[1] 代明月,齐永安,陈尧,李妲. 2014. 豫西渑池地区寒武系第三统张夏组的巨鲕及其成因. 古地理学报, 16(5): 726-734. [Dai M Y,Qi Y A,Chen Y,Li D.2014. Giant ooids and their genetic analysis form the Zhangxia Formation of Cambrian Series 3 in Mianchi area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 16(5): 726-734]
[2] 冯增昭,王英华,张吉森,左文岐,张秀莲,洪国良,陈继新,吴胜和,陈玉田,迟元苓,杨承运. 1990. 华北地台早古生代岩相古地理. 北京: 石油工业出版社,28-48.
[Feng Z Z,Wang Y H,Zhang J S,Zuo W Q,Zhang X L,Hong G L,Chen J X,Wu S H,Chen Y T,Chi Y L,Yang C Y.1993. Lithofacoes Paleogeography of the Early Paleozoic of North China Platform. Beijing: Petroleum Industry Press,28-48]
[3] 冯增昭,彭永民,金振奎,鲍志东. 2004. 中国寒武纪和奥陶纪岩相古地理. 北京: 石油工业出版社,112-121.
[Feng Z Z,Peng Y M,Jin Z K,Bao Z D.2004. Lithofacoes Paleogeography of the Cambrian and Ordovician in China. Beijing: Petroleum Industry Press,112-121]
[4] 马永生,梅冥相,周润轩,杨文. 2017. 层序地层框架下的鲕粒滩形成样式: 以北京西郊下苇甸剖面寒武系第三统为例. 岩石学报, 33(4): 1021-1036.
[Ma Y S,Mei M X,Zhou R X,Yang W.2017. Forming patterns for the oolitic bank within the sequence-stratigraphic framework: an example from the Cambrian Series 3 at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 33(4): 1021-1036]
[5] 梅冥相. 1996. 淹没不整合型碳酸盐三级旋回层序: 兼论碳酸盐台地的凝缩作用. 岩相古地理, 16(6): 24-33.
[Mei M X.1996. Carbonate third-order cyclic sequence of the drowning-unconformity type: discussion on the condensation of carbonate platform. Sedimentary Facies and Palaeogeography, 16(6): 24-33]
[6] 梅冥相,杨欣德. 2000. 强迫型海退及强迫型海退楔体系域: 对传统Exxon层序地层学模式的修正. 地质科技情报, 19(2): 17-21.
[Mei M X,Yang X D.2000. Forced regression and forced regressive wedge system tract: revision on traditional exxon model of sequence stratigraphy. Geological Science and Technology Information, 19(2): 17-21]
[7] 梅冥相. 2007. 微生物碳酸盐岩分类体系的修订: 对灰岩成因结构分类体系的补充. 地学前缘, 14(5): 597-614.
[Mei M X.2007. Revised classification of microbial carbonates: replenishment to the classification of limestones. Earth Science Frontiers, 14(5): 597-614]
[8] 梅冥相. 2010. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学的进展之一. 古地理学报, 12(5): 549-564.
[Mei M X.2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: the first advance in sequence stratigraphy. Journal of Palaeogeography(Chinese Edition), 12(5): 549-564]
[9] 梅冥相. 2011a. 陆源碎屑岩中微生物诱发的沉积构造的成因类型及其分类体系. 地质论评, 57(3): 419-436.
[Mei M X.2011a. Genetic types and their classification for the microbial induced sedimentary structure within terrigenous clastic rocks. Geological Review, 57(3): 419-436]
[10] 梅冥相. 2011b. 微生物席沉积学: 一个年轻的沉积学分支. 地球科学进展, 26(6): 586-597.
[Mei M X.2011b. Microbial mat sedimentology: a young branch from sedimentology. Advances in Earth Science, 26(6): 586-597]
[11] 梅冥相. 2011c. 华北寒武系二级海侵背景下的沉积趋势及层序地层序列: 以北京西郊下苇甸剖面为例. 中国地质, 38(2): 317-337.
[Mei M X.2011c. Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: a case study of the Xiaweidian section in the western suburb of Beijing. Geology in China, 38(2): 317-337]
[12] 梅冥相. 2011d. 从旋回的有序叠加形式到层序的识别和划分: 层序地层学进展之三. 古地理学报, 13(1): 27-54.
[Mei M X.2011d. From the vertical stacking pattern of cycles to the discerning and division of sequences: the third progress in sequence stratigraphy. Journal of Palaeogeography(Chinese Edition), 13(1): 27-54]
[13] 梅冥相. 2012. 从生物矿化作用衍生出的有机矿化作用: 地球生物学框架下重要的研究主题. 地质论评, 58(5): 937-951.
[Mei M X.2012. Organomineralization derived from the biomineralization: an important theme within the framework of geobiology. Geological Review, 58(5): 937-951]
[14] 梅冥相. 2014. 微生物席的特征和属性: 微生物席沉积学的理论基础. 古地理学报, 16(3): 285-304.
