Abstract The microbial-mat is actually a special microbial community that forms a longest and earliest ecosystem on the Earth,which has been a common view. However,both the complexity of microbial compositions and the diversity of forming environment and product,lead to several answers for the nature of the microbial-mat. Furthermore,different fields of interest find their own answers,such as it seems almost impossible to find only one single answer to the question: What are microbial-mats? Ultimately,the manifold answers of microbial-mats become the theoretical basis of the microbial-mat sedimentology, which is a young branch of sedimentology in the Earth's biological frame work. Most importantly,there are many difficulties for the further understanding of growth mechanism and formational process of the microbial-mat buildup in the geological history through the filter of the diagenesis. The problems are as follows: (1)benthic oolites within stromatolite of the Cambrian;(2)particular microbially-induced sedimentary structures (MISS)on the limetone bedding surface of the Mesoproterozoic;(3)thrombolites within a stromatolitic deposition succession of the Mesoproterozoic. Therefore,on the basis of manifold definitions of the microbial-mat,a brief introduction of the theoretical basis of the microbial-mat sedimentology will be meaningful for the further understanding of both the advance and the present situation of this young branch of sedimentology.
About author: Mei Mingxiang,born in 1965, graduated from China University of Geosciences(Beijing) and obtained his Ph D. degree in 1993. Now he is a professor at School of Earth Sciences and Resources,China University of Geosciences(Beijing),and is mainly engaged in sedimentology and stratigraphy. E-mail: meimingxiang@263.net.
Cite this article:
Mei Mingxiang. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology[J]. JOPC, 2014, 16(3): 285-304.
Mei Mingxiang. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology[J]. JOPC, 2014, 16(3): 285-304.
高林志,张传恒,史晓颖,等. 2007. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年[J]. 地质通报, 26(3): 249-255.
李林,汤冬杰,付星梅,等. 2008. 前寒武纪细粒碎屑岩中纺锤状裂缝的成因分析: 以燕山东部长城群为例[J]. 现代地质, 22(5): 699-705.
马迪根 M T,马丁克 J M 编著,2006;李明春,杨文博主译. 2009. Brock微生物生物学[M]. 北京: 科学出版社,909-912.
梅冥相. 2008a. 北京延庆千沟中元古代高于庄组第三段: 一个典型的前寒武纪非叠层石碳酸盐岩沉积序列[J]. 沉积学报, 26(4): 565-574.
梅冥相. 2011a. 陆源碎屑岩中微生物诱发的沉积构造的成因类型及其分类体系[J]. 地质论评, 57(3): 419-436.
梅冥相. 2011b. 微生物席沉积学: 一个年轻的沉积学分支[J]. 地球科学进展, 26(6): 586-597.
梅冥相. 2011c. 关于“超微细菌”的争论: 灰岩成因研究的重要驱动力[J]. 古地理学报, 13(4): 363-374.
梅冥相. 2012a. 从生物矿化作用衍生出的有机矿化作用:地球生物学框架下重要的研究主题[J]. 地质论评, 58(5): 937-951.
梅冥相. 2012b. 鲕粒成因研究的新进展[J]. 沉积学报, 30(1): 20-32.
梅冥相,高金汉,孟庆芬,等. 2009b. 前寒武纪与微生物席相关的粉砂岩岩墙[J]. 古地理学报, 11(1): 37-50.
梅冥相,高金汉,孟庆芬. 2009c. 中元古界非叠层石灰岩中的MISS: 以北京延庆千沟剖面高于庄组第三段为例[J]. 地学前缘, 16(5): 207-216.
梅冥相,高金汉,孟庆芬. 2006. 从席底构造到第5类原生沉积构造: 沉积学中较为重要的概念[J]. 现代地质, 20(3): 413-422.
梅冥相,高金汉,孟庆芬,等. 2008b. 天津蓟县中元古界雾迷山组微指状叠层石及其对1250 Ma±叠层石衰减事件的响应[J]. 古地理学报, 10(5): 495-509.
梅冥相,高金汉,孟庆芬. 2009a. 中元古界非叠层石灰岩中的MISS: 以北京延庆千沟剖面高于庄组第三段为例[J]. 地学前缘, 16(5): 207-216.
