Sedimentary characteristics and controlling factors of large-scale longshore bar in the Oligocene Huagang Formation, Xihu sag
Li Shun-Li1, Li Jing2, Chen Bin-Tao3, Xu Lei2, Yu Xing-He1, Hou Guo-Wei4, Gao Zhao-Pu5
1 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083,China; 2 CNOOC Research Institute Co.,Ltd.,Beijing 100028,China; 3 Northwest Branch,PetroChina Exploration and Development Research Institute,Lanzhou 730020,China; 4 CNOOC Research Institute Shanghai Branch Co.,Ltd.,Shanghai 200030,China; 5 Research Institute Exploration and Production in SINOPEC North China Branch,Zhengzhou 450000,China
Abstract:The Xihu sag is located in the eastern depression of the East China Sea Shelf Basin,which is the largest hydrocarbon-bearing sag in this basin. It has been debated on sedimentary environments and sedimentary systems of the Oligocene Huagang Formation as the major reservoir. On the basis of cores,well-logging response,and seismic reflection characteristics,three typical lithofacies types of thick sandstone in the Huagang Formation are identified in the central-eastern Xihu sag,namely as massive gravelly medium sandstone,fine-medium sandstone with swash beddings,and silt-fine sandstone with ripples. Statistics of sedimentary structures parameters indicate the thick-bedded sandstone of the Huagang Formation were developed in washing zone along shoreline with strong hydrodynamic condition and wave action. On the gamma logging curve,the thick sandstone is characterized by low-amplitude,blocky pattern in the lower part,gradually changing to high-amplitude,jagged pattern in the top part. On the seismic profile,mound reflections with flat bottom and convex-up top show the medium amplitude and continuity,indicating the large-scale longshore bar systems. Stacked pattern and spatial distribution were depicted combined with well-logging patterns and matching of seismic attributes and sand content. The longshore bar systems of the Huagang Formation in the Xihu sag were mainly developed at edge of the delta front in the eastern part of the study area,which is formed from the earlier braided-river delta front reworked by wave action during base level fall.
Li Shun-Li,Li Jing,Chen Bin-Tao et al. Sedimentary characteristics and controlling factors of large-scale longshore bar in the Oligocene Huagang Formation, Xihu sag[J]. JOPC, 2020, 22(3): 493-503.
[1] 陈琳琳,谢月芳. 1998. 东海西湖凹陷花港组沉积模式初探. 海洋石油, 17(4): 15-21. [Chen L L,Xie Y F.1998. Discussion on depositional mode of Huagang Formation in Xihu Trough,the East China Sea. Marine Petroleum, 17(4): 15-21] [2] 陈骥,姜在兴,张万益,刘超,许文茂. 2018. “源-汇”沉积体系主导下的现代风成相发育模式探讨: 以青海湖东岸为例. 中国沙漠, 38(5): 103-112. [Chen J,Jiang Z X,Zhang W Y,Liu W,Xu W M.2018. Discussion on depositional models of modern aeolian facies under the guidance of source-to-sink system theory: A case study of East Coast of Qinghai Lake. Journal of Desert Research, 38(5): 103-112] [3] 陈启林,黎瑞,金振奎,彭飚,朱小二,袁坤,王菁. 2019. 青海湖滩坝分布规律及其古气候意义. 现代地质, 33(1): 187-197. [Chen Q L,Li R,Jin Z K,Peng B,Zhu X E,Yuan K,Wang J.2019. Beach bar distribution and paleoclimate implications in Qinghai Lake. Geoscience, 33(1): 187-197] [4] 胡明毅,柯岭,梁建设. 2010. 西湖凹陷花港组沉积相特征及相模式. 石油天然气学报, 32(5): 1-5. [Hu M Y,Ke L,Liang J S.2010. The characteristics and pattern of sedimentary facies of Huagang Formation in Xihu Depression. Journal of Oil and Gas Technology, 32(5): 1-5] [5] 蒋一鸣,邵龙义,李帅,赵洪,康世龙,沈文超,易琦. 2019. 