[Mei M X.2014. Feature and nature of microbial-mat: theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography(Chinese Edition), 16(3): 285-304]
[15] 梅冥相,张瑞,李屹尧,接雷. 2017. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌. 岩石学报, 33(4): 1073-1093.
[Mei M X,Zhang R,Li Y Y,Jie L.2017. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform. Acta Petrologica Sinica, 33(4): 1073-1093]
[16] 梅冥相,Muhammad Riaz,孟庆芬,刘丽. 2019a. 鲕粒滩相灰岩特别的核形石灰岩帽: 以山西繁峙茶坊子剖面寒武系张夏组为例. 地质论评, 65(4): 839-856.
[Mei M X,Riaz M,Meng Q F,Liu L.2019a. Particular cap oncolitic grainstones of bank oolitic grainstones: an example from the Zhangxia Formation of the Cambrian Miaolingian at the Chafangzi Section in Fanshi County of Shanxi Province,North China. Geological Review, 65(4): 839-856]
[17] 梅冥相,Muhammad Riaz,刘丽,孟庆芬. 2019b. 辽东半岛复州湾剖面寒武系第二统光合作用生物膜建造的核形石. 古地理学报, 21(1): 31-48.
[Mei M X,Riaz M,Liu L,Meng Q F.2019b. Oncoids built by photosynthetic biofilms: an example from the Series 2 of Cambrian in the Liaotung Peninsula. Journal of Palaeogeography(Chinese Edition), 21(1): 31-48]
[18] 梅冥相,Muhammad Riaz,刘丽,孟庆芬. 2019c. 蓝细菌微生物席主导的芙蓉统均一石生物丘: 以河北涞源祁家峪剖面为例. 地质论评, 65(5): 1103-1122.
[Mei M X,Riaz M,Liu L,Meng Q F.2019c. Cambrian leiolites dominated by cyanobacterial mats: an example from the Furongian at the Qijiayu section in Laiyuan County of Hebei Province. Geological Review, 65(5): 1103-1122]
[19] 梅冥相,Khalid Latif,刘丽,孟庆芬. 2019d. 光合作用生物膜建造的凝块: 来自于辽东半岛芙蓉统长山组凝块石微生物礁中的一些证据. 古地理学报, 21(2): 254-277.
[Mei M X,Latif K,Liu L,Meng Q F.2019d. Clots built by photosynthetic biofilms: some evidences from thrombolite bieherms of the Changshan Formation of the Cambrian Furongian in the Liaotung Peninsula. Journal of Palaeogeography(Chinese Edition), 21(2): 254-277]
[20] 梅冥相,Khalid Latif,孟庆芬,胡媛. 2019e. 寒武系张夏组鲕粒滩中微生物碳酸盐岩主导的生物丘: 以河北秦皇岛驻操营剖面为例. 地质学报, 93(1): 227-251.
[Mei M X,Latif K,Meng Q F,Hu Y.2019e. Cambrian bioherms dominated by microbial carbonate within oolitic grainston bank,Zhangxia Formation,Zhucaoying section in Qinhuangdao city of Hebei Province. Acta Geologica Sinica, 93(1): 227-251]
[21] 梅冥相,Khalid Latif,孟晓庆,胡媛. 2020a. 鲕粒滩中光合作用生物膜构建的高能核形石: 以辽西葫芦岛三道沟剖面寒武系张夏组为例. 地质学报, 94(4): 999-1016.
[Mei M X,Latif K,Meng X Q,Hu Y.2020a. High-energy oncoids within the ooid-grained bank built by photosynthetic biofilms: a case study of the Cambrian Zhangxia Formation at the Sandaogou section of Huludao City in the western part of Liaoning Province. Acta Geologica Sinica, 94(4): 999-1016]
[22] 梅冥相,孟庆芬,胡媛. 2020b. 大连金州湾寒武系毛庄组微生物碳酸盐岩生物丘复合体. 地质学报, 94(2): 375-395.
[Mei M X,Meng Q F,Hu Y.2020b. Bioherm complex madding up of microbial carbonates in the Cambrian Maozhuang Formation at the Jinzhouwan section in Dalian city of Liaoning Province in northeastern China. Acta Geologica Sinica, 94(2): 375-395]
[23] 彭善池. 2009. 华南斜坡相寒武纪三叶虫动物群研究回顾并论中国南、北方寒武系的对比. 古生物学报, 48(3): 437-452.
[Peng S C.2009. Review on the studies of Cambrian trilobite faunas from Jiangnan slope belt,south China,with notes on Cambrian correlation between south and north China. Acta Palaeontologica Sinica, 48(3): 437-452]
[24] 彭善池,赵元龙. 2018. 全球寒武系第三统和第五阶”金钉子”正式落户中国. 地层学杂志, 42(3): 325-327.
