Features and origin of the early Miocene grooves in northern Liwan sag, Pearl River Mouth Basin
Xing Zuo-Chang1, Zhang Zhong-Tao2, Lin Chang-Song3, Feng Xuan2, Hong Fang-Hao1, Gong Yue1
1 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083,China; 2 Research Institute of Shenzhen Branch,CNOOC,Guangdong Shenzhen 518000,China; 3 School of Ocean Sciences,China University of Geosciences(Beijing),Beijing 100083,China
Abstract:Grooves and their origin are the research hotspots in sedimentology and palaeooceanography in recent years. Based on the high resolution 3D seismic data in Liwan sag of Pearl River Mouth Basin,multi-kilometer scale grooves are identified, for the first time, in the early Miocene strata of the study area. These grooves are located in deep-water basin away from the shelf slope break roughly parallel to the strike of northern South China Sea shelf margin break during the early Miocene. They can be subdivided into four sub-zones. They are straight or arched,or ripple-like in shape and their geometry parameters have different characteristics in different sub-zones. In addition,there are large bands of high amplitude anomalies at the bottom of some grooves,which may correspond to coarse-grained sediments or be rich in natural gas. According to their features,it is inferred that their origin may be related to bottom currents,which was influenced by the intermediate water circulation widespread in the basin. The bottom currents,which were mainly controlled by palaeogeomorphology during the early Miocene,eroded the seabed and formed the grooves. This study not only contributes to the hydrocarbon exploration in ultra-deep water area in northern part of South China Sea,but also provides new evidence for the early Miocene palaeooceanographic research in South China Sea.
Xing Zuo-Chang,Zhang Zhong-Tao,Lin Chang-Song et al. Features and origin of the early Miocene grooves in northern Liwan sag, Pearl River Mouth Basin[J]. JOPC, 2019, 21(2): 339-350.
[1] 何家雄,陈胜红,刘海龄,刘士林. 2009. 珠江口盆地白云凹陷北坡—番禺低隆起天然气成因类型及其烃源探讨. 石油学报, 30(1): 16-21. [He J X,Chen S H,Liu H L,Liu S L.2009. Natural gas genetic types and source rocks in the northern slope of Baiyun Sag to Panyu Low Uplift in Pearl River Mouth Basin. Acta Petrolei Sinica, 30(1): 16-21] [2] 纪沫,张功成,赵志刚,杨海长,曾清波. 2014. 南海北部深水区荔湾凹陷构造演化及其石油地质意义. 地质通报, 33(5): 723-732. [Ji M,Zhang G C,Zhao Z G,Yang H Z,Zeng Q B.The tectonic evolution of Liwan sag in the deep-water area of the South China Sea and its oil geological significance. Geological Bulletin of China,2014, 33(5): 723-732] [3] 廖计华,徐强,陈莹,王颖,蔡露露,邹梦君,曾清波,焦振华. 2016. 白云—荔湾凹陷珠江组大型深水水道体系沉积特征及成因机制. 地球科学, 41(6): 1041-1054. [Liao J H,Xu Q,Chen Y,Wang Y,Cai L L,Zhou M Z,Zeng Q B,Jiao Z H.2016. Sedimentary characteristics and genesis of the deep-water channel system in Zhujiang Formation of Baiyun-Liwan Sag. Earth Science, 41(6): 1041-1054] [4] 刘思青,张翠梅,孙珍,庞雄,申俊,邱宁. 2016. 珠江口盆地荔湾凹陷珠江组关键地质界面SB21的识别及地质意义. 地球科学, 41(3): 475-486. [Liu S Q,Zhang C M,Sun Z,Pang X,Shen J,Qiu N.2016. Characteristics and significances of the geological boundary SB21 in the Zhujiang Formation of the Liwan Sag,Pearl River Mouth Basin. Earth Science, 41(3): 475-486] [5] 柳保军,庞雄,颜承志,刘军,连世勇,何敏,申俊. 2011. 珠江口盆地白云深水区渐新世—中新世陆架坡折带演化及油气勘探意义. 石油学报, 32(2): 234-242. [Liu B J,Pang X,Yan C Z,Liu Z,Lian S Y,He M,Shen J.2011. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil-gas exploration. Acta Petrolei Sinica, 32(2): 234-242] [6] 庞雄,陈长民,邵磊,王成善,朱明,何敏,申俊,连世勇,吴湘杰. 2007. 