Characteristics of carbon and oxygen isotopes and their significance of the Cambrian Xixiangchi Group carbonate rocks in eastern Sichuan Basin
Jia Peng1, Li Wei1, Li Ming1, Deng Shenghui1, Lu Yuanzheng1, Li Xin1, Fan Ru1, Liu Xin2
1 Research Institute of Petroleum Exploration & Development,PetroChina,Beijing 100083; 2 Southwest Oil & Gas Field Company,PetroChina,Chengdu 610000,Sichuan
Abstract:The carbon and oxygen isotopes of the Cambrian Xixiangchi Group carbonate rocks in eastern Sichuan Basin are less affected by post-depositional diagenesis,and thus provide helpful insights into the original ocean. Based on the C and O isotopic profile of 111 analytic results obtained by the standard method of phosphorolysis,we have discussed the composition and evolution of δ13C and δ18O recorded in the Middle-Upper Cambrian carbonate rocks in eastern Sichuan Basin,as well as their geological implication. The research shows the values of δ13C range from-3.36‰ to 2.65‰ with mean value of-1.027‰,most of which are in the range of-2‰~2‰;and the values of δ18O range from-11.1‰ to-6.01‰, most range in of-10‰~-6‰, with average value of-7.991‰. Carbon and oxygen isotope analysis illustrates that the Xixiangchi Group was formed in a warm to hot onshore marine sedimentary environment with a high salinity. The δ13C analysis suggests there were a slow regression after a rapid and short transgression at the early-middle depositional stage,as well as a rapid regression after a slow transgression at the late depositienal stage of Xixiangchi Group. Sea level changes reflected by carbon isotope distribution are consistent with the evolution of sedimentary facies.The positive excursion of carbon isotopes in the Middle Xixiangchi Group in Sichuan Basin indicates relative high productivity and burial rate of organic carbon,which is of great petroleum geological significances.
Jia Peng,Li Wei,Li Ming et al. Characteristics of carbon and oxygen isotopes and their significance of the Cambrian Xixiangchi Group carbonate rocks in eastern Sichuan Basin[J]. JOPC, 2017, 19(3): 503-512.
[1] 樊茹,邓胜徽,张学磊. 2010. 碳酸盐岩碳同位素地层学研究中数据的有效性. 地层学杂志,34(4): 445-451. [Fan R,Deng S H,Zhang X L. 2010. The data validity evluation of carbonate δ 13 C in C-isotope chemo stratigraphy. Journal of stratigraphy,34(4): 445-451] [2] 冯洪真,刘家润,施贵军. 2000. 湖北宜昌地区寒武系—下奥陶统的碳氧同位素记录. 高校地质学报,6(1): 106-115. [Feng H Z,Liu J R,Shi G J. 2000. The carbonate δ 13 C records of Cambrian-Lower Ordovician in Yichang area. Geological Journal of China Universities,6(1): 106-115] [3] 冯增昭,鲍志东,张永生. 1998. 鄂尔多斯盆地奥陶纪碳酸盐岩地层岩石岩相古地理. 北京: 地质出版社,1-142. [Feng Z Z,Bao Z D,Zhang Y S. 1998. Lithofacies Paleogeography of the Ordovician Carbonate Rocks in Ordos Basin. Beijing: Geological Publishing House,1-142] [4] 冯增昭,彭勇民,金振奎. 2013. 中国南方寒武纪岩相古地理. 古地理学报,15(1): 1-14. [Feng Z Z,Peng Y M,Jin Z K. 2013. Lithofacies palaeogeography of the Cambrian in South China. Journal of Palaeogeography(Chinese Edition),15(1): 1-14] [5] 胡光灿,谢姚祥. 1997. 中国四川东部高陡构造石炭系气田. 北京: 石油工业出版社. [Hu G C,Xie Y X. 1997. Carboniferous Gas Fields in High Steep Structures of Eastern Sichuan. Beijing: Petroleum Industry Press] [6] 蒋炳锉. 1984. 川东一带隔挡、隔槽式褶皱形成力学机制. 四川地质学报,4: 1-12. [Jiang B C. 1984. Formation mechanics of ejective fold in east Sichuan. Acta Geologica Sichuan,4: 1-12] [7] 李任伟,陈锦石,张淑坤. 1999. 中元古代雾迷山组碳酸盐岩碳和氧同位素组成及海平面变化. 