[Peng S C,Zhao Y L.2018. The proposed global standard stratotype-section and point(GSSP)for the conterminous base of the Miaoling series and Wuliuan stage at Balang,Jianhe,Guizhou,China was ratified by IUGS. Journal of Stratigraphy, 42(3): 325-327]
[25] 彭阳,季强,章雨旭,乔秀夫. 1998. 北京西山及邻区寒武系顶部微晶丘特征及层序地层学意义. 地质论评, 44(1): 35-43.
[Peng Y,Ji Q,Zhang Y X,Qiao X F.1998. The charateristics and sequence stratigraphic significance of the micritic mound at the top of Cambrian in Western Hills,Beijing and neighboring areas. Geological Review, 44(1): 35-43]
[26] 齐永安,张喜洋,代明月,王敏. 2017. 豫西寒武系微生物岩中的葛万菌化石及其微观结构. 古生物学报, 56(2): 154-167.
[Qi Y A,Zhang X Y,Dai M Y,Wang M.2017. Girvanella fossils and their microstructures from Cambrian microbialites of western Henan. Acta Palaeontologica Sinica, 56(2): 154-167]
[27] 王龙,吴海,张瑞,李昌伟. 2018. 碳酸盐台地的类型、特征和沉积模式: 兼论华北地台寒武纪陆表海—淹没台地的沉积样式. 地质论评, 64(1): 62-76.
[Wang L,Wu H,Zhang R,Li C W.2018. The types,characteristics and depositional models of carbonate platform: implication for Cambrian sedimentary patterns of epeiric-drowned carbonate platform in North China. Geological Review, 64(1): 62-76]
[28] 肖恩照,王皓,覃英伦,Khalid Latif,Muhammad Riaz.2020. 寒武纪芙蓉统均一石沉积组构及环境特征: 以河北涞源长山组为例. 沉积学报, 38(1): 76-90.
[Xiao E Z,Wang H,Qin Y L,Latif K,Riaz M.2020. Sedimentary fabrics and environmental characteristics of leiolite in Cambrian: a case study from the Changshan Formation in Laiyuan city,Hebei Province. Acta Sedimentologica Sinica, 38(1): 76-90]
[29] 颜佳新,孟琦,王夏,刘志臣,黄恒,陈发篧,郭全鼎. 2019. 碳酸盐工厂与浅水碳酸盐岩台地: 研究进展与展望. 古地理学报, 21(2): 232-253.
[Yan J X,Meng Q,Wang X,Liu Z C,Huang H,Chen F Y,Guo Q D.2019. Carbonate factory and carbonate platform: progress and prospects. Journal of Palaeogeography(Chinese Edition), 21(2): 232-253]
[30] 章雨旭. 2001. 试论华北板块寒武纪地层的穿时性. 沉积与特提斯地质, 21(1): 78-87.
[Zhang Y X.2001. Diachromism of the Cambrian strata on the North China platform. Sedimentary Geology and Tethysian Geology, 21(1): 78-87]
[31] 章雨旭,吕洪波,张绮玲,乔秀夫. 2005. 微晶丘成因新认识. 地球科学进展, 20(6): 693-700.
[Zhang Y X,Lü H B,Zhang Y L,Qiao X F.2005. A new consideration on the genesis of mud mound. Advances in Earth Science, 20(6): 693-700]
[32] Adachi N,Ezaki Y,Liu J,Cao J.2009. Early Ordovician reef construction in Anhui Province,South China: a geobiological transition from microbial- to metazoan-dominant reefs. Sedimentary Geology, 220: 1-11.
[33] Aitken J D.1967. Classification and environmental significance of cryptalgal limestones and dolomites,with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37: 1163-1178.
[34] Arp G,Helms G,Karlinska K,Schumann G,Reimer A,Reitner J,Trichet J.2012. Photosynthesis versus exopolymer degradation in the formation of microbialites on the Atoll of Kiritimati,Republic of Kiribati,Central Pacific. Geomicrobiology Journal, 29: 29-65.
[35] Balthasar U,Cusack M.2015. Aragonite-calcite seas: quantifying the gray area. Geology, 43: 99-102.
[36] Berner R A.1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48: 605-615.
[37] Berner R A, Kothavala Z.2001. GEOCARB Ⅲ: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301: 182-204.
[38] Berner R A,Van Brooks J M,Ward P D.2007. Oxygen and evolution. Science, 316: 557-558.
[39] Bornemann J.1886. Die Versteinerungen des cambrischen Schichtensystems der Insel Sardinien nebst vergeleichenden Untersuchungen uber analoge Vorkommnisse aus anderen Landern 1. Nova Acta der Kaiserslichen Leopoldinisch-Carolinischen Deutschen Akademie der Naturforscher, 51(1): 1-147.
[40] Braga J C,Martin J M,Riding R.1995. Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect,Miocene,SE Spain. Palaios, 10: 347-361.
