Provenance analysis of clastic rocks: Current research status and prospect
Xu Jie1, Jiang Zai-Xing2,3
1 School of Ocean Sciences,China University of Geosciences(Beijing),Beijing 100083,China; 2 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083,China; 3 Institute of Scientific Research,China University of Geoscience(Beijing),Beijing 100083,China;
Abstract:Provenance analysis is a critical connection between orogenic belt and sedimentary basin, and can help reconstruct the tectonic background of source area,estimate sediment routing pathway and transportation distance,and rebuild sedimentary basin infilling history,and thus plays an important role in the sedimentary source-to-sink system analysis. Traditional approaches,such as petrology,sedimentology,heavy mineral,geochemistry etc.,have been used for provenance analysis for decades and will still be important in the future. With the advances of isotope analytical technology,isotopic dating of mineral grains has been more widely used in sediment provenance analysis. Recently,isotopic dating of detrital minerals,such as monazite,apatite,rutile etc.,especially,detrital zircon geochronology has been widely applied to reconstruct the sediment dispersal system and ancient drainage system of sedimentary basin. Isotopic dating of multiple minerals and double or triple dating on a single mineral grain have been approved to be more effective in deciphering the tectonic evolution of source area and the linkage between orogenic evolution and sedimentary basin infilling history. Meanwhile,with increasing amount of data obtained from detrital zircon U/Pb dating,mathematical and statistic approaches have been introduced to quantify the contribution from siliciclastic sources in the orogenic belt to the sediment deposition in the basin. The current and future research on sediment provenance will be continuous processes of bringing in new technologies,incorporating traditional and advanced methods,transiting from single approach to multiple combined approaches and from qualitative to quantitative analysis,as well as developing of interdisciplinary. The progress made on provenance analysis will help us better understand the whole erosion, transportation and sedimentation process of sediment on the earth surface.
[1] 包汉勇,韩广民,杨风丽,朱静昌,周组翼. 2010. 下扬子区早三叠世风暴沉积的粘土矿物分析. 吉林大学学报(地球科学版), 40(4): 947-954. [Bao H Y,Han G M,Yang F L,Zhu J C,Zhou Z Y.2010. Clay mineral analysis of the Early Triassic tempestites,Lower Yangtze region. Journal of Jilin University(Earth Science Edition), 40(4): 947-954] [2] 操应长,王艳忠,徐涛玉,弭连山. 2007. 特征元素比值在沉积物物源分析中的应用. 沉积学报, 25(2): 230-238. [Cao Y C,Wang Y Z,Xu T Y,Mi E S.2007. Application of the ratio of characteristic elements in provenance analysis. Acta Sedimentologica Sinica, 25(2): 230-238] [3] 陈杨,刘树根,李智武,邓宾,曾祥亮,林杰. 2011. 川西前陆盆地晚三叠世早期物源与龙门山的有限隆升—碎屑锆石U-Pb年代学研究. 大地构造与成矿学, 35(2): 315-323. [Chen Y,Liu S G,Li Z W,Deng B,Zeng X L,Lin J.2011. LA-ICP-MS detrital zircon U-Pb geochronology approaches to the sediment provenance of the western Sichuan Foreland Basin and limited uplift of the Longmen Mountains during the early stage of Late Triassic. Geotectonica et Metallogeni, 35(2): 315-323] [4] 杜远生. 2018. 关于古流分析的讨论. 古地理学报, 20(5): 925-926. [Du Y S.2018. Discussion on palaeocurrent analysis. Journal of Palaeogeography(Chinese Edition), 20(5): 925-926] [5] 郭春涛,李忠,高剑,董顺利. 2015. 塔里木盆地西北缘乌什地区石炭系沉积与碎屑锆石年代学记录及其反映的构造演化. 岩石学报, 31(9): 2679-2695. [Guo C T,Li Z,Gao J,Dong S L.2015. Depositional and detrital zircon geochronological records of Carboniferous system in Wushi,Northwest Tarim Basin: Implications for tectonic evolution. Acta Petrologica Sinica, 31(9): 2679-2695] [6] 郭佩,刘池洋,王建强,李长志. 2017. 碎屑锆石年代学在沉积物源研究中的应用及存在问题. 沉积学报, 35(1): 46-56. [Guo P,Liu C Y,Wang J Q,Li C Z.2017. Considerations on the application of detrital zircon geochronology to sedimentary provenance analysis. Acta Sedimentologica Sinica, 35(1): 46-56] [7] 和钟铧,刘招君,张峰. 2001. 