科学通报,44: 1697-1702. [Li R W,Chen J S,Zhang S K. 1999. Carbon and oxygen isotopic compositions of carbonate rocks and the changes of the sea level in the Mesoproterozoic Wumishan Formation. Science Bulletin,44: 1697-1702] [8] 李伟,刘静江,邓胜徽,张宝民,周慧. 2015. 四川盆地及邻区震旦纪末—寒武纪早期构造运动性质与作用. 石油学报,36(5): 546-556,563. [Li W. Liu J J,Deng S H,Zhang B M,Zhou H. 2015. The nature and role of Late Sinian-Early Cambrian tectonic movement in Sichuan Basin and its adjacent areas. Acta Petrolei Sinica,36(5): 546-556,563] [9] 刘树根,李智武,孙玮,邓宾,罗志立,王国芝,雍自权,黄文明. 2011. 四川含油气叠合盆地基本特征. 地质科学,46(1): 233-257. [Liu S G,Li Z W,Sun W,Deng B,Luo Z L,Wang G Z,Yong Z Q,Huang W M. 2011. Basic geological features of superimposed basin and hydrocarbon accumulation in Sichuan Basin,China. Chinese Journal of Geology,46(1): 233-257] [10] 卢武长. 1986. 稳定同位素地球化学. 四川成都: 成都地质学院出版社, 1-334. [Lu W C. 1986. Stable Isotope Geochemistry. Sichuan Chengdu: Chengdu Institute of Geology Press,1-334] [11] 马永生,陈洪德,王国九. 2009. 中国南方层序地层与古地理. 北京:科学出版社,1-603. [Ma Y S,Chen H D,Wang G J. 2009. Sequence Stratigraphy and Ancient Geography in South China. Beijing: Science Press,1-603] [12] 梅冥相. 2007. 上扬子区寒武系娄山关组白云岩层序地层格架及其古地理背景. 古地理学报,9(2): 117-129. [Mei M X. 2007. Sequence stratigraphic frame work and its palaeogeographic setting for the Loushanguan Group dolostones of Cambrian in Upper Yangtze Region. Journal of Palaeogeography(Chinese Edition),9(2):117-129] [13] 梅冥相,刘智荣,孟晓庆. 2006. 上扬子区中、上寒武统的层序地层划分和层序地层格架的建立. 沉积学报,24(5): 617-626. [Mei M X,Liu Z L,Meng X Q. 2006. Sequence stratigraphic division and sequence stratigraphic framework of the Middle and Upper Cambrian strata in the Upper Yangtze region,China. Acta Sedimentologica Sinica,24(5): 617-626] [14] 四川油气区石油地质志编写组. 1989. 中国石油地质志(卷十、四川油气区). 北京: 石油工业出版社. [Compiling Group of Petroleum Geology of Sichuan Oil and Gas Area. 1989. Petroleum Geology of China(Volume 10,Sichuan Oil and Gas Area). Bejing: Petroleum Industry Press] [15] 王大锐,冯晓杰. 2002. 渤海湾地区下古生界碳、氧同位素地球化学研究. 地质学报,76(3): 400-408. [Wang D R,Feng X J. 2002. Research on carbon and oxygen geochemistry of Lower Paleozoic in North China. Acta Geologica Sinica,76(3): 400-408] [16] 杨家騄,徐世球. 1997. 川黔湘交界寒武纪二级层序的划分及海平面变化. 地球科学(中国地质大学学报),22(5): 466-470. [Yang J L,Xu S Q. 1997. [The division of the two order sequence and the changes of sea level in the Cambrian at the junction of Chuanqianxiang. Earth Science(Journal of China University of Geosciences),22(5): 466-470] [17] 杨家騄,徐世球,肖诗宇,段冶. 1995. 川黔湘交境寒武纪层序划分. 地球科学(中国地质大学学报),20(5): 485-495. [Yang J L,Xu S Q,Xiao S Y,Duan Y. 1995. The division of the Cambrian sequence at the junction of Chuanqianxiang. Earth Science(Journal of China University of Geosciences),20(5): 485-495] [18] 游海涛,程日辉,刘昌岭. 2002. 古盐度复原法综述. 世界地质, 21(2): 111-117. [You H T,Cheng R H,Liu C L. 2002. Review of paleosalinity recovering methods. Global Geology, 21(2): 111-117] [19] 乐光禹. 1998. 大巴山造山带及其前陆盆地的构造特征和构造演化. 矿物岩石,18(增刊): 8-15. [Yue G Y. 1988. Tectonic features and tectonic evolution of Dabashan Orogenic belt and its foreland basin. Journal of Mineralogy and Petrology,18(Supp): 8-15] [20] 张满郎,谢增业,李熙. 2010. 四川盆地寒武纪岩相古地理特征. 沉积学报,28(1): 128-139. [Zhang M L,Xie Z Y,Li X. 2010. Lithofacies and paleogeographic characteristics of the Cambrian in Sichuan Basin. Acta Sedimentologica Sinica,28(1): 128-139] [21] 赵从俊,杨日畅,田晓燕. 1989. 川东构造应力场与油气富集规律探讨. 