomite reservoirs in Ordovician Yingshan Formation in Shunnan area,Tarim Basin. Petroleum Geology & Experiment,42(6): 900-909] [8] 李兴旺. 2020. 塔里木盆地顺北地区奥陶系碳酸盐岩储层特征研究. 成都理工大学硕士学位论文: 30-45. [Li X W.2020. Sedimentary facies and depositional model of middle-lower Ordovician Yingshan Formation in Tazhong area. Masteral dissertation of Chengdu University of Technology: 30-45] [9] 李映涛,汝智星,邓尚,林会喜,韩俊,张继标,黄诚. 2023. 塔里木盆地顺北特深碳酸盐岩储层天然裂缝实验评价及油气意义. 石油实验地质,45(3): 422-433. [Li Y T,Ru Z X,Deng S,Lin H X,Han J,Zhang J B,Huang C.2023. Experimental evaluation and hydrocarbon significance of natural fractures in Shunbei ultra-deep carbonate reservoir,Tarim Basin. Petroleum Geology & Experiment,45(3): 422-433] [10] 林畅松,李思田,刘景彦,钱一雄,罗宏,陈建强,彭莉,芮志峰. 2011. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化. 岩石学报,27(1): 210-218. [Lin C S,Li S T,Liu J Y,Qian Y X,Luo H,Chen J Q,Peng L,Rui Z F.2011. Tectonic framework and paleogeographic evolution of the Tarim Basin during the Paleozoic major evolutionary stages. Acta Petrologica Sinica,27(1): 210-218] [11] 刘嘉庆,李忠,颜梦珂,Peter K. Swart,杨柳,卢朝进. 2020. 塔里木盆地塔中地区下奥陶统白云岩的成岩流体演化: 来自团簇同位素的证据. 石油与天然气地质,41(1): 68-82. [Liu J Q,Li Z,Yan M K,Swart P K,Yang L,Lu C J.2020. Diagenetic fluid evolution of dolomite from the Lower Ordovician in Tazhong area,Tarim Basin: clumped isotopic evidence. Oil & Gas Geology,41(1): 68-82] [12] 倪新锋,沈安江,乔占峰,郑剑锋,郑兴平,杨钊. 2023. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示. 岩性油气藏,35(2): 144-158. [Ni X F,Shen A J,Qiao Z F,Zheng J F,Zheng X P,Yang Z.2023. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin. Lithologic Reservoirs,35(2): 144-158] [13] 宁超众,孙龙德,胡素云,徐怀民,潘文庆,李勇,赵宽志. 2021. 塔里木盆地哈拉哈塘油田奥陶系缝洞型碳酸盐岩储层岩溶类型及特征. 石油学报,42(1): 15-32. [Ning C Z,Sun L D,Hu S Y,Xu H M,Pan W Q,Li Y,Zhao K Z.2021. Karst types and characteristics of the Ordovician fracture-cavity type carbonate reservoirs in Halahatang oilfield,Tarim Basin. Acta Petrolei Sinica,42(1): 15-32] [14] 彭军,夏梦,曹飞,夏金刚,李峰. 2022. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征. 岩性油气藏,34(2): 17-30. [Peng J,Xia M,Cao F,Xia J G,Li F.2022. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area,Tarim Basin. Lithologic Reservoirs,34(2): 17-30] [15] 漆立新. 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探,25(1): 102-111. [Qi L X.2020. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin. China Petroleum Exploration,25(1): 102-111] [16] 沈安江,罗宪婴,胡安平,乔占峰,张杰. 2022. 从准同生到埋藏环境的白云石化路径及其成储效应. 石油勘探与开发,49(4): 637-647. [Shen A J,Luo X Y,Hu A P,Qiao Z F,Zhang J.2022. Dolomitization evolution and its effects on hydrocarbon reservoir formation from penecontemporaneous to deep burial environment. Petroleum Exploration and Development,49(4): 637-647] [17] 孙玉景. 2016. 塔里木盆地台盆区中下奥陶统鹰山组岩相古地理研究. 西南石油大学硕士学位论文: 50-52. [Sun Y J.2016. Lithofacies and paleogeography of Middle and lower Ordovician Yingshan Formation in Tarim Basin. Masteral dissertation of Southwest Petroleum University: 50-52] [18] 王清华,杨海军,汪如军,李世银,邓兴梁,李勇,昌伦杰,万效国,张银涛. 2021. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新. 中国石油勘探,26(4): 58-71. [Wang Q H,Yang H J,Wang R J,Li S Y,Deng X L,Li Y,Chang L J,Wan X G,Zhang Y T.2021. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin. China Petroleum Exploration,26(4): 58-71] [19] 肖玮绮. 2019. 塔里木盆地顺托果勒低隆起奥陶系鹰山组沉积微相特征. 成都理工大学硕士学位论文: 52-57. [Xiao W Q.2019. Sedimentary microfacies characteristics of Ordovician Yingshan Formation in Shuntuoguole lower uplift,Tarim Basin. Masteral dissertation of Chengdu University of Technology: 52-57] [20] 尤东华,韩俊,胡文瑄,陈强路,曹自成,席斌斌,鲁子野. 2018. 