[41] Burne R V,Moore L S.1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 2: 241-254.
[42] Campbell I H,Allen C M.2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1(8): 554-558.
[43] Chen J T,Lee J-H,Woo J.2014. Formative mechanisms,depositional processes,and geological implications of Furongian(late Cambrian)reefs in the North China Platform. Palaeogeography,Palaeoclimatology,Palaeoecology, 414: 246-259.
[44] Chen Z Q,Tu C Y,Pei Y,Ogg J,Fang Y H,Wu S Q,Feng X Q,Huang Y G,Guo Z,Yang H.2019. Biosedimentological features of major microbe-metazoan transitions(MMTs)from Precambrian to Cenozoic. Earth-Science Reviews, 189: 21-50.
[45] Cherchi A,Schroeder R.2006. Remarks on the systematic position of Lithocodium Elliott,a problematic microorganism from the Mesozoic carbonate platforms of the Tethyan realm. Facies, 52: 435-440.
[46] Coulson K P,Brand L R.2016. Lithistid sponge-microbial reef-building communities construct laminated,upper Cambrian(Furongian)‘stromatolites’. Palaios, 31: 358-370.
[47] Decho A W.2010. Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecological Engineering, 36: 137-144.
[48] Decho A W.2011. Extracellular Polymeric Substances(EPS). In: Reitner J,Thiel V. Encyclopedia of Geobiology. Berlin: Springer,359-362.
[49] Decho A W,Gutierrez T.2017. Microbial extracellular polymeric substances(epss)in ocean systems. Frontiers Microbiology, 8: 1-28.
[50] De los Ríos A,Ascaso C,Wierzchos J,Vincent W F,Quesada A.2015. Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodivers Conserv, 24: 841-863.
[51] Desjardins P R,Buatois L A,Pratt B R,Mángano M G.2012. Forced regressive tidal flats: response to falling sea level in tide dominated settings. Journal of Sedimentary Research, 82: 149-162.
[52] Diaz M R,Eberli G P.2019. Decoding the mechanism of formation in marine ooids: a review. Earth-Science Reviews, 190: 536-556.
[53] Dove P M.2010. The rise of skeletal biominerals. Elements, 6: 37-42.
[54] Du W,Wang X L.2012. Hexactinellid sponge spicules in Neoproterozoic dolostone from South China. Paleontological Research, 16: 199-207.
[55] Dupraz C,Reid R P,Braissant O,Decho A W,Norman R S,Visscher P T.2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96: 141-162.
[56] Dupraz C,Reid R P,Visscher P T.2011. Microbialites,Modern. In: Reitner J,Thiel V. Encyclopedia of Geobiology. Berlin: Springer,617-635.
[57] Elliott G F.1956. Further records of fossil calcareous algae from the Middle East. Micropaleontology, 2: 327-334.
[58] Edwards C T,Saltzman M R,Royer D L,Fike D A.2017. Oxygenation as a driver of the great Ordovician biodiversification event. Nature Geosciences, 10: 925-929.
[59] Embry Ⅲ A F,Klovan J E.1971. A late Devonian reef tract on northeastern Banks Island,N.W.T. Bulletin of Canadian Petrolological Geology, 19: 730-781.
[60] Flannery D T,Allwood A C,Hodyss R,Summons R E,Tuite M,Walter M R,Williford K H.2019. Microbially influenced formation of Neoarchean ooids. Geobiology, 17(2): 151-160.
[61] Flemming H C,Wingender J,Kjelleberg S,Steinberg P,Rice S,Szewzyk U.2016. Biofilms: an emergent form of microbial life. Nature Review-Microbiology, 14: 563-575.
[62] Gallagher K L,Kading T J,Braissant O,Dupraz C,Visscher P T.2012. Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology, 10: 518-530.
[63] Gómez J J,Fernández-López S.1994. Condensed processes in shallow platform. Sedimentary Geology, 92: 147-159.
[64] Gill B C,Lyons T W,Young S A,Kump L R,Knoll A H,Saltzman M R.2011. Geochemical evidence for widespread euxinia in the later Cambrian ocean. Nature, 469: 80-83.
[65] Hardie L A.1996. Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology, 24: 279-283.
[66] Helland-Hansen W,Gjelberg J G.1994. Conceptual basis and variability in sequence stratigraphy: a different perspective. Sedimentary Geology, 92: 31-52.
[67] Helm R F,Potts M.2012. Extracellular Matrix(ECM). In: Whitton B A. Ecology of Cyanobacteria Ⅱ: Their Diversity in Space and Time. Netherlands: Springer,461-480.
[68] Hong J,Cho S H,Choh S J,Woo J,Lee D J.2012. Middle Cambrian siliceous sponge-calcimicrobe buildups(Daegi Formation,Korea): metazoan buildup constituents in the aftermath of the Early Cambrian extinction event. Sedimentary Geology, 253-254: 47-57.