梅冥相,郭荣涛,胡媛. 2011. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J]. 岩石学报, 27(8): 2473-2486.
梅冥相,马永生,周洪瑞,等. 2001a. 雾迷山旋回层的费希尔图解及其在定义前寒武纪三级海平面变化记录中的应用[J]. 地球学报, 22(5): 429-436.
梅冥相,马永生,郭庆银. 2001b. 天津蓟县雾迷山旋回层的相序组构特征及其马尔科夫链分析[J]. 高校地质学报, 7(3): 288-299.
梅冥相,孟庆芬,高金汉. 2007a. 前寒武纪海侵砂岩中的微生物砂质碎片: 以北京南口虎峪剖面大红峪组为例[J]. 地学前缘, 14(2): 197-204.
梅冥相,孟庆芬,刘智荣. 2007b. 微生物形成的原生沉积构造研究进展综述[J]. 古地理学报, 9(4): 353-364.
史晓颖,蒋干清. 2011. 前寒武纪微生物地质作用与地球表层系统演化[A]. 见: 谢树成,殷鸿福,史晓颖,等著. 地球生物学: 生命与地球环境的相互作用和协同演化[M]. 北京: 科学出版社,190-236.
史晓颖,王新强,蒋干清,等. 2008a. 贺兰山地区中元古代微生物席成因构造: 远古时期微生物群活动的沉积标示[J]. 地质论评, 54(5): 577-586.
史晓颖,蒋干清,张传恒,等. 2008b. 华北地台中元古代串岭沟组页岩中的砂脉构造: 17亿年前甲烷气逃逸的沉积标识?[J]. 地球科学, 33(5): 576-590.
宋天锐. 2007. 北京十三陵地区中元古界长城系沉积相标志及沉积环境模式[J]. 古地理学报, 9(5): 461-472.
汤冬杰,史晓颖,刘娟,等. 2009. 华北地台串岭沟组砂脉中自生碳酸盐沉淀和自生黄铁矿: 中元古代甲烷厌氧氧化的沉积证据[J]. 古地理学报, 11(4): 361-374.
汤冬杰,史晓颖,李涛,等. 2011. 微生物席成因构造形态组合的古环境意义:以华北南缘中—新元古代为例[J]. 地球科学, 36(6): 1033-1043.
杨建超,章雨旭,黄泽光. 2007. 地质学某些术语用词辨析[J]. 中国科技术语, (3): 35-38.
赵震. 1992. 核形石雏形——弥散粒: 以天津蓟县雾迷山组为例[J]. 沉积学报, 10(2): 19-27.
郑元,吕洪波,章雨旭,等. 2009. 山西黎城中元古代砂岩层面多种痕迹特征及成因初析[J]. 地质论评, 55(1): 1-6.
Aharon P. 2000. Microbial processes and products fueled by hydrocarbons at submarine seeps[A]. In: Riding R E,Awramik S M(eds). Microbial Sediments[M]. Berlin: Springer,270-281.
Allwood A C,Walter M R,Burch I W, et al. 2007 3 43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth[J]. Precambrian Research, 158: 198-227.
Altermann W. 2002. The evolution of life and its impact on sedimentation[A]. In: Altermann W,Corcoran P L(eds). Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems[M]. Oxford: Blackwell Science,IAS Special Publication, 33: 15-32.
Altermann W,Kazmierczak J,Oren A, et al. 2006. Microbial calcification and its impact on the sedimentary rock record during 3 5 billion years of earth history[J]. Geobiology, 1: 169-178.
Altermann W. 2008. Accretion,trapping and binding of sediment in Archaean stromatolites: Morphological expression of the antiquity of life[J]. Space Sciences Reviews, 135: 55-79.
Awramik S M. 2006. Respect for stromatolites[J]. Nature, 441(8): 700-701.
Baas J H. 2003. Ripple,ripple mark,ripple structure[A]. In: Middleton G V,Church M J,Coniglio M, et al (eds). Encyclopedia of Sedimentments and Sedimentary Rocks[M]. Dordrecht,Boston and London: Kluwer Academic Publishers,565-567.