白云运动: 南海北部渐新统—中新统重大地质事件及其意义. 地质论评, 19(2): 145-151. [Pang X,Chen C M,Shao L,Wang C C,Zhu M,He M,Shen J,Lian S Y,Wu X J.2007. Baiyun Movement,a great tectonic event on the Oligocene-Miocene Boundary in the northern South China Sea and its implications. Geological Review. 532: 145-151] [7] 邵磊,李献华,汪品先,翦知湣,韦刚健,庞雄,刘颖. 2004. 南海渐新世以来构造演化的沉积记录: ODP1148站深海沉积物中的证据. 地球科学进展, 19(4): 539-544. [Shao L,Li X H,Wang P X,Jian Z M,Wei G J,Pang X,Liu Y.2004. Sedimentary record of the tectonic evolution of the South China Sea since the Oligocene—Evidence from deep sea sediments of ODP Site 1148. Advances in Earth Science. 19(4): 539-544] [8] 王琪,田兵,马晓峰,牟炜卫,高丽华. 2017. 珠江口盆地白云深水区深水水道沉积体系及成因模式. 天然气地球科学, 28(10): 1497-1505. [Wang Q,Tian B,Ma X F,Mou W W,Gao L H.2017. Deposition system and formation mechanism of deepwater channel in Baiyun deep-water area,Pearl River Mouth Basin. Natural Gas Geoscience, 28(10): 1497-1505] [9] 张道军,王亚辉,赵鹏肖,何小胡,左倩媚. 2015. 南海北部莺—琼盆地轴向水道沉积特征及成因演化. 中国海上油气, 27(3): 46-53. [Zhang D J,Wang Y H,Zhao P X,He X H,Zuo Q M.2015. Sedimentary characteristics and genetic evolution of axial channels in Ying-Qiong basin,northern South China Sea. China Offshore Oil and Gas, 27(3): 46-53] [10] Andresen K J,Huuse M.2011. ‘Bulls-eyeá pockmarks and polygonal faulting in the Lower Congo Basin: Relative timing and implications for fluid expulsion during shallow burial. Marine Geology, 279(1-4): 111-127. [11] Cartwright J.2011. Diagenetically induced shear failure of fine-grained sediments and the development of polygonal fault systems. Marine & Petroleum Geology, 28(9): 1593-1610. [12] Chen H,Xie X,Wagoner Rooij D,Wagonerdorpe T,Su M,Wang D.2014. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin,South China Sea. Marine Geology, 355: 36-53. [13] Chiocci F L,Casalbore D.2011. Submarine gullies on Italian upper slopes and their relationship with volcanic activity revisited 20 years after Bill Normark’s pioneering work. Geosphere, 7(6): 1284-1293. [14] Dowdeswell J A,Cofaigh C Ó,Noormets R,Larter R D,Hillenbrand C D,Benetti S,Evans J,Pudsey C J.2008. A major trough-mouth fan on the continental margin of the Bellingshausen Sea,West Antarctica: The Belgica Fan. Marine Geology, 252(3-4): 129-140. [15] Fedele J J,García M H.2009. Laboratory experiments on the formation of subaqueous depositional gullies by turbidity currents. Marine Geology, 258(1-4): 48-59. [16] Gales J A,Forwick M,Laberg J S,Vorren T O,Larter R D,Graham A G C,Baeten N J,Amundsen H B.2013. Arctic and Antarctic submarine gullies—A comparison of high latitude continental margins. Geomorphology, 201: 449-461. [17] Gong C,Wang Y,Zhu W,Li W,Xu Q.2013. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin,northern South China Sea. AAPG Bulletin, 97(2): 285-308. [18] Hall B,Meiburg E,Kneller B.2008. Channel formation by turbidity currents: Navier-Stokes-based linear stability analysis. Journal of Fluid Mechanics, 615: 185-210. [19] Hanquiez V,Mulder T,Lecroart P,Gonthier E,Marchès E,Voisset M.2007. High resolution seafloor images in the Gulf of Cadiz,Iberian margin. Marine Geology, 246(1): 42-59. [20] Hernandez-Molina F J,Maldonado A,Stow D A V.2008. Abyssal Plain Contourites. Developments in Sedimentology, 60: 347-378. [21] Hohbein M,Cartwright J.2006.3D seismic analysis of the West Shetland Drift system: Implications for Late Neogene palaeoceanography of the NE Atlantic. Marine