[69] Hong J,Choh S J,Lee D J.2014. Tales from the crypt: early adaptation of cryptobiontic sessile metazoans. Palaios, 29: 95-100.
[70] Hong J,Lee J H,Choh S J,Lee D J.2016. Cambrian Series 3 carbonate platform of Korea dominated by microbial-sponge reefs. Sedimentary Geology, 341: 58-69.
[71] Hunt D,Tucker M E.1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sedimentay Geology, 81: 1-9.
[72] Kah L C,Riding R.2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35: 799-802.
[73] Kalkowsky E.1908. Oolith und stromatolith im norddeutschen Buntsandstein. Zeitschrift Derdeutschen Geologischen Gesellschaft, 60: 68-125.
[74] Kaźmierczak J,Fenchel T,Küh M,Kempe S,Kremer B,Łącka B,Małkowski K.2015. CaCO3 precipitation in multilayered cyanobacterial mats: clues to explain the alternation of micrite and sparite layers in calcareous stromatolites. Life, 5: 744-769.
[75] Kennard J M,James N P.1986. Thrombolites and stromatolites: Two distinct types of microbial structures. Palaios, 1: 492-503.
[76] Kershaw S.1994. Classification and geological significance of biostromes. Facies, 31: 81-92.
[77] Kiessling W.2015. Fuzzy seas. Geology, 43: 191-192.
[78] Kwon S W,Park J,Choh S,Lee D C,Lee D J.2012. Tetradiid-siliceous sponge patch reefs from the Xiazhen Formation(Late Katian),Southeast China: a new Late Ordovician reef association. Sedimentary Geology, 267-268: 15-24.
[79] Han Z Z,Zhan X L,Chi N J,Yu X F.2015. Cambrian oncoids and other microbial-related grains on the North China Platform. Carbonates Evaporates, 30: 373-386.
[80] Large R R,Mukherjee I,Gregory D,Steadman J,Corkrey R,Danyushevsky L V.2019. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54: 485-506.
[81] Latif K,Xiao E Z,Riaz M,Wang L,Khan M Y,Hussein A A A,Khan M U.2018. Sequence stratigraphy,sea-level changes and depositional systems in the Cambrian of the North China Platform: a case study of Kouquan section,Shanxi Province,China. Journal of Himalayan Earth Sciences, 51(1): 1-16.
[82] Latif K,Xiao E Z,Riaz M,Hussein A A A.2019. Calcified cyanobacteria fossils from the leiolitic bioherm in the Furongian Changshan Formation,Datong(North China Platform). Carbonates and Evaporites, 34: 825-843.
[83] Lee J H,Chen J,Choh S J,Lee D J,Han Z,Chough S K.2014. Furongian(late Cambrian)sponge-microbial maze-like reefs in the North China platform. Palaios, 29: 27-37.
[84] Lee J H,Chen J,Chough S K.2015. The middle-late Cambrian reef transition and related geological events: a review and new view. Earth-Science Reviews, 145: 66-84.
[85] Lee J H,Hong J,Choh S J,Lee D J,Woo J,Riding R.2016. Early recovery of sponge framework reefs after Cambrian archaeocyath extinction: Zhangxia Formation(early Cambrian Series 3),Shandong,North China. Palaeogeography,Palaeoclimatology,Palaeoecology, 457: 269-276.
[86] Lee J H,Riding R.2018. Marine oxygenation,lithistid sponges,and the early history of Paleozoic skeletal reefs. Earth-Science Reviews, 181: 98-121.
[87] Lee J H,Dattilo,B F,Mrozek S,Miller J F,Riding R.2019. Lithistid sponge-microbial reefs,Nevada,USA: Filling the late Cambrian‘reef gap’. Palaeogeography,Palaeoclimatology,Palaeoecology, 520: 251-262.
[88] Lee H S,Chough S K.2011. Depositional processes of the Zhushadong and Mantou formations(Early to Middle Cambrian),Shandong Province,China: roles of archipelago and mixed carbonate-siliciclastic sedimentation on cycle genesis during initial flooding of the North China Platform. Sedimentology, 58: 1530-1572.
[89] Lenton T M,Daines S J,Mills B J W.2018. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews, 178: 1-28.
[90] Li Q,Li Y,Kiessling W.2015. Early Ordovician lithistid sponge-Calathium reefs on the Yangtze Platform and their paleoceanographic implications. Palaeogeography,Palaeoclimatology,Palaeoecology, 425: 84-96.
[91] Liu L J,Wu Y S,Yang H J,Riding R.2016. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin,Northwest China: systematics and significance. Journal of Systematic Palaeontology, 14(3): 183-210.
[92] Liu W,Zhang X L.2012. Girvanella-coated grains from Cambrian oolitic limestone. Facies, 58: 779-787.