重矿物在盆地分析中的应用研究进展. 地质科技情报, 20(4): 29-32. [He Z H,Liu Z J,Zhang F.2001. Latest progress of heavy mineral research in the basin analysis. Geological Science and Technology Information, 20(4): 29-32] [8] 简星,关平,张巍. 2012. 碎屑金红石: 沉积物源的一种指针. 地球科学进展, 27(8): 828-846. [Jian X,Guan P,Zhang W.2012. Detrital rutile: A sediment provenance indicator. Advances in Earth Science, 27(8): 828-846] [9] 姜在兴,邢焕清,李任伟,罗冬香. 2005. 合肥盆地中—新生代物源及古水流体系研究. 现代地质, 19(2): 247-252. [Jiang Z X,Xing H Q,Li R W,Luo D X.2005. Research on provenance and paleocurrents in the Meso-Cenozoic Hefei Basin. Geoscience, 19(2): 247-252] [10] 姜在兴,等. 2016. 风场—物源—盆地系统: 沉积体系成因解释与分布预测新概念. 北京: 科学出版社,1-435. [Jiang Z X, et al.2016. Sedimentary Dynamics of Windfield-Source-Basin System New Concept for Interpretation and Prediction. Beijing: Science Press,1-435] [11] 姜龙杰,孙志鹏,翟世奎,刘新宇,尤丽,曹佳琪,张爱滨,毕东杰,张婉. 2018. 琼东南盆地深水区钻井岩屑稀土元素地球化学特征及其对沉积物源和环境的指示. 海洋科学, 42(4): 89-100. [Jiang L J,Sun Z P,Zhai S K,Liu X Y,You L,Cao J Q,Zhang A B,Bi D J,Zhang W.2018,The sedimentary environment and provenance analysis based on geochemical characteristics of rare-earth elements in deepwater well core of the Qiongdongnan Basin. Marine Sciences, 42(4): 89-100] [12] 李军,王贵文. 1995. 高分辨率倾角测井在砂岩储层中的应用. 测井技术,5:352-357. [Li J,Wang G W.1995. Applications of high resolution dip log to the study of sand reservoir. Well Logging Technology,5:352-357] [13] 李忠,高剑. 2016. 构造活动区特征源汇体系及古地理重建: 以塔里木块体北缘记录“泛非”事件的碎屑锆石分析为例. 古地理学报, 18(3): 424-440. [Li Z,Gao J.2016. Characteristic source-sink systems and palaeogeographic reconstruction in active tectonic regions: A case research on detrital zircons recording the Pan-African event in northern Tarim Block. Journal of Palaeogeography(Chinese Edition), 18(3): 424-440] [14] 刘志飞,Christophe Colin,黄维,陈忠,Alain Trentesaux,陈建芳. 2007. 珠江流域盆地表层沉积物的黏土矿物及其对南海沉积物的贡献. 科学通报, 52: 448-456. [Liu Z F,Colin C,Huang W, Chen Z,Trentesaux A,Chen J F.2007. Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea. Chinese Science Bulletin, 52: 448-456] [15] 林畅松,夏庆龙,施和生,周心怀. 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9-20. [Lin C S,Xia Q L,Shi H S,Zhou X H.2015. Geomorphological evolution,source to sink system and basin analysis. Earth Science Frontier, 22(1): 9-20] [16] 马收先,孟庆任,曲永强. 2014,轻矿物物源分析研究进展. 岩石学报, 39(5): 597-608. [Ma S X,Meng Q R,Qu Y Q.2014. Development on provenance analysis of light minerals. Acta Petrologica Sinica, 30(2): 597-608] [17] 毛光周,刘池洋. 2011. 地球化学在物源及沉积背景分析中的应用. 地球科学与环境学报, 33(4): 337-348. [Mao G Z,Liu C Y.2011. Application of geochemistry in provenance and depositional setting analysis. Journal of Earth Science and Environment, 33(4): 337-348] [18] 彭守涛,李忠,许承武. 2009. 库车坳陷北缘早白垩世源区特征: 来自盆地碎屑锆石U-Pb年龄的信息. 沉积学报, 27(5): 956-966. [Peng S T,Li Z,Xu C W.2009. Provenance of Early Cretaceous deposits in Kuqasubbasin,the southern margin of Tianshan: Implication from detrital zircon LA-ICP-MS age data. Acta Sedimentologica Sinica, 27(5): 956-966] [19] 彭治超,付星辉,刘俊超,张孙玄琦. 2017. 沉积物源分析方法及研究进展. 西安文理学院学报(自然科学版), 20(1): 116-121. [Peng Z C,Fu X H,Liu J C,Zhang S X Q.2017. Analysis methods and research progress of sediment source. Journal of Xi'an University(Natural Science Edition), 20(1): 116-121] [20] 邵磊,李昂,吴国瑄,李前裕,刘传联,乔培军. 2010. 琼东南盆地沉积环境及物源演变特征. 石油学报, 31(4): 548-552. [Shao L,Li A,Wu G X,Li Q Y,Liu C L,Qiao P J.2010. Evolution of sedimentary environment and provenance in Qiongdongnan Basin in the northern South China Sea. Acta Petrolei Sinica, 31(4): 548-552] [21] 宋鹰,钱禛钰,张俊霞,Stepashko Andrei.2018. 碎屑锆石形态学分类体系及其在物源分析中的应用: 以松辽盆地松科一井为例. 地球科学, 43(6): 1997-2006. [Song Y,Qian Z Y,Zhang J X,Andrei S.2018. Morphology of detrital zircon and its application in provenance analysis: Example from Cretaceous continental scientific drilling borehole in Songliao Basin. Earth Science, 43(6): 1997-2006] [22] 孙小霞,李勇,丘东洲,肖敦清,武站国,张连雪,陈蓉,赵瞻. 2006. 