Geology, 230(1-2): 1-20. [22] Kennett J P.1982. The geologic record of bottom currents. Marine Geology: 505-534. [23] Kenyon N H,Belderson R H.1973. Bed forms of the Mediterranean undercurrent observed with side-scan sonar. Sedimentary Geology, 9(2): 77-99. [24] Kilhams B,McArthur A,Huuse M,Ita E,Hartley A.2011. Enigmatic large-scale furrows of Miocene to Pliocene age from the central North Sea: Current-scoured pockmarks?Geo-Marine Letters, 31(5-6): 437-449. [25] Lonergan L,Jamin N H,Jackson C A L,Johnson H D.2013. U-shaped slope gully systems and sediment waves on the passive margin of Gabon(West Africa). Marine Geology, 337: 80-97. [26] Micallef A,Mountjoy J J.2011. A topographic signature of a hydrodynamic origin for submarine gullies. Geology, 39(2): 115-118. [27] Mulder T,Voisset M,Lecroart P,Le Drezen E,Gonthier E,Hanquiez V,Faugères J C,Habgood E,Hernandez-Molina F J,Estrada F,Llave-Barranco E,Poirier D,Gorini C,Fuchey Y,Voelker A,Freitas P,Sanchez F L,Fernandez L M,Kenyon N H,Morel J.2003. The Gulf of Cadiz: An unstable giant contouritic levee. Geo-Marine Letters, 23(1): 7-18. [28] Stow D A V,Javier Hernandez-Molina F,Llave E,Sayago-Gil M,Diaz Del Rio V,Branson A.2009. Bedform-velocity matrix: The estimation of bottom current velocity from bedform observations. Geology, 37(4): 327-330. [29] Sun Q,Cartwright J,Wu S,Zhong G,Wang S,Zhang H.2016. Submarine erosional troughs in the northern South China Sea: Evidence for Early Miocene deepwater circulation and paleoceanographic change. Marine and Petroleum Geology, 77: 75-91. [30] Sun Q,Wu S,Hovland M,Luo P,Lu Y,Qu T.2011. The morphologies and genesis of mega-pockmarks near the Xisha Uplift,South China Sea. Marine and Petroleum Geology, 28(6): 1146-1156. [31] Tucholke B E,Hollister C D,Biscaye P E,Gardner W D.1985. Abyssal current character determined from sediment bedforms on the Nova Scotian continental rise. Marine Geology, 66(1): 43-57. [32] Viana A R.2008. Economic Relevance of Contourites. Developments in Sedimentology. 60: 491-510 [33] Wang P X,Prell W L,Blum P.2000. Initial reports. In: Proceedings of Ocean Drilling Program. ODP,Texas A & M,College Station,USA. [34] Wynn R B,Stow D A V.2002. Classification and characterisation of deep-water sediment waves. Marine Geology, 192(1): 7-22. [35] Wu W,Li Q,Jing Y,Changsong L,Dan L,Ting Y.2018. The Central Canyon depositional patterns and filling process in east of Lingshui Depression,Qiongdongnan Basin northern South China Sea. Geological Journal, 8: 1-18 [36] Xie H,Zhou D,Li Y,Pang X,Li P,Chen G,Li F,Cao J.2014. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin,northern South China Sea. Tectonophysics, 615: 182-198. [37] Xie X,Müller R D,Li S,Gong Z,Steinberger B.2006. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23(7): 745-765. [38] Zhao Q.2005. Late Cainozoic ostracod faunas and paleoenvironmental changes at ODP Site 1148,South China Sea. Marine Micropaleontology, 54(1-2): 27-47. [39] Zhu M,Graham S,Pang X,McHargue T.2010. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation,northern South China Sea. Marine and Petroleum Geology, 27(1): 307-319. [40] Zhou W,Wang Y,Gao X,Zhu W,Xu Q,Xu S,Cao J,Wu J.2015. Architecture,evolution history and controlling factors of the Baiyun submarine canyon system from the middle Miocene to Quaternary in the Pearl River Mouth Basin,northern South China Sea. Marine and Petroleum Geology, 67(6): 389-407.