[93] Luo C,Reitner J.2014. First report of fossil “keratose” demosponges in Phanerozoic carbonates: preservation and 3-D reconstruction. Naturwissenschaften, 101: 467-477.
[94] Luo C,Reitner J.2015. ‘Stromatolites’ built by sponges and microbes: a new type of Phanerozoic bioconstruction. Lethaia, 49: 1-16.
[95] Maisano L,Cuadrad D G,Gómez E A.2019. Processes of MISS-formation in a modern siliciclastic tidal flat,Patagonia(Argentina). Sedimentary Geology, 381: 1-12.
[96] Mei M X,Xu D B,Zhou H R.2000. Genetic types of meter-scale sequences and fabric natures of facies succession. Journal of China University of Geosciences, 11(4): 375-382.
[97] Mei M X,Liu S F.2017. Late Triassic sequence-stratigraphic framework of the Upper Yangtze Region,South China. Acta Geologica Sinica, 91(1): 51-75.
[98] Mei M X,Latif K,Mei C J,Gao J H,Meng Q F.2020. Thrombolitic clots dominated by filamentous cyanobacteria and crusts of radio-fibrous calcite in the Furongian Changshan Formation,North China. Sedimentary Geology,https://doi.org/10.1016/j.sedgeo.2019.105540.
[99] Meng X H,Ge M,Tucker M E.1997. Sequence stratigraphy,sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114: 189-222.
[100] Michel J,Laugié Pohl M A,Lanteaume C,Masse J P,Donnadieu Y,Borgomano J.2019. Marine carbonate factories: a global model of carbonate platform distribution. International Journal of Earth Sciences, 108: 1773-1792.
[101] Mohr K I,Brinkmann N,Friedl T.2011. Cyanobacteria. In: Reitner T V. Encyclopedia of Geobiology. Berlin: Springer,306-311.
[102] Neuweiler F,Daoust I,Bourque P-A,Burdige J B.2007. Degradative calcification of a modern siliceous sponge from the Great Bahama Bank,the Bahamas: a guide for interpretation of ancient sponge-bearing limestones. Journal of Sedimentary Research, 77: 552-563.
[103] Nicholson H A,Etheridge R J.1878. A Monograph of the Silurian Fossils of the Girvan District of Ayrshire with Special Reference to Those Contained in the “Gray Collection”,Ⅰ(Ⅰ). Edinburgh: Blackwood,1-489.
[104] Noffke N,Awramik S M.2013. Stromatolites and MISS: differences between relatives. GSA Today, 23: 4-9.
[105] Nutman A P,Bennett V C,Friend C R L,Van Kranendonk M J,Chivas A R.2016. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature, 537: 535-538.
[106] Osleger D A.1991. Subtidal carbonate cycles: implication for allocyclic versus autocyclic controls. Geology, 19: 917-920.
[107] Park J,Lee J H,Hong J,Choh S J,Lee D C,Lee D J.2015. An Upper Ordovician sponge-bearing micritic limestone and implication for early Paleozoic carbonate successions. Sedimentary Geology, 319: 124-133.
[108] Peng S C,Babcock L E,Cooper R A.2012. The Cambrian Period(Chapter 19). In: Gradstein F M,Ogg J G,Schmitz M D,Ogg G M. The Geologic Time Scale 2012. Amsterdam: Elsevier,437-488.
[109] Perry R S,Mcloughlin N,Lynne B Y,Sephton M A,Oliver J D,Perry C C,Campbell K,Engel M H,Farmer J D,Brasier M D,Staley J T.2007. Defining biominerals and organominerals: direct and indirect indicators of life. Sedimentary Geology, 201: 157-179.
[110] Peters S E,Gaines R R.2012. Formation of the‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature, 484: 363-366.
[111] Pollock J B.1918. Blue-green algae as agents in the deposition of marl in Michigan lakes. Report of the Michigan Academy of Science, 20: 247-260.
[112] Pomar L,Hallock P.2008. Carbonate factories: a conundrum in sedimentary geology. Earth-Science Reviews, 87: 134-169.
[113] Potts M.1997. Etymology of the genus name Nostoc (cyanobacteria). International Journal of Systematic Bacteriology, 47: 584.
[114] Pratt B R.1995. The origin,biota and evolution of deep-water mudmounds. In: Monty C L V,Bosence D W J,Bridges P H,Pratt B R. Carbonate Mud-mounds. International Association Sedimentologist Special Publication, 23: 49-125.
[115] Pratt B R,Raviolo M M,Bordonaro O L.2012. Carbonate platform dominated by peloidal sands: Lower Ordovician La Silla Formation of the eastern Precordillera,San Juan,Argentina. Sedimentology, 59: 843-866.
[116] Radoičić R.1959. Nekoliko problematičnih mikrofosila iz dinarske krede(Some problematic microfossils from the Dinarian Cretaceous). Bull Serv Géol Géophys Rep Serbie, 17: 87-92.