石油学报,10(2): 19-30. [Zhao C J,Yang R C,Tian X Y. 1989. The tectonic stress field and oil gas accumulation in the east of Sichuan Basin. Acta Petrolei Sinica,10(2): 19-30] [22] 左景勋,彭善池,朱学剑. 2008. 扬子地台寒武系碳酸盐岩的碳同位素组成及地质意义. 地球化学,37(2): 118-128. [Zuo J X,Peng S C,Zhu X J. 2008. Carbon isotope composition of Cambrian carbonate rocks in Yangtze Platform,South China and its geological implications. Geochimica, 37(2): 118-128] [23] Craig H. 1965. The measurement of oxygen isotope paleotemperatures.Stable Isotopes in Oceanographic Studies and Paleotemperatures.Piza: Consiglio Nazionale delle Richerche Lab Geol Nucl,3: 23. [24] Dikens G R,O'Neil J R,Rea D K, Owen R M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope ex-cursion at the end of the Paleocene. Paleoceanography,10: 965-972. [25] Epstein S,Clayton,Degens E T. 1962. Relationship between O 18 /O 16 ratios in coexisting carbonates,cherts,and diatomites: Geological notes. AAPG Bulletin,46(4): 534-42. [26] Hesselbo S P,Grōke D R,Jenkyns H C,Bjerrum C J,Farrimond P,Morgans Bell H S, Green O R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature,406: 392-395. [27] Hoffman P F,Kaufman A J,Halverson G P, Schrag D P. 1998. A Neoproterocoic Snowball Earth.Science,281: 1342-1346. [28] Holser W T,Schonlaub H P,Attrep A J,Boeckelmann K,Klein P,Magaritz M, Orth C J, Fenninger A, Jenny C, Krailik M, Mauritsch H, Pak E, Schramm J M, Stattegger K, Schmoller R. 1989. A unique geochemical record at the Permian/Triassic boundary.Nature,337: 39-44. [29] Kaufman A J, Knoll A H. 1995. Neop rot erozoic variations in the Cisotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research,73: 27-49 [30] Keith M L,Weber J N. 1964. Carbon and oxygen isotopic composition of selected limestones and fossil. Geochim Cismoch Acta,28: 1786-1861. [31] Knoll A H,Swett K. 1990. Carbonate deposition during the Late Proterozoic era: An example from Spitsbergen. America Journal of Science,290(A): 104-132. [32] Saltzman M R,Runnegar B, Lohmann K C. 1998. Carbon isotopestratigraphy of Upper Cambrian(Steptoean Stage)sequences of the eastern Great Basin: Record of a global oceanogeographic event. Geological Society of America Bulletin,110: 285-297. [33] Saltzman M R,Ripperdan R L,Brasier M D,Lohmann K C,Robison R A,Chang W T,Peng S C,Ergaliev E K, Runnegar B. 2000. A global carbon isotope excursion(SPICE)during the late Cambrian: Relation to trilobite extinctions,organic-matter burial and sea level. Palaeogeography,Palaeoclimatology,Palaeoecology,162: 211-223. [34] Saltzman M R. 2002. Carbon isotope stratigraphy across the Silurian-Devonian transition in North America: Evidence for a pertur-bation of the global carbal cycle. Palaeogeography,Palaeoclimatology,Palaeoecology,187: 83-100. [35] Saltzman M R,Cowan C A,Runkel A C,Runnegar B,Stewart M C, Palmer A R. 2004. The late Cambrian SPICE event and the Sauk II-Sauk III regression: New evidence from Laurentian Basin in Utah,Iowa,and Newfoundland. Journal of Sedimentary Research,74(3): 366-377. [36] Urey H C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society(Resumed),562-581. [37] Yan Z B,Guo F S,Pan J Y,Guo G L,Zhang Y J. 2005. Application of C,O and Sr isotope composition of carbonates in the research of paleoclimate and paleooceanic environment. Contributions to Geology and Mineral Resources Research,20(1): 53-56.