Bailey J V,Orphan V J,Joye S B, et al. 2009. Chemotrophic microbial mats and their potential for preservation in the rock record[J]. Astrobiology, 9: 843-859.
Bauld J. 1984. Microbial mats in marginal marine environments: Shark Bay,Western Australia and Spencer Gulf,South Australia[A]. In: Cohen Y,Castenholz R W,Halvorson H O(eds). Microbial Mats: Stromatolites[M]. New York: Alan R. Liss,39-58.
Baumgartner L K,Spear J R,Buckley D H, et al. 2009. Microbial diversity in modern marine stromatolites,Highborne Cay,Bahamas[J]. Environmental Microbiology, (11): 2710-2719.
Bontognali T R R,Vasconcelos C,Warthmann R J, et al. 2008. Microbes produce nanobacteria-like structures,avoiding cell entombment[J]. Geology, 36: 663-666.
Bosak T,Liang B,Sim M S, et al. 2009. Morphological record of oxygenic photosynthesis in conical stromatolites[J]. Proceedings of the National Academy of Sciences, 106: 10939-10943.
Bosak T,Bush J W M,Flynn M R, et al. 2010. Formation and stability of oxygen-rich bubbles that shape photosynthetic mats[J]. Geobiology, 8: 45-55.
Bouougri E,Gerdes G,Porada H. 2007. Inherent problems of terminology: Definition of terms frequently used in connection with microbial mats[A]. In: Schieber J,Bose P K,Eriksson P G, et al (eds). Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record[M]. Amsterdam: Elsevier,145-151.
Bowlin E M,Klaus J S,Foster J S, et al. 2012. Environmental controls on microbial community cycling in modern marine stromatolites[J]. Sedimentary Geology, 263-264: 45-55.
Braissant O,Cailleau G,Dupraz C, et al. 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids[J]. Journal of Sedimentary Research, 73: 485-490.
Brehm U,Krumbein W E,Palinska K A. 2006. Biomicrospheres generate ooids in laboratory[J]. Geomicrobiology Journal, 23: 545-550.
Brock T D,Madigan M T,Martinko J M, et al. 1994. Biology of Microorganisms(7th edition)[M]. New Jersey: Prentice Hall,1-786.
Castenholz R W,Jrgensen B B,D'Amelio E, et al. 1991. Photosynthetic and behavioural versatility of the cyanobacterium Oscillatoria boryana in a sulfide-rich microbial mat[J]. FEMS Microbiological Ecology, 86: 43-58.
Characklis W G,Wilderer P A. 1989. Structure and Function of Biofilms(Dahlem Workshop Reports. Life Sciences Research Report 46)[M]. Chichester: Wiley,1-386.
Cleland C E,Chyba C F. 2002. Defining‘life'[J]. Origins of Life and Evolution of the Biosphere, 32: 387-393.
Cohen Y. 1989. Photosynthesis in cyanobacterial mats and its relation to the sulfur cycle: A model for microbial sulfur interactions[A]. In: Cohen Y,Rosenberg E(eds). Microbial Mats: Physiological Ecology of Benthic Microbial Communities[M]. Washington: ASM,22-36.
Cooksey K E. 1992. Extracellular polymers in biofilms[A]. In: Melo L F,Bott T R,Fletcher M, et al (eds). Biofilms: Science and Technology[M]. Dordrecht: Kluwer,137-147.
Costerton J W,Lewandowski Z,Caldwell D E, et al. 1995. Microbial biofilms[J]. Annual Review of Microbiology, 49: 711-745.
Cuadrado D G,Carmona N B,Bournod C N. 2012. Mineral precipitation on modern siliciclastic tidal flats colonized by microbial mats[J]. Sedimentary Geology, 271-272: 58-66.
Dade W B,Davis J D,Nichols P D, et al. 1990. Effects of bacterial exopolymer adhesion on the entrainment of sand[J]. Geomicrobiological Journal, 8: 1-16.