黄骅坳陷新近系馆陶组重矿物特征及物源区意义. 沉积与特提斯地质,(3): 61-66. [Sun X X,Li Y,Qiu D Z,Xiao D Q,Wu Z G,Zhang L X,Chen R,Zhao Z.2006. The heavy minerals and provenances of the Neogene Guantao Formation in the Huanghua depression. Sedimentary Geology and Tethyan Geology, 26(3): 61-66] [23] 田豹. 2017. 重矿物物源分析研究进展. 中国锰业, 35(1): 107-115. [Tian B.2017. A research progress in provenance analysis of heavy minerals. China's Manganese Industry, 35(1): 107-115] [24] 王建刚,胡修棉. 2008. 砂岩副矿物的物源区分析新进展. 地质论评, 54(5): 670-678. [Wang J G,Hu X M.2008. Applications of geochemistry and geochronology of accessory minerals in sandstone to provenance analysis. Geological Review, 54(5): 670-678] [25] 王建刚,胡修棉,黄志诚. 2008. 藏南桑单林地区晚白垩世—始新世砂岩物源区分析. 地质学报, 82(1): 92-103. [Wang J G,Hu X M,Huang Z C.2008. Provenance analysis of Late Cretaceous-Early Eocene sandstones in the Sangdanlin Area,Southern Tibet. Acta Geologica Sinica, 82(1): 92-103] [26] 汪正江,陈洪德,张锦泉. 2000. 物源分析的研究与展望. 沉积与特提斯地质, 20(4): 104-110. [Wang Z J,Chen H D,Zhang J Q.2000. Formerly sedimentary facies and palaeogeography. Sedimentary Geology and Tethyan Geology, 20(4): 104-110] [27] 魏然,李红阳,于斌,蔡来星,王起龙. 2013. 沉积盆地物源体系分析方法及研究进展. 岩性油气藏, 25(3): 53-57. [Wei R,Li H Y,Yu B,Cai L X,Wang Q L.2013. Approaches and prospects of provenance system analysis in sedimentary basins. Lithologic Reservoirs, 25(3): 53-57] [28] 武赛军,尹太举,马晋文,毛丹凤,瞿长青,柯钦. 2012. 地球物理方法在沉积物源分析中的应用. 长江大学学报(自然科学版)理工卷, 9(1): 59-61. [Wu S J,Yin T J,Ma J W,Mao D F,Qu C Q,Ke Q.2012. Application of Geophysical method to analyze sediment provenance. Journal of Yangtze University(Nat Sci Edit)Sci & Eng, 9(1): 59-61] [29] 谢习农,林畅松,李忠,任建业,姜涛,姜在兴,雷超. 2017. 中国盆地动力学研究现状及展望. 沉积学报, 35(5): 877-887. [Xie X N,Lin C S,Li Z,Ren J Y,Jiang T,Jiang Z X,Lei C.2017. Research reviews and prospects of sedimentary basin geodynamics in China. Acta Sedimentologica Sinica, 35(5): 877-887] [30] 徐惠芬,崔京钢,邱小平. 2006. 阴极发光技术在岩石学和矿床学中的应用. 北京: 地质出版社,1-77. [Xu H F,Cui J G,Qiu X P.2006. Application of Cathode Luminescence Technology in Petrology and Deposit Science. Beijing: Geological Publishing House,1-77] [31] 徐亚军,杜远生,杨江海. 2007. 沉积物物源分析研究进展. 地质科技情报, 26(3): 26-32. [Xu Y J,Du Y S,Yang J H.2007. Prospects of Sediment Provenance Analysis. Geological Science and Technology Information, 26(3): 26-32] [32] 闫义,林舸,李自安. 2003.利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究. 大地构造与成矿学, 27(2): 184-190. [Yan Y,Lin G,Li Z A.2003. Provenance tracing of sediments by means of synthetic study of shape,composition and chronology of zircon. Geotectonica et Metallogenia, 27(2): 184-190] [33] 杨江海,马严. 2017. 源-汇沉积过程的深时古气候意义. 地球科学, 42(11): 1910-1921. [Yang J H,Ma Y.2017. Paleoclimate perspectives of Source-to-Sink sedimentary processes. Earth Science, 42(11): 1910-1921] [34] 杨仁超,李进步,樊爱萍,宗敏,张涛. 2013. 陆源沉积岩物源分析研究进展与发展趋势. 沉积学报, 31(1): 99-107. [Yang R C,Li J B,Fan A P,Zong M,Zhang T.2013. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks. Acta Sedimentologica Sinica, 31(1): 99-107] [35] 杨守业,李从先. 1999. REE示踪沉积物源研究进展. 地球科学进展, 14(2): 164-167. [Yang S Y, Li C X.1999. Research progress in REE tracer for sediment source. Advances in Earth Science, 14(2): 164-167] [36] 杨守业,李超,王中波,王晓丹,舒劲松. 2013. 现代长江沉积物地球化学组成的不均一性与物源示踪. 第四纪研究, 33(4): 645-655. [Yang S Y,Li C,Wang Z B,Wang X D,Shu J S.2013. Heterogeneity of geochemist composition of the Changjiang river sediments and provenance indication. Quaternary Sciences, 33(4): 645-655] [37] 杨守业,韦刚健,石学法. 2015. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变. 矿物岩石地球化学通报, 34(5): 902-910. [Yang S Y,Wei G J,Shi X F.2015. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin. Bulletin of Mineralogy,Petrology and Geochemistry, 34(5): 902-910] [38] 余世花,梁新权. 2017. 四川盆地西部上三叠统须家河组物质来源: 碎屑锆石LA-ICP-MS U-Pb 年龄研究. 