[117] Rameil N,Immenhauser A,Warrlich G M D,Hillgätner H,Droste H J.2010. Morphological patterns of Aptian lithocodium-bacinella geobodies: relation to environment and scale. Sedimentology, 57: 883-911.
[118] Raven J A.2012. Carbon in Cyanobacteria. In: Whitton B A. Ecology of Cyanobacteria Ⅱ: Their Diversity in Space and Time. Netherlands: Springer,443-460.
[119] Reijmer J J G.2016. Carbonate Factories. In: Harff J,Meschede M,Petersen S,Thiede J. Encyclopedia of Marine Geosciences. Dordrecht: Springer Netherlands,80-84.
[120] Reitner J.1993. Modern cryptic microbialite/metazoan facies from Lizard Island(Great Barrier Reef,Australia)formation and concepts. Facies, 29: 3-40.
[121] Reitner J,Neuweiler F.1995. Mud mounds: a polygenetic spectrum of fine-grained carbonate buildups. Facies, 3: 1-69.
[122] Riaz M,Xiao E Z,Latif K,Zafar T.2019a. Sequence-stratigraphic position of oolitic bank of Cambrian in North China Platform: example from the Kelan section of Shanxi Province. Arabian Journal for Science and Engineering, 44: 391-407.
[123] Riaz M,Latif K,Zafar T,Xiao E Z,Ghazi S,Wang L,Hussein A A A.2019b. Assessment of Cambrian sequence stratigraphic style of the North China Platform exposed in Wuhai division,Inner Mongolia. Himalayan Geology, 40(1): 92-102.
[124] Rickard D,Mussmann M,Steadman J A.2017. Sedimentary sulfides. Elements, 13: 119-124.
[125] Riding R.1977. Calcified Plectonema (blue-green algae),a Recent example of Girvanella from Aldabra Atoll. Palaeontology, 20: 33-46.
[126] Riding R.1991a. Classification of Microbial Carbonates. In: Riding R. Calcareous Algae and Stromatolites. Berlin: Springer-Verlag,21-51.
[127] Riding R.1991b. Calcified Cyanobacteria. In: Riding R. Calcareous Algae and Stromatolites. Berlin: Springer-Verlag,55-87.
[128] Riding R.1991c. Cambrian Calcareous Cyanobacteria and Algae. In: Riding R. Calcareous Algae and Stromatolites. Berlin: Springer-Verlag,305-334.
[129] Riding R.2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology,47(Supplement.1): 179-214.
[130] Riding R.2002. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Science Reviews, 58: 163-231.
[131] Riding R.2006a. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185: 229-238.
[132] Riding R.2006b. Cyanobacterial calcification,carbon dioxide concentrating mechanisms,and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4: 299-316.
[133] Riding R.2011a. Microbialites,Stromatolites,and Thrombolites. In: Reitner J,Thiel V. Encyclopedia of Geobiology. Berlin: Springer,635-2654.
[134] Riding R.2011b. Calcified Cyanobacteria. In: Reitner J,Thiel V. Encyclopedia of Geobiology. Berlin: Springer,211-223.
[135] Riding R,Liang L Y,Lee J H,Virgone A.2019. Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr. Palaeogeography,Palaeoclimatology,Palaeoecology, 514: 135-143.
[136] Saltzman M R,Young S A,Kump L R,Gill B C,Lyons T W,Runnegar B.2011. Pulse of atmospheric oxygen during the late Cambrian. PNAS, 108: 3876-3881.
[137] Samanta P,Mukhopadhyay S,Eriksson P G.2016. Forced regressive wedge in the Mesoproterozoic Koldaha Shale,Vindhyan basin,Son valley,central India. Marine and Petroleum Geology, 71: 329-343.
[138] Sandberg P A.1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305: 19-22.
[139] Schieber J.2002. Sedimentary pyrite: a window into the microbial past. Geology, 30: 531-534.
[140] Schlager W.1989. Drowning Unconformities on Carbonate Platforms. In: Crevello P D,Wilson J L,Sarg J F. Controls on Carbonate Platform and Basin Development. SEPM Special Publication, 44: 15-25.
[141] Schlager W.1998. Exposure,Drowning and Sequence Boundaries on Carbonate Platforms. In: Camoin G,Davies P. Reefs and Carbonate Platforms in the Pacific and Indian Oceans. International Association of Sedimentologists,Special Publication 25: 3-21.
[142] Schlager W.1999. Type 3 Sequence Boundaries. In: Harris P,Saller A,Simo A. Carbonate Sequence Stratigraphy: Application to Reservoirs,Outcrops and Models. SEPM Special Publication, 63: 35-46.
[143] Schlager W.2003. Benthic carbonate factories of the Phanerozoic. International Journal of Earth Sciences, 92: 445-464.