Decho A W. 2000. Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms[A]. In: Riding R E,Awramik S M(eds). Microbial Sediments[M]. Berlin: Springer,9-15.
Decho A W,Kawaguchi T. 2003. Extracellular polymers(EPS)and calcification within modern Marine stromatolites[A]. In: Krumbein W E,Paterson D M,Zavarzin G A(eds.). Fossil and Recent Biofilms: A natural history of life on Earth[M]. Dordrecht of Netherlands: Kluwer Academic Publishers,227-240.
Decho A W,Visscher P T,Reid R P. 2005. Production and cycling of natural microbial exopolymers(EPS)within a marine stromatolite[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 219: 71-86.
Des Marais D J. 2000. When did photosynthesis emerge on Earth?[J]. Science, 289: 1703-1705.
Des Marais D J. 2003. Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere[J]. Biological Bulletin, 204: 160-167.
Dupraz C, Reid R P,Braissant O, et al. 2009. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 96: 141-162.
Eriksson P G,Schieber J,Bouougri E, et al. 2007. Classification of structures left by microbial mats in their host sediments[A]. In: Schieber J,Bose P K,Eriksson P G, et al (eds). Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record[M]. Amsterdam: Elsevier,39-52.
Feldmann M,Mckenzie J A. 1998. Stromatolite-thrombolite associations in a modern environment,Lee Stocking Island,Bahamas[J]. Palaios, 13: 201-212.
Farmer J D. 2000. Hydrothermal systems: Doorways to early biosphere evolution[J]. GSA Today, 10: 1-10.
Flügel E. 2004. Microfacies of Carbonate Rocks: Analysis,Interpretation and Application[M]. Berlin: Springer-Verlag,1-976.
Fosnot C T,Perry R S. 2005. Constructivism: A psychological theory of learning[A]. In: Fosnot C T. Constructivism[M]. New York: Columbia Teachers Press,8-38.
Gerdes G. 2007. Structures left by modern microbial mats in their host sediments[A]. In: Schieber J,Bose P K,Eriksson P G, et al (eds). Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record[M]. Amsterdam: Elsevier,5-38.
Gerdes G. 2010. What are microbial mats?[A]. In: Seckbach J,Oren A(eds). Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems. Cellular Origin,Life in Extreme Habitats and Astrobiology,14[M]. Berlin: Springer-Verlag,5-25.
Gerdes G,Klenke T. 2007. States of biogenic bedding as records of the interplay of ecologic time and environment[J]. Senckenbergiana Maritima, 37: 129-144.
Gerdes G,Dunajtschik-Piewak K,Riege H, et al. 1994. Structural diversity of biogenic carbonate particles in microbial mats[J]. Sedimentology, 41: 1273-1294.
Gerdes G,Klenke T,Noffke N. 2000. Microbial signatures in peritidal siliciclastic sediments,a catalogue[J]. Sedimentology, 47: 279-308.
Hagadorn J W,Bottjer D J. 1997. Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition[J]. Geology, 25: 1047-1050.
Hoehler T M,Bebout B M,Des Marais D J. 2001. The role of microbial mats in the production of reduced gases on the early Earth[J]. Nature, 412: 324-327.
Hofmann H J,Grey A H,Hickman A H, et al. 1999. Origin of 3 45 Ga coniform stromatolites in Warrawoona Group,Western Australia[J]. Geological Society of America Bulletin, 111: 1256-1262.
Jenkins R G,Hikida Y,Chikaraishi Y, et al. 2008. Microbially induced formation of ooid-like coated grains in the Late Cretaceous methane-seep deposits of the Nakagawa area,Hokkaido,northern Japan[J]. Island Arc, 17: 261-269.
Kasting J K,Howard M T. 2006. Atmospheric composition and climate on the early Earth[J]. Philosophical Transactions of the Royal Society,B 361: 1733-1742.
Krumbein W E. 1983. Stromatolites: The challenge of a term in space and time[J]. Precambrian Research, 20: 493-531.
Krumbein W E. 1994. The year of the slime[A]. In: Krumbein W E,Paterson D M,Stal L J(eds). Biostabilization of Sediments[M]. Oldenburg: Bibliotheks-Informations System(BIS),1-7.