塔里木盆地顺南501井鹰山组白云岩储层特征与成因. 沉积学报,36(6): 1206-1217. [You D H,Han J,Hu W X,Chen Q L,Cao Z C,Xi B B,Lu Z Y.2018. Characteristics and genesis of dolomite reservoirs in the Yingshan Formation of Well SN501 in the Tarim Basin. Acta Sedimentologica Sinica,36(6): 1206-1217] [21] 尤东华,曹自成,徐明军,钱一雄,王石,王小林. 2020. 塔里木盆地奥陶系鹰山组多类型白云岩储层成因机制. 石油与天然气地质,41(1): 92-101. [You D H,Cao Z C,Xu M J,Qian Y X,Wang S,Wang X L.2020. Genetic mechanism of multi-type dolomite reservoirs in Ordovician Yingshan Formation,Tarim Basin. Oil & Gas Geology,41(1): 92-101] [22] 张哨楠,黄柏文,隋欢,叶宁,李映涛. 2019. 古城地区鹰山组储层特征及成岩孔隙演化. 西南石油大学学报(自然科学版),41(1): 33-46. [Zhang S N,Huang B W,Sui H,Ye N,Li Y T.2019. The reservoir characteristics and the pore evolution of Yingshan Formation in Gucheng region,Tarim Basin. Journal of Southwest Petroleum University(Science & Technology Edition),41(1): 33-46] [23] 赵锐,赵腾,李慧莉,焦存礼,高晓鹏,赵学琴. 2019. 塔里木盆地顺托果勒地区中下奥陶统鹰山组与一间房组沉积相与旋回地层. 东北石油大学学报,43(4): 1-16. [Zhao R,Zhao T,Li H L,Jiao C L,Gao X P,Zhao X Q.2019. Sedimentary facies and cyclic stratigraphy of Yingshan and Yijianfang formations of Lower-Middle Ordovician in Shuntuoguole area,Tarim Basin. Journal of Northeast Petroleum University,43(4): 1-16] [24] 赵宗举,吴兴宁,潘文庆,张兴阳,张丽娟,马培领,王振宇. 2009. 塔里木盆地奥陶纪层序岩相古地理. 沉积学报,27(5): 939-955. [Zhao Z J,Wu X N,Pan W Q,Zhang X Y,Zhang L J,Ma P L,Wang Z Y.2009. Sequence lithofacies paleogeography of Ordovician in Tarim Basin. Acta Sedimentologica Sinica,27(5): 939-955] [25] 郑和荣,田景春,胡宗全,张翔,赵永强,孟万斌. 2022. 塔里木盆地奥陶系岩相古地理演化及沉积模式. 石油与天然气地质,43(4): 733-745. [Zheng H R,Tian J C,Hu Z Q,Zhang X,Zhao Y Q,Meng W B.2022. Lithofacies palaeogeographic evolution and sedimentary model of the Ordovician in the Tarim Basin. Oil & Gas Geology,43(4): 733-745] [26] Bau M.1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology,93: 219-230. [27] Bau M,Koschinsky A,Dulski P,Hein J R.1996. Comparison of the partitioning behaviors of yttrium,rare earth elements,and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochimica et Cosmochimica Acta,60: 1709-1725. [28] Bau M,Balan S,Schmidt K,Koschinsky A.2010. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems. Earth and Planetary Science Letters,299: 310-316. [29] Ben-Israel M,Holder R M,Nelson L L,Smith E F,Kylander-Clark A R C,Ryb U.2024. Late Paleozoic oxygenation of marine environments supported by dolomite U-Pb dating. Nature Communication,15: 2892. [30] Boles J R,Franks S G.1979. Clay diagenesis in Wilcox Sandstones of Southwest Texas: implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Research,49: 55-70. [31] Craddock P R,Bach W,Seewald J S,Rouxel O J,Reeves E,Tivey M K.2010. Rare earth element abundances in hydrothermal fluids from the Manus Basin,Papua New Guinea: indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochimica et Cosmochimica Acta,74: 5494-5513. [32] Delpomdor F,Blanpied C,Virgone A,Préat A.2013. Paleoenvironments in Meso-Neoproterozoic carbonates of the Mbuji-Mayi Supergroup(Democratic Republic of Congo): microfacies analysis combined with C-O-Sr isotopes,major-trace elements and REE+Y distributions. Journal of African Earth Sciences,88: 72-100. [33] Hill C A,Polyak V J,Asmerom Y,Provencio P.2016. Constraints on a Late Cretaceous uplift,denudation,and incision of the Grand Canyon region,southwestern Colorado Plateau,USA,from U-Pb dating of lacustrine limestone. Tectonics,35(3-4): 896-906. [34] Jones B,Manning D A C.1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology,111: 111-129. [35] Kamber B S,Bolhar R,Webb G E.2004. Geochemistry of late Archaean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas. Precambrian Research,132: 379-399. [36] Land L S. 1980. The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger D H,Dunham J B. Ethington R L(eds).Concepts and Models of Dolomitization. SEPM Special Publication,28: 87-110. [37] Liu X M,Hardisty D S,Lyons T W,Swart P K.2019. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank. Geochimica et Cosmochimica Acta,248: 25-42. [38] Machel H G.1999. Effects of groundwater flow on mineral diagenesis,with emphasis on carbonate aquifers. Hydrogeology Journal,7(1): 94-107. [39] Martin R.1966. Paleogeomorphology and its application to exploration for oil and gas(with examples from western Canada). AAPG Bulletin,50(10): 2277-2311. [40] McHargue T R,Price R C.1982. Dolomite from clay in argillaceous or shale-associated marine carbonates. Journal of Sedimentary Petrology,52(3): 873-886. [41] Mclennan S M.1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry,21(1): 169-200. [42] Michard A,Albarède F,Michard G,Minster J F,Charlou J L.1983. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field(13°N). Nature,303: 795-797. [43] Olson J E.2004. Predicting fracture swarms: the influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. Geological Society,London,Special Publications,231: 73-88. [44] Roberts N M W,Rasbury E T,Parrish R R,Smith C J,Horstwood M S A,Condon D J.2017. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochemistry,Geophysics,Geosystems,18: 2807-2814. [45] Sun S Q.1994. A reappraisal of dolomite abundance and occurrence in the Phanerozoic. Journal of Sedimentary Research,64(2): 396-404. [46] Sun S Q.1995. Dolomite reservoirs: porosity evolution and reservoir characteristics. AAPG Bulletin,79(2): 186-204. [47] Tanaka K,Tani Y,Takahashi Y,Tanimizu M,Suzuki Y,Kozai N,Ohnuki T.2010. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2. Geochimica et Cosmochimica Acta,74: 5463-5477. [48] Tang C A,Liang Z Z,Zhang Y B,Chang X,Tao X,Wang D G,Zhang J X,Liu J S,Zhu W C,Elsworth D.2008. Fracture spacing in layered materials: a new explanation based on two-dimensional failure process modeling. American Journal of Science,308: 49-72. [49] Tang H S,Chen Y J,Santosh M,Zhong H,Yang T.2013. REE geochemistry of carbonates from the Guanmenshan Formation,Liaohe Group,NE Sino-Korean Craton: implications for seawater compositional change during the Great Oxidation Event. Precambrian Research,227: 316-336. [50] Taylor S R,Mclennan S M.1985. The Continental Crustal: Its Composition and Evolution. Oxford: Blackwell, 311-312. [51] Veizer J,Ala D,Azmy K,Bruckschen P,Buhl D,Bruhn F,Carden G A F,Diener A,Ebneth S,Godderis Y,Jasper T,Korte C,Pawellek F,Podlaha O G,Strauss H.1999. 87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology,161: 59-88. [52] Wang Q X,Lin Z J,Chen D F.2014. Geochemical constraints on the origin of Doushantuo cap carbonates in the Yangtze Gorges area,South China. Sedimentary Geology,304: 59-70. [53] Warren J K.2000. Dolomite: occurrence,evolution and economically important associations. Earth-Science Reviews,52(1): 1-81. [54] Wu H P,Jiang S Y,Palmer M R,Wei H Z,Yang J H.2019. Positive cerium anomaly in the Doushantuo cap carbonates from the Yangtze platform,South China: implications for intermediate water column manganous conditions in the aftermath of the Marinoan glaciation. Precambrian Research,320: 93-110. [55] Zhao Y Y,Zheng Y F,Chen F K.2009. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui,South China. Chemical Geology,265(3-4): 345-362.