[1] 邓占球. 1981. 广西来宾合山上二叠统海绵化石. 古生物学报, 20(5): 38-116.
[Deng Z Q.1981. Upper Permian sponges from Laibin of Guangxi. Acta Palaeontologica Sinica, 20(5): 38-116]
[2] 杜远生,黄虎,杨江海,黄宏伟,陶平,黄志强,胡丽沙,谢春霞. 2013. 晚古生代—中三叠世右江盆地的格局和转换. 地质论评, 59(1): 1-11.
[Du Y S,Huang H,Yang J H,Huang H W,Tao P,Huang Z Q,Hu L S,Xie C X.2013. The basin translation from Late Paleozoic to Triassic of the Youjiang Basin and its tectonic signification. Geological Review, 59(1): 1-11]
[3] 范嘉松,李菊英,赵生才. 1979. 论古代海洋碳酸盐沉积环境基本模式. 地质科学, 14(4): 287-301.
[Fan J S,Li J Y,Zhao S C.1979. A basic model of the acient marine environment for sedimentation of carbonate. Scientia Geologica Sinica, 14(4): 287-301]
[4] 冯增昭. 1989. 碳酸盐岩岩相古地理学. 北京: 石油工业出版社,1-186.
[Feng Z Z.1989. Lithofacies Paleogeography of Carbonate Rocks. Beijing: Petroleum Industry Press,1-186]
[5] 顾家裕,马锋,季丽丹. 2009. 碳酸盐岩台地类型、特征及主控因素. 古地理学报, 11(1): 21-27.
[Gu J Y,Ma F,Ji L D.2009. Types,characteristics and main controlling factors of carbonate platform. Journal of Palaeogeography(Chinese Edition), 11(1): 21-27]
[6] 关士聪,演怀玉,丘东洲,王守德,陈显群,周经才. 1980. 中国晚元古代至三迭纪海域沉积环境模式探讨. 石油与天然气地质, 1(1): 2-17.
[Guang S Q,Yan H Y,Qiu D Z,Wang S D,Chen X Q,Zhou J C.1980. Investigations of the marine sedimentary evnironmental model of China in Late Proterozoic to Triassic periods. Oil & Gas Geology, 1(1): 2-17]
[7] 贺自爱,杨宏,周经才. 1980. 贵州中三叠世生物礁. 地质科学,(3): 256-265.
[He Z A,Yang H,Zhou J C.1980. The Middle Triassic reef in Guizhou Province. Scientia Geologica Sinica,(3): 256-265]
[8] 贺自爱,杨宏,罗孝质. 1981. 贵州上二叠统“生物礁”的性质及其踪迹. 石油与天然气地质, 2(1): 1-10.
[He Z A,Yang H,Luo X Z.1981. The nature of the Upper Permian bioherms of Guizhou and their traces. Oil & Gas Geology, 2(1): 1-10]
[9] 刘宝珺,许效松. 1994. 中国南方岩相古地理图集. 北京: 科学出版社,134-142.
[Liu B J,Xu X S.1994. Atlas of Lithofacies Paleogeography of South China. Beijing: Science Press,134-142]
[10] 刘超. 2017. 华南右江盆地晚古生代巴马孤立台地沉积特征与演化: 对深时古气候演变的响应和启示. 中国地质大学(武汉)博士论文: 1-192.
[Liu C.2017. Sedimentary features and evolution of the Late Paleozoic isolated Bama Platform in the Youjiang Basin: Responses to and implications for the deep-time climate change. A Dissertation Submitted to China University of Geosciences for the Doctor Degree: 1-192]
[11] 刘喜停,颜佳新. 2009. 海水化学演化对生物矿化的影响综述. 古地理学报, 11(4): 90-98.
[Liu X T,Yan J X.2009. A review of influences of seawater chemical evolution on biomineralization. Journal of Palaeogeography(Chinese Edition), 11(4): 90-98]
[12] 孟琦,黄恒,颜佳新,陈发垚. 2018. 黔南地区中二叠世碳酸盐台地边缘沉积演化及古海洋意义. 古地理学报, 20(1): 87-103.
[Meng Q,Huang H,Yan J X,Chen F Y.2018. Sedimentary evolution of the Middle Permian carbonate platform margin in southern Guizhou and its palaeo-oceanographic implications. Journal of Palaeogeography(Chinese Edition), 20(1): 87-103]
[13] 戎嘉余,方宗杰. 2004. 生物大灭绝与复苏: 来自华南古生代和三叠纪的证据. 安徽合肥: 中国科学技术大学出版社,1-1087.
[Rong J Y,Fang Z J.2004. Mass Extinction and Recovery: Evidence from the Palaeozoic and Triassic of South China. Hefei,Anhui: University of Science and Technology of China Press,1-1087]
[14] 戎嘉余,黄冰. 2014. 生物大灭绝研究三十年. 中国科学: 地球科学, 44(3): 377-404.