Krumbein W E,Brehm U,Gorbushina A A, et al. 2003. Biofilm,biodictyon and biomat-biolaminites,oolites,stromatolites-geophysiology,global mechanism and parahistology[A]. In: Krumbein W E,Paterson D M,Zavarzin G A(eds). Fossil and Recent Biofilms[M]. Dordrecht: Kluwer,1-27.
Kuhn T S. 1996. The Structure of Scientific Revolutions[M]. Chicago: The University of Chicago Press,1-496.
Levit G,Krumbein W E. 2003. Is there an adequate terminology of biofilms and microbial mats?[A]. In: Krumbein W E,Paterson D W,Zavarzin G A(eds). Fossil and Recent Biofilms[M]. Dordrecht: Kluwer Academic Publishers,2-8.
Mata S A,Harwood C L,Corsetti F A, et al. 2012. Influence of gas production and filament orientation on stromatolite microfabric[J]. Palaios, 27: 206-219.
Mata S A,Bottjer D J. 2009. The paleoenvironmental distribution of Phanerozoic wrinkle structures[J]. Earth-Science Reviews, 96: 181-195.
Meister P. 2013. Two opposing effects of sulfate reduction on carbonate precipitation in normal marine,hypersaline,and alkaline environments[J]. Geology, 41: 499-502.
Neu T R. 1994. Biofilms and microbial mats[A]. In: Krumbein W E,Paterson D M,Stal L J(eds). Biostabilization of Sediments[M]. Oldenburg: Bibliotheks-Informationssystem(BIS),9-16.
Neu T R,Marshall K C. 1990. Bacterial polymers: Physicochemical aspects of their interaction at interfaces[J]. Journal of Biomat Application, 5: 107-133.
Neu T R,Eitner A,Paje M L. 2003. Development and architecture of complex environmental biofilms[A]. In: Krumbein W E,Paterson D M,Zavarzin G A(eds). Fossil and Recent Biofilms[M]. Dordrecht: Kluwer,29-45.
Noffke N. 2009. The criteria for the biogeneicity of microbially induced sedimentary structures(MISS)in Archean and younger,sandy deposits[J]. Earth-Science Reviews, 96: 173-180.
Noffke N. 2010. Geobiology: Microbial Mats in Sandy Deposits from the Archean Era to Today[M]. Berlin: Springer-Verlag,1-194.
Noffke N,Eriksson K A,Hazen R M, et al. 2006. A new window into Early Archean life: Microbial mats in Earth's oldest siliciclastic tidal deposits(3 2 Ga Moodies Group,South Africa)[J]. Geology, 34: 253-256.
Noffke N,Gerdes G,Krumbein W E. 2001. Microbially induced sedimentary structures indicating climatological,hydrological and depositional conditions within recent and Pleistocene coastal facies zones(southern Tunisia)[J]. Facies, 44: 23-30.
Oliver J D,Perry R S. 2006. Definitely life but not definitively[J]. Origins of Life and Evolution of the Biospheres, 36(5-6): 515-521.
Oschmann W. 2000. Microbes and black shales[A]. In: Riding R E,Awramik S M(eds). Microbial Sediments[M]. Berlin: Springer,137-148.
Perry R S,Mcloughlin N,Lynne B Y, et al. 2007. Defining biominerals and organominerals: Direct and indirect indicators of life[J]. Sedimentary Geology, 201: 157-179.
Petroff A P,Sim M S,Maslov A, et al. 2010. Biophysical basis for the geometry of conical stromatolites[J]. Proceedings of the National Academy of Sciences, 107: 9956-9961.
Petryshyn V A,Corsetti F A. 2011. Analysis of growth directions of columnar stromatolites from Walker Lake,western Nevada[J]. Geobiology, 9: 425-435.
Planavsky N,Ginsburg R N. 2009. Taphonomy of modern marine Bahamian microbialites[J]. Palaios, 24: 5-17.
Porada H,Bouougri E H. 2007. Wrinkle structures: A critical review[J]. Earth-Science Reviews, 81: 199-215.