科学技术与工程, 17(4): 1671-1815. [Yu S H,Liang X Q.2017. Provenance of the Xujiahe Group of Late Triassic in the Westren Sichuan Basin: Evidence from Detrital Zircon U-Pb Ages. Science Technology and Engineering, 17(4): 1671-1815] [39] 赵红格,刘池洋. 2003. 物源分析方法及研究进展. 沉积学报, 21(3): 409-415. [Zhao H G,Liu C Y.2003. Approaches and prospects of provenance analysis. Acta Sedimentologica Sinica,21(3): 409-415] [40] 朱红涛,徐长贵,朱筱敏,曾洪流,姜在兴,刘可禹. 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851-1870. [Zhu H T,Xu C G,Zhu X M,Zeng H L,Jiang Z X,Liu K Y.2017. Advances of the source-to-sink units and coupling model research in continental basin. Earth Science, 42(11): 1851-1870] [41] Aléon J,Chaussidon M,Marty B,Schutz L,Jaenicke R.2002. Oxygen isotopes in single micrometer-sized quartz grains: Tracing the source of Saharan dust over long-distance atmospheric transport. Geochimica et Cosmochimica Acta, 66(19): 3351-3365. [42] Allen C M,Campbell I H.2007. Spot dating of detrital rutile by LA-QICP-MS: A powerful provenance tool. In:Geological Society of America Abstracts with Programs. GSA Denver Annual Meeting: No.196-12. [43] Allen P A.2008a. from landscapes into geological history. Nature, 451: 274-276. [44] Allen P A.2008b. Time Scales of Tectonic Landscapes and Their Sediment Routing Systems. Geological Society London Special Publications, 296: 7-28. [45] Amidon W H,Burbank D W,Gehrels G E.2005a. U-Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth and Planetary Science Letters, 235: 244-260. [46] Amidon W H,Burbank D W,Gehrels G E.2005b. Construction of detrital mineral populations: Insights from mixing of U-Pb zircon ages in Himalayan rivers. Basin Research, 17: 463-485. [47] Bernet M,van der Beek P,Pik R,Huyghe P,Mugnier JL,Labrinz E,Szulc A.2006. Miocene to Recent exhumation of the central Himalaya determined from combined detrital zircon fission-track and U/Pb analysis of Siwalik sediments,western Nepal. Basin Research, 18: 393-412. [48] Blum M,Hattier-Womack J.2009. Climate change,sea-level change,and fluvial sediment supply to deepwater depositional systems: External controls on deepwater depositional systems. SEPM Spec. Publ., 92: 15-39. [49] Blum M,Pecha M E.2014. Mid-Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology, 42: 607-610. [50] Blum M D,Milliken K T,Pecha M A,Snedden J W,Frederick B C,Galloway W E.2017. Detrital zircon records of Cenomanian,Paleocene,and Oligocene Gulf of Mexico drainage integration and sediment routing: Implications for scales of basin-floor fans.Geosphere, 13(6): 1-37. [51] Bush M A,Horton B K,Murphy M A,Stockli D F.2016. Detrital record of initialbasement exhumation along the Laramide deformation front,southern RockyMountains. Tectonics, 35: 2117-2130 [52] Campbell I H,Reiners P W,Allen C M,Nicolescu S,Upadhyay R.2005. He-Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implications for sediment recycling and provenance studies.Earth and Planetary Science Letters, 237: 402-432. [53] Cardona J P M,Gutierrez J M,Sanchez B A,Dominguez-Bella S,Martinez L J.2005. Surface textures of heavy-mineral grains: A new contribution to provenance studies. Sedimentary Geology, 174: 223-235. [54] Carlson R W.2011. Absolute Age Determinations: Radiometric BT-Encyclopedia of Solid Earth Geophysics. In: Gupta H K(ed). Springer Netherlands,Dordrecht,1-8. [55] Carrapa B.2010. Resolving tectonic problems by datingdetrital minerals. Geology, 38(2): 191-192. [56] Carrapa B,DeCelles P G,Reiners P W,Gehrels G E,Sudo M.2009. Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the Central Andes: A multiphase tectonothermal history.Geology, 37: 407-410. [57] Carter A,Moss S J.1999. Combined detrital-zircon fission-track and U-Pb dating: A new approach to understanding hinterland evolution.Geology, 27(3): 235-238. [58] Clayton R M,Jackson N L,Sridhar K.1978. Resistance of quartz silt to isotopic exchange under burial and intense weathering conditions.Geochimica et Cosmochimica Acta, 42(10): 1517-1522. [59] Cliff R A,Drewery S E,Leeder M R.1991. Sourcelands for the Carboniferous Pennine river system: Constraints from sedimentary evidence and U-Pb geochronology using zircon and monazite. Geological Society,London,Special Publications, 57(1): 137-159. [60] Clift P D,Carter A,Campbell I H,Pringle M S,Lap N V,Allen C M,Hodges K V,Tan M T.2006. Thermochronology of mineral grains in the Red and Mekong Rivers,Vietnam: Provenance and exhumation implications for Southeast Asia. Geochemistry,Geophysics,Geosystems, 7(10): 1-28. [61] Dahl P S.1997. A crystal-chemical basis for Pb retention and fission-track annealing systematics in U-bearing minerals,with implications for geochronology.Earth and Planetary Science Letters, 150: 277-290. [62] Dickinson W R,Suczek CA.1979. Plate tectonics and sandstone compositions.American Association of Petroleum Geologists Bulletin, 63: 2164-2182. [63] Dickinson W R.1985. Interpreting provenance relations from detrital modes of sandstones. In: Zuffa G G(ed).Provenance of Arenites. D. Reidel Publishing Company,Boston,333-361. [64] Dickinson W R.1988. Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In: Kleinspehn K L, Paola C(eds). New Perspectives in Basin Analysis. New York: Springer-Verlag,3-25. [65] Dickinson W R,Gehrels G E.2003. U-Pb ages ofdetrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau,USA: Paleogeographic implications. Sedimentary Geology, 163: 29-66. [66] Dickinson W R,Gehrels G E.2008. U-Pb Ages of Detrital Zircons in Relation to Paleogeography: Triassic Paleodrainage Networks and Sediment Dispersal across Southwest Laurentia. Journal of Sedimentary Research, 78: 745-764. [67] Dickinson W R,Gehrels G E.2009. U-Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau: Evidence for transcontinental dispersal and intraregional recycling of sediment. Geological Society of America Bulletin, 121: 408-433. [68] Dill H G.1994. Can REE Patterns and U-Th variations be used as a tool to determine the origin of apatite in clastic rocks?. Sedimentary Geology, 92(3-4): 175-196. [69] Eriksson K A,Campbell I H,Palin J M,Allen C M.2003. Predominance of Grenvillian magmatism recorded in detrital zircons from modern Appalachian rivers.The Journal of Geology, 111: 707-717. [70] Eriksson K A,Campbell I H,Palin J M,Allen C M,Bock B.2004. Evidence for multiple recycling in Neoproterozoic through Pennsylvanian sedimentary rocks of the Central Appalachian Basin: The Journal of Geology, 112: 261-276. [71] Eynatten H V,Dunkl Ⅰ.2012. Assessing the sediment factory: The role of single grain analysis. Earth-Science Reviews, 115(1-2): 97-120. [72] Fedo C M,Sircombe K N,Rainbird R H.2003. Detrital zircon analysis of the sedimentary record. In: Hanchar J M,Hoskin P W O(eds). Reviews in Mineralogy and Geochemistry, 53: 277-303. [73] Fildani A,McKay M P,Stockli D,Clark J,Dykstra M L,Stockli L,Hessler A M.2016. The ancestral Mississippi drainage archived in the late Wisconsin Mississippi deep-sea fan. Geology, (4): 479-482. [74] Garzanti E,Andò S,Vezzoli G.2008. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters, 273(1-2): 138-151. [75] Garzanti E,Andò S,Vezzoli G.2009. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters, 277(3-4): 422-432. [76] Gehrels G E,Valencia V A,Ruiz J.2008. Enhanced precision,accuracy,efficiency,and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry,Geophysics, Geosystems,9(3): 1-13. [77] Gehrels G.2014. Detrital zircon U-Pb geochronology applied to tectonics. Annual Review of Earth Planetary Sciences, 42(1): 127-149. [78] Gehrels G,Pecha M.2014. Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America. Geosphere, 10(1): 49-65. [79] Ghinassi M,Ielpi A.2015. Stratal architecture and morphodynamics of downstream migrating fluvial point bars(Jurassic Scalby Formation,UK). Journal of Sedimentary Research, 85: 1123-1137. [80] Girty G H,Hanson A D,Knaack C,Johnson D.1994. Provenance Determined by REE,Th,and Sc Analysis of Metasedimentary Rocks,Boyden Cave Roof Pendant,Central Sierra Nevada,California. Journal of Sedimentary Research, 64(1): 68-73. [81] Haines P W,Turnerb S P,Kelleyc S P,Warthod J,Sherlock S C.2004.40Ar-39Ar dating of detrital muscovite in provenance investigations: A case study from the Adelaide Rift Complex,South Australia. Earth and Planetary Science Letters, 227: 297-311. [82] Hatcher R D Jr.1987. Tectonics of the Southern and Central Appalachian Internides. Annual Review of Earth Planetary Sciences, 15: 337-362. [83] Hatcher R D Jr. 2010. The Appalachian orogen: A brief summary. In: Tollo R P,Bartholomew M J,Hibbard J P,Karabinos P M(eds). From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region.Geological Society of America Memoir 206,1-19. [84] Hawkesworth C J,Kemp A I S.2006. Evolution of the continental crust. Nature, 443: 811-817. [85] Helland-Hansen W,SømmeT O,Martinsen O J,Lunt I,Thurmond J.2016. Deciphering Earth's Natural Hourglasses: Perspectives on Source-To-Sink Analysis. Journal of Sedimentary Research,86(9): 1008-1033. [86] Helmold K P.1985. Provenance of feldspathic sandstones-the effect of diagenesis on provenance interpretations: A review. In: Zuffa G G(eds). Provenance of Arenites. Netherlands: D. Reidel Publishing Company,139-163. [87] Hietpas J,Samson S,Moecher D,Schmitt A.2010. Recovering tectonic events from the sedimentary record: Detrital monazite plays in fidelity. Geology, 38: 167-170. [88] Hietpas J,Samson S,Moecher D.2011. A direct comparison of the ages of detrital monazite versus detrital zircon in Appalachian foreland basin sandstones: Searching for the record of Phanerozoic orogenic events. Earth and Planetary Science Letters, 310: 488-497. [89] Howard A L,Farmer G L,Amato J M,Fedo C M.2015. Zircon U-Pb ages and Hf isotopic compositions indicate multiple sources for Grenvillian detrital zircon deposited in western Laurentia. Earth and Planetary Science Letters., 432: 300-310. [90] Iizuka T,Hirata T,Komiya T,Rino S,Katayama I,Motoki A,Maruyama S.2005. U-Pb and Lu-Hf isotope systematics of zircons from the MississippiRiver sand: Implications for reworking and growth of continental crust. Geology, 33: 485-488. [91] Ingersoll R V.1990. Actualistic sandstone petrofacies: Discriminatingmodern and ancient source rocks. Geology, 18(8): 733-736. [92] Ingersoll R V,Fullard T F,Ford R L,Grimm J P,Pickle J D,Sares S W.1984. The effect of grain size on detrial modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology, 54(1): 103-116. [93] Jiang T,Cao L C,Xie X N,Wang Z F,Li X S,Zhang Y Z,Zhang D J,Sun H.2015. Insights from heavy minerals and zircon U-Pb ages into the middleMiocene-Pliocene provenance evolution of the Yinggehai Basin,northwestern South China Sea. Sedimentary Geology, 327: 32-42. [94] Johnsson M.1993. The system controlling the composition of clastic sediments. Geological Society of America Special Paper, 420: 1-19. [95] Lawrence R L,Cox R,Mapes R W,Coleman D S.2011. Hydrodynamic fractionation of zircon age populations.Geological Society of America Bulletin, 123(1-2): 295-305. [96] Lawton T F.2014. Small grains,big rivers,continental concepts. Geology, 42(7): 639-640. [97] Lawton T F,Bradford I A,Vega F J,Gehrels G E,Amato J M.2009. Provenance of Upper Cretaceous-Paleogene sandstones in the foreland basin system of the Sierra Madre Oriental,northeastern Mexico,and its bearing on fluvial dispersal systems of the Mexican Laramide Province. Geological Society of American Bulletin, 121: 820-836. [98] Leier A L,Gehrels G E.2011. Continental scale detrital zircon provenance signatures in Lower Cretaceous strata,western North America. Geology, 39: 399-402. [99] Liu Z,Zhao Y,Colin C,Stattegger K,Wiesner M G,Huh C A,Zhang Y,Li X,Sompongchaiyakul P,You C F,Huang C Y,Liu J T,Siringan F P,Le K P,Sathiamurthy E,Hantoro W S,Liu J,Tuo S,Zhoa S,Zhou S,He Z,Wang Y,Bunsomboonsakul S,Li Y.2016. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153: 238-273. [100] Marsh J H,Stockli D F.2015. Zircon U-Pb and trace element zoning characteristicsin an anatectic granulite domain: Insights from LASS-ICP-MS depth profiling. Lithos, 239: 170-185. [101] Mason C C,Fildani A,Gerber T,Blum M D,Clark J D,Dykstra M.2017. Climatic and anthropogenic influences on sediment mixing in the Mississippi source-to-sink system using detrital zircons: Late Pleistocene to recent. Earth Planetary Science Letters, 466: 70-79. [102] McLennan S M,Hemming S,McDaniel M J,Hanson G N.1993. Geochemical Approaches to Sedimentation,Provenance and Tectonics. Processes Controlling the Composition of Clastic Sediments. Boulder: Geological Society of America,21-40. [103] Morton A C.1987. Influences of provenance and diagenesis on detrital garnet suites in the Forties Sandstone,Paleocene Central North Sea. Journal of Sedimentary Petrology, 57: 1027-1032. [104] Morton A C,Whitham A G,Fanning C M.2005. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral,mineral chemical and zircon age data. Sedimentary Geology, 182: 3-28. [105] Morton A,Chenery S.2009. Detrital rutile geochemistry and thermometry as guides to provenance of Jurassic-Paleocene sandstones of the Norwegian Sea. Journal of Sedimentary Research, 79(7): 540-553. [106] Mosher S,Hoh A M,Zumbro J A,Reese J F.2004. Tectonic evolution of the Eastern Llano Uplift,central Texas: A record of Grenville orogenesis along the southern Laurentian margin. In: Tollo R P, et al. (eds). Proterozoic tectonic evolution of the Grenville orogen in North America: Geological Society of America Memoir 197: 783-798. [107] Parrish R R.1990. U-Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Sciences, 27: 1431-1450. [108] Pettijohn F,Potter P,Siever R.1973. Sand and Sandstone. New York: Springer-Verlag,1-518. [109] Potter P E,Pettijohn F J.1977. Paleocurrents and Basin Analysis. Berlin: Springer-Verlag,1-425. [110] Rahl J M,Reiners P W,Campbell I H,Nicolescu S,Allen C M.2003. Combined single-grain(U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone,Utah. Geology, 31: 761-764. [111] Rainbird R H,Heaman L M,Young G.1992. Sampling Laurentia: Detrital zircon geochronology offers evidence for an extensive Neoproterozoic river system originating from the Grenville orogen. Geology, 20: 351-354. [112] Reiners P W,Campbell I H,Nicolescu S,Allen C M,Hourigan J K,Garver J I,Mattinson J M,Cowan D S. 2005.(U-Th)/(He-Pb)double dating of detrital zircons. American Journal of Science, 305(4): 259-311. [113] Romans B W,Castelltort S,Covault J A,Fildani A,Walsh J P.2016. Environmental signal propagation in sedimentary systems across timescales. Earth-Science Reviews, 153: 7-29. [114] Roser B P,Korsch R J.1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major element data. Chemical Geology,67(1/2): 119-139. [115] Saylor J E,Sundell K E.2016. Quantifying comparison of large detrital geochronology data sets. Geosphere, 12: 203-220. [116] Saylor J E,Stockli D F,Horton B K,Nie J,Mora A.2012. Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia. Geological Society of America Bulletin, 124(5-6): 762-779. [117] Saylor J E,Knowles J N,Horton B K,Nie J,Mora A.2013. Mixing of source populations recorded in detrital zircon U-Pb age spectra of modern river sands. Journal of Geology, 121: 17-33. [118] Sharman G R,Johnstone S A.2017. Sediment unmixing using detrital geochronology. Earth and Planetary Science Letters, 477: 183-194. [119] Shen C B,Donelick R A,O'Sullivan P B,Jonckheere R,Yang Z,She Z B,Miu X L,Ge X.2012. Provenance and Hinterland Exhumation from LA-ICPMS Zircon U-Pb and Fission-Track Double Dating of Cretaceous Sediments in the Jianghan Basin,Yangtze Block,Central China. Sedimentary Geology, 281: 194-207. [120] Sømme T O,Helland-Hansen W,Martinsen O J,Thurmond J B.2009. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems. Basin Research, 21: 361-387. [121] Syvitski J P M,Milliman J D.2007. Geology,geography,and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. Journal of Geology, 115: 1-19. [122] Taylor S R,McLennan S M.1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Sci. Publ.,312. [123] Thomas W A.2011. Detrital-zircon geochronology and sedimentary provenance. Lithosphere, 3(4): 304-308. [124] Tollo R P,Corriveau L,McLelland J,Bartholomew M J. 2004. Proterozoic tectonic evolution of the Grenville orogen in North America: An introduction. In: Tollo R P,Corriveau L,McLelland J, et al.(eds). Proterozoic Tectonic Evolution of the Grenville Orogen in North America. Geological Society of America Memoir 197: 1-18. [125] Vermeesch P.2013. Multi-sample comparison of detrital age distributions.Chemical Geology, 341: 140-146. [126] Wandres A M,Bradshaw J D,Weaver S,Maas R,Ireland T,Eby N.2014. Provenance analysis using conglomerate clast lithologies: A case study from the Pahau terrane of New Zealand. Sedimentary Geology, 167(1-2): 57-89. [127] Wang C,Liang X,Xie Y,Tong C,Pei J,Zhou Y,Jiang Y,Fu J,Dong C,Liu P.2014. Provenance of Upper Miocene to Quaternary sediments in the Yinggehai-Song Hong Basin,South China Sea: Evidence from detrital zircon U-Pb ages. Marine Geology, 355: 202-217. [128] Wang C,Liang X,Xie Y,Tong C,Pei J,Zhou Y,Jiang Y,Fu J,Wen S.2015. Late Miocene provenance change on the eastern margin of the Yinggehai-Song Hong Basin,South China Sea: Evidence from U-Pb dating and Hf isotope analyses of detrital zircons. Marine and Petroleum Geology, 61: 123-139. [129] Wang C,Wen S,Liang X,Shi H,Liang X.2018. Detrital zircon provenance record of the Oligocene Zhuhai Formation in thePearl River Mouth Basin,northern South China Sea. Marine and Petroleum Geology, 98: 448-461. [130] Wang C Y,Campbell I H,Allen C M,Williams I S,Eggins S M.2009. Rate of growth of the preserved North American continental crust: Evidence from Hf and O isotopes in Mississippi detrital zircons. Geochimica et Cosmochimica Acta, 73(3): 712-728. [131] Weltje G J.2006. Ternary sandstone composition and provenance: An evaluation of the‘Dickinson model’. In: Compositional Data Analysis in the Geosciences: From Theory to Practice. Geological Society Special Publication, 264: 79-99. [132] Williams M L,Jercinovic M J,Hetherington C J.2007. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology. Annual Review of Earth and Planetary Sciences, 35: 137-175. [133] Xie X Y,Heller P L.2013. U-Pb detrital zircon geochronology and its implications: The early Late Triassic Yanchang Formation,south Ordos Basin,China. Journal of Asian Earth Sciences, 64: 86-98. [134] Xu J,Snedden J W,Stockli D F,Fulthorpe C S,Galloway W E.2017a. Early Miocene continental-scale sediment supply to the Gulf of Mexico Basin based on detrital zircon analysis. Geological Society of American Bulletin, 129(1-2): 3-22. [135] Xu J,Stockli D F,Snedden J W.2017b. Enhanced provenance interpretation using combined U-Pb and(U-Th)/He double dating of detrital zircon grains from lower Miocene strata,proximal Gulf of Mexico Basin,North America. Earth and Planetary Science Letters, 475: 44-57. [136] Yang J H,Du Y S,Cawood,P A,Xu Y.2009. Silurian collisional suturing onto the southern margin of the North China craton: Detrital zircon geochronology constraints from the Qilian Orogen. Sedimentary Geology, 220: 95-104. [137] Zhang J Y,Covault J,Pyrcz M,Sharman G,Carvajal C,Milliken K.2018. Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox Group,Gulf of Mexico. AAPG Bulletin, 102(9): 1685-1702. [138] Zuffa G G.1980. Hybrid arenites: Their composition and classification. Journal of Sedimentary Research, 50(1): 21-29.