西湖凹陷平湖构造带平湖组沉积体系及层序地层研究. 现代地质, 34(1): 141-153. [Jiang Y M,Shao L Y,Li S,Zhao H,Kang S L,Shen W C,Yi Q.2019. Deposition system and stratigraphy of Pinghu Formation in Pinghu tectonic belt,Xihu sag. Geoscience, 34(1): 141-153] [6] 李顺利. 2015. 东海陆架盆地西湖凹陷渐新统滨岸带沉积动力学特征及其演化. 中国地质大学(北京)博士论文: 47-68. [Li S L.2015. Oligocene depositional dynamics and evolutions of shore zone in the Xihu Depression,East China Sea Shelf Basin. Docteral desseration of China University of Geosciences(Beijing): 47-68] [7] 李顺利,许磊,于兴河,侯国伟,胡勇,高照普. 2018. 东海陆架盆地西湖凹陷渐新世海侵作用与潮控体系沉积特征. 古地理学报, 20(6): 1023-1032. [Li S L,Xu L,Yu X H,Hou G W,Hu Y,Gao Z P.2018. Marine transgressions and charateristics of tide-dominated sedimentary systems in the Oligocene,southern Xihu sag. Journal of Palaeogeography(Chinese Edition), 20(6): 1023-1032] [8] 刘金水,陆永潮,秦兰芝. 2019. 源-汇系统分析方法在大型储集体研究中的应用: 以西湖凹陷中央反转带花港组为例. 石油实验地质, 41(3): 303-310. [Liu J S,Lu Y C,Qin L Z.2019. Application of source to sink system analysis in large reservoir research: A case study of Huagang Formation,Central Inversion Belt,Xihu Depression. Petroleum Geology and Experiment, 41(3): 303-310] [9] 刘景彦,林畅松,姜亮,陈志勇. 2000. 东海西湖凹陷第三系反转构造及其对油气聚集的影响. 地球学报, 21(4): 350-355. [Liu J Y,Lin C S,Jiang L,Chen Z Y.2000. Characteristics of Tertiary inversion structures and their influence on oil-gas accumulation in Xihu Trough,East China Sea. Aata Geoscientia Sinica, 21(4): 350-355] [10] 路顺行,张红贞,孟恩,孙效功. 2007. 运用INPEFA技术开展层序地层研究. 石油地球物理勘探, 42(6): 703-708. [Lu S X,Zhang H Z,Meng E,Sun X G.2007. Application of INPEFA technique to carry out sequence-stratigraphic study. Oil Geophysical Prospecting, 42(6): 703-708] [11] 孙思敏,彭仕宓. 2006. 东海西湖凹陷平湖油气田花港组沉积相及沉积演化. 西北大学学报(自然科学版), 36(1): 63-67. [Sun S M,Peng S M.2006. Sedimentary facies and evolution of Huagang Formation of Pinghu Oilfield in Xihu sag,the East China. Journal of Northwest University(Natural Science Edition), 36(1): 63-67] [12] 王果寿,周卓明,肖朝辉,李美洲,周维奎,王琳. 2002. 西湖凹陷春晓区带下第三系平湖组、花港组沉积特征. 石油与天然气地质, 23(3): 257-261. [Wang G S,Zhou Z M,Xiao Z H,Li M Z,Zhou W K,Wang L.2002. Sedimentary characteristics of Eogene Pinghu Formation and Huagang Formation in Chunxiao zone of Xihu Lake Depression. Oil and Gas Geology, 23(3): 257-261] [13] 王菁,李相博,刘化清,张志杰,完颜容,王宏波,黄军平. 2019. 陆相盆地滩坝砂体沉积特征及其形成与保存条件: 以青海湖现代沉积为例. 沉积学报, 37(5): 1016-1030. [Wang J,Li X B,Liu H Q,Zhang Z J,Wanyan R,Wang H B,Huang J P.2019. Study of the development and preservation of lacustrine beach and bar based on the modern sedimentary characteristics of Qinghai Lake. Acta Sedimentologica Sinica, 37(5): 1016-1030] [14] 武法东,陆永潮,陈平,周平. 1997. 东海西湖凹陷渐新统花港组海绿石的发现及其意义. 沉积学报, 15(3): 158-161. [Wu F D,Lu Y C,Chen P,Zhou P.1997. The discovery and significance of glauconites in the Huagong Formation of the Oligocene,Xihu Depression,East China Sea. Acta Sedimentologica Sinica, 15(3): 158-161] [15] 吴正韩. 2014. 中国东海陆架盆地西湖凹陷生物地层初探. 地层学杂志, 38(4): 470-478. [Wu Z H.2014. Cenozoic biostratigraphy of the Xihu sag,northeast continental shelf basin of the East China Sea. Journal of Stratigraphy, 38(4): 470-478] [16] 于兴河,李顺利,曹冰,侯国伟,王亚风,皇甫致远. 2017. 西湖凹陷渐新世层序地层格架与沉积充填响应. 沉积学报, 35(2): 299-314. [Yu X H,Li S L,Cao B,Hou G W,Wang Y F,Huangfu Z Y.2017. Oligocene sequence framework and depositional response in the Xihu Depression,East China Sea Shelf Basin. Acta Sedimentologica Sinica, 35(2): 299-314] [17] 张绍亮,秦兰芝,余逸凡,唐贤君. 2014. 