Porada H,Ghergut J,Bouougri E H. 2008. Kinneyia-type wrinkle structures: Critical review and model of formation[J]. Palaios, 23: 65-77.
Reid R P,Visscher P T,Decho A W, et al. 2000. The role of microbes in accretion,lamination and lithification of modern marine stromatolites[J]. Nature, 406: 989-992.
Reid R P,Foster J S,Radtke G, et al. 2011. Modern marine stromatolites of Little Darby Island,Exuma Archipelago,Bahamas: Environmental setting,accretion mechanisms and role of euendoliths[A]. In: Reitner J,Quéric Nadia-Valérie,Arp G(eds). Advances in Stromatolite Geobiology,Lecture Notes in Earth Sciences 131[M]. Berlin: Springer-Verlag,77-89.
Riding R. 2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 47: 179-214.
Rouchy J M,Monty C. 2000. Gypsum microbial sediments: Neogene and modern examples[A]. In: Riding R E,Awramik S M(eds). Microbial Sediments[M]. Berlin: Springer,209-216.
Schopf J W. 2006. Fossil evidence of Archean life[J]. Philosophical Transactions of the Royal Society,B 361: 869-885.
Schieber J,Bose P K,Eriksson P G, et al. 2007. Atlas of Microbial Mat Features Preserved within the Siliclastic Rock Record[M]. Amsterdam: Elsevier,1-313.
Stal L J. 1994. Microbial mats: Ecophysiological interactions related to biogenic sediment stabilization[A]. In: Krumbein W E,Paterson D M,Stal L J(eds). Biostabilization of Sediments[M]. BIS Oldenburg: University of Oldenburg,41-53.
Stolz J. 2000. Structure of microbial mats and biofilms[A]. In: Riding R E,Awramik S M(eds). Microbial Sediments[M]. Berlin: Springer,1-8.
Stoodley P,Lewandowski Z,Boyle J D, et al. 1999. The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow[J]. Environmental Microbiology, 1: 447-457.
Thiel V,Peckmann J,Richnow H H, et al. 2001. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat[J]. Marine Chemistry, 73: 97-112.
Tice M M,Lowe D R. 2004. Photosynthesis microbial mats in the 3 416-Myr-old ocean[J]. Nature, 431: 549-552.
Tice M M,Lowe D R. 2006. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms[J]. Geology, 34: 37-40.
Tribollet A,Golubic S,Radtke G, et al. 2011. On microbiocorrosion[A]. In: Reitner J,Quéric N-V,Arp G(eds). Advances in Stromatolite Geobiology(Lecture Notes in Earth Sciences 131)[M]. Berlin: Springer-Verlag,265-276.
van Gemerden H. 1993. Microbial mats: A joint venture[A]. In: Parkes R J,Westbroek P,de Leeuw J W(eds). Marine Sediments,Burial,Pore Water Chemistry,Microbiology and Diagenesis[M]. Marine Geology, 113: 3-25.
Verrecchia E P. 2000. Fungi and sediments[A]. In: Riding R E,Awramik S M(eds). Microbial Sediments[M]. Berlin: Springer,68-75.
Wachendrfer V,Krumbein W E,Schellnhuber H J. 1994. Bacteriogenic porosity of marine sediments: A case of biomorphogenesis of sedimentary rocks[A]. In: Krumbein W E,Paterson D M,Stal L J(eds). Biostabilization of Sediments[M]. Oldenburg: Bibliotheks-Informations system(BIS),203-220.
Warthmann R,Vasconcelos C,Bittermann A G, et al. 2011. The role of purple sulphur bacteria in carbonate precipitation of modern and possibly early Precambrian stromatolites[A]. In: Reitner J,Quéric N-V,Arp G(eds). Advances in Stromatolite Geobiology(Lecture Notes in Earth Sciences 131)[M]. Berlin: Springer-Verlag,141-149.
Zavarzin G A. 2003. Diversity of cyano-bacterial mats[A]. In: Krumbein W E,Paterson D M,Zavarzin G A(eds). Fossil and Recent Biofilms[M]. Dordrecht: Kluwer,141-150.