[144] Schlager W,Warrlichw G.2009. Record of sea-level fall in tropical carbonates. Basin Research, 21: 209-224.
[145] Schlagintweit F,Bover-Arnal T,Salas R.2010. New insights into Lithocodium aggregatum Elliott 1956 and Bacinella irregularis Radoičić 1959(Late Jurassic-Lower Cretaceous): two ulvophycean green algae(?Order Ulotrichales)with a heteromorphic life cycle(epilithic/euendolithic). Facies, 56: 509-547.
[146] Schlagintweit F,Bover-Arnal T.2013. Remarks on Bačinella Radoičić,1959(type species B. irregularis)and its representatives. Facies, 59: 59-73.
[147] Shapiro J A.1998. Thinking about bacterial populations as multicellular organisms. Annual Reviews of Microbiology, 52: 81-104.
[148] Schmid D U.1996. Marine mikrobolithe und mikroinkrustierer aus dem Oberjura. Profil, 9: 101-251.
[149] Schmid D U,Leinfelder R R.1996. The Jurassic Lithocodium aggregatum-Troglotella incrustans foraminiferal consortium. Palaeontology, 39: 21-52.
[150] Schmitt K,Heimhofer U,Frijia G,Huck S.2019. Platform-wide shift to microbial carbonate production during the late Aptian. Geology, 47: 786-790.
[151] Schopf J W.2012. The Fossil Record of Cyanobacteria. In: Whitton B A(ed). Ecology of Cyanobacteria Ⅱ: Their Diversity in Space and Time. Netherlands,Springer: 15-36.
[152] Siahi M,Hofmann A,Master S,Mueller C W,Gerdes A.2017. Carbonate ooids of the Mesoarchaean Pongola Supergroup,South Africa. Geobiology, 15(6): 750-766.
[153] Shen Y,Neuweiler F.2018. Questioning the microbial origin of automicrite in Ordovician calathid-demosponge carbonate mounds. Sedimentology, 65: 303-333.
[154] Soule T,Garcia-Pichel F,Stout V.2009. Gene expression patterns associated with the biosynthesis of the sunscreen scytonemin in Nostoc punctiforme ATCC 29133 in response to UVA radiation. Journal of Bacteriology, 191: 4639-4646.
[155] Stal L J.2012. Cyanobacterial mats and stromatolites. In: Whitton B A. Ecology of Cyanobacteria Ⅱ: Their Diversity In Space And Time. Netherlands: Springer,65-125.
[156] Suosaari E P,Awramik S M,Reid R P,Stolz J F,Grey K.2018. Living dendrolitic microbial mats in Hamelin Pool,Shark Bay,Western Australia. Geosciences, 8: 212-229.
[157] Suosaari E P,Reid R P,Andres M S.2019. Stromatolites,so what?!: a tribute to Robert N. Ginsburg. The Depositional Record, 5: 486-497.
[158] Tang D,Shi X,Jiang G.2014. Sunspot cycles recorded in Mesoproterozoic carbonate biolaminites. Precambrian Research, 248: 1-16.
[159] Tourney J,Ngwenya B T.2014. The role of bacterial extracellular polymeric substances in geomicrobiology. Chemical Geology, 386: 115-132.
[160] Vulpius S,Kiessling W.2018. New constraints on the last aragonite-calcite sea transition from early Jurassic ooids. Facies, 64: 1-9.
[161] Védrine S,Strasser A,Hug W.2007. Oncoid growth and distribution controlled by sea-level fluctuations and climate(Late Oxfordian,Swiss Jura Mountains). Facies, 53: 535-552.
[162] Voorhies A A,Biddanda B A,Kendall S T,Jain S,Marcus D N,Nold S C,Shelodon N D,Gick G J.2012. Cyanobacterial life at low O2: community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat. Geobiology, 10: 250-267.
[163] Wallace M W,Hood A V S,Woon E M S,Hoffmann K H,Reed C P.2014. Enigmatic chambered structures in Cryogenian reefs: the oldest sponge-grade organisms? Precambrian Research, 255: 109-123.
[164] Wilmeth D T,Corsetti F A,Bisenic N,Dornbos S Q,Oji T,Gonchigdorj S.2015. Punctuated growth of microbial cones within early Cambrian oncoids,Bayan Gol Formation,western Mongolia. Palaios, 30: 836-845.
[165] Woo J,Kim Y H,Chough S K.2019. Facies and platform development of a microbe-dominated carbonate platform: the Zhangxia Formation(Drumian,Cambrian Series 3),Shandong Province,China. Geological Journal, 54: 1993-2015.
[166] Wood R.2001. Are reefs and mud mounds really so different? Sedimentary Geology, 145: 161-171.
[167] Wright D J,Smith S C,Joardar V,Scherer S,Jervis J,Warren A,Helm R F,Potts M.2005. UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (cyanobacteria). The Journal of Biological Chemistry, 280: 40271-40281. |