西湖凹陷渐新统花港组下段沉积相特征及模式. 石油地质与工程, 28(2): 5-8. [Zhang S L,Qin L Z,Yu Y F,Tang X J.2014. Sedimentary facies characteristics and its mode of lower member of Oilgocene Huagang Formation in Xihu Sag. Petroleum Geology and Engineering, 28(2): 5-8] [18] 赵洪,蒋一鸣,常吟善,李帅,黎建. 2018. 西湖凹陷平湖组基于沉积相标志的沉积特征研究. 上海国土资源, 39(1): 88-92. [Zhao H,Jiang Y M,Chang Y S,Li J.2018. Study on sedimentary characteristics of the Pinghu Formation based on sedimentary fades markers in Xihu Sag,East China Sea Basin. Shanghai Land & Resources, 39(1): 88-92] [19] 朱毅秀,黄导武,王欢,何贤科,师源,佘亚明. 2019. 东海西湖凹陷A气田渐新统花港组三段厚层砂岩沉积环境. 石油与天然气地质, 40(6): 1226-1235. [Zhu Y X,Huan D W,Wang H,He X K,Shi Y,She Y M.2019. Sedimentary setting of thick sandstone in the 3rd member Huagang Formation in a gas field in the Xihu sag,East of the Oligocene China Sea Basin. Oil & Gas Geology, 40(6): 1226-1235] [20] Aleman N,Robin N,Certain R,Anthony E J,Barusseau J P.2015. Longshore variability of beach states and bar types in a microtidal,storm-influenced,low-energy environment. Geomorphology, 241(15): 175-191. [21] Boggs S.2014. Principles of Sedimentology and Stratigraphy(Fifth Edition). Prentice Hall, Hoboken: 294-301. [22] Davis R A Jr, Clifton H E.1987. Sea-level change and the preservation potential of wave-dominated and tide-dominated coastal sequences. In: Nummedal D,Pilkey O H,Howard J D(eds). Sea-level Fluctuations and Coastal Evolution. SEPM Special Publication, 41: 167-178. [23] Hansen J B,Svendsen I A.1986. Experimental Investigation of the Wave and Current Motion Over a Longshore Bar. Proceedings 20th International Conference on Coastal Engineering:1166-1179. [24] Anthony E J.2015. Wave influence in the construction,shaping and destruction of river deltas: A review. Marine Geology, 361: 53-78. [25] Guillén J,Palanques A.1993. Longshore bar and trough systems in a microtidal,storm-wave dominated coast: The Ebro Delta(Northwestern Mediterranean). Marine Geology, 115(3-4): 239-252. [26] Li S L,Yu X H,Li S L,Olariu C,Steel R J.2013. Relationship between river-mouth depositional processes and delta architectures,Huangqihai Lake,Inner Mongolia,North China. AAPG Search and Discovery Article,#50832. [27] Li S L,Yu X H,Steel R,Zhu X M,Li S L,Cao B,Hou G W.2018. Change from tide-influenced deltas in a regression-dominated set of sequences to tide-dominated estuaries in a transgression-dominated sequence set,east China sea shelf basin. Sedimentology, 65: 2312-2338. [28] Miller K G,Kominz M A,Browning J V,Wright J D,Mountain G S,Katz M E,Sugarman P J,Cramer B S,Christie-Blick N,Pekar S F.2005. The phanerozoic record of global sea-level change. Science, 310: 1293-1298. [29] Rossetti D F.2000. Influence of low amplitude/high frequency relative sea-level changes in a wave-dominated estuary(Miocene),São Luis Basin,northern Brazil. Sedimentary Geology, 133: 295-324. [30] Shan X,Yu X H,Clift P D,Tan C P,Jin L N,Li M T,Li W.2015. The Ground Penetrating Radar facies and architecture of a Paleo-spit from Huangqihai Lake,North China: Implications for genesis and evolution. Sedimentary Geology, 323: 1-14. [31] Zhang J,Jia Y,Lai Z,Long H,Yang L.2011. Holocene evolution of huangqihai lake in semi-arid northern China based on sedimentology and luminescence dating. Holocene, 21(8): 1261-1268.