[Rong J Y,Huang B.2014. Study of Mass Extinction over the past thirty years: A synopsis. Scientia Sinica Terrae, 44(3): 377-404]
[15] 童金南. 1997. 华南古生代末大灭绝后的生态系复苏. 地球科学, 22(4): 373-376.
[Tong J N.1997. The ecosystem recovery after the End-Paleozoic mass extinction in South China. Earth Science, 22(4): 373-376]
[16] 王龙,吴海,张瑞,李昌伟. 2018. 碳酸盐台地的类型,特征和沉积模式: 兼论华北地台寒武纪陆表海—淹没台地的沉积样式. 地质论评, 64(1): 62-76.
[Wang L,Wu H,Zhang R,Li C W.2018. The types,characteristics and depositional models of carbonate platform: Implications for Cambrian sedimentary patterns of epeiric-drowned carbonate platform in North China. Geological Review, 64(1): 62-76]
[17] 王生海,范嘉松. 1996. 贵州紫云二叠纪生物礁的基本特征及其发育规律. 沉积学报, 14(2): 66-74.
[Wang S H,Fan J S.1996. The characteristics and development of the Permian reefs in Ziyun County,South Guizhou,China. Acta sedimentologica Sinica, 14(2): 66-74]
[18] 王新强,史晓颖. 2008. 桂西北晚古生代乐业孤立碳酸盐岩台地沉积特征与演化阶段. 古地理学报, 10(4): 329-340.
[Wang X Q,Shi X Y.2008. Sedimentary characteristics and evolution of the Late Paleozoic Leye isolated carbonate platform in northwest Guangxi. Journal of Palaeogeography(Chinese Edition), 10(4): 329-340]
[19] 吴亚生,范嘉松,金玉玕. 2003. 晚二叠世末的生物礁出露及其意义. 地质学报, 77(3): 289-296.
[Wu Y S,Fan J S,Jin Y G.2003. Emergence of the Late Permian Changhsingian reefs at the end of Permian. Acta Geologica Sinica, 77(3): 289-296]
[20] 严雅娟,颜佳新,武思琴. 2015. 黔南地区早二叠世大幅度冰川性海平面下降的沉积学新证据. 地球科学, 40(2): 372-380.
[Yan Y J,Yan J X,Wu S Q.2015. Sedimentary records of Early Permian major glacial sea-level falls in southern Guizhou Province,China. Earth Science, 40(2): 372-380]
[21] 颜佳新. 1991. 非热带浅海碳酸盐岩研究新进展. 地质科技情报, 10(4): 15-18
[Yan J X.1991. Reviews on the non-tropical shelf carbonates. Geological Science and Technology Information, 10(4): 15-18]
[22] 颜佳新,伍明. 2006. 显生宙海水成分、碳酸盐沉积和生物演化系统研究进展. 地质科技情报, 25(3): 1-7.
[Yan J X,Wu M.2006. Synchronized osciliations in Phanerozoic chemical composition of seawater,carbonate sedimentation and biotic evolution: Progresses and prospects. Geological Science and Technology Information, 25(3): 1-7]
[23] 颜佳新,严雅娟. 2014. 碳酸盐台地边缘沉积体系及发育演化机理. 见: 李思田,焦养泉(主编). 碳酸盐台地边缘带沉积体系露头研究及储层建模. 北京: 地质出版社,225-255.
[Yan J X,Yan Y J.2014. Depositional Systems along Platform Margin and Their Developing Mechanism. In: Li S T,Jiao Y Q(eds). Outcrop Depositional System Research of the Carbonate Platform Margin Belts and Reservoir Modeling. Beijing: Geologocial Publishing House,225-255]
[24] 杨万容. 1987. 广西来宾吴家坪组生物岩礁. 石油与天然气地质, 8(4): 424-428.
[Yang W R.1987. Bioherm of Wujiaping Formation in Laibin,Guangxi. Oil & Gas Geology, 8(4): 424-428]
[25] 杨湘宁,施贵军,刘家润,陈云棠,周建平. 2000. “茅口期”㊣类灭绝过程中的类群间差异. 中国科学: 地球科学, 30(2): 159-162.
[Yang X N,Shi G J,Liu J R,Chen Y T,Zhou J P.2000. Inter-taxa differences in extinction process of Maokouan(Middle Permian)fusulinaceans. Scientia Sinica Terrae, 30(2): 159-162]
[26] 姚尧,颜佳新,李傲竹. 2012. 广西来宾中二叠世碳酸盐岩沉积特征与孤立台地演化. 地球科学,37(S2): 184-194.
[Yao Y,Yan J X,Li A Z.2012. Sedimentary features and evolution of Mid-Permian carbonates from Laibin of Guangxi. Earth Science,37(S2): 184-194]
[27] 殷鸿福,童金南. 1997. 地史转折期的生态系. 地学前缘, 4(3-4): 111-116.
[Yin H F,Tong J N.1997. Ecosystem at the turning point of geological history. Earth Science Frontiers, 4(3-4): 111-116]
[28] 周怀玲,张振贤. 1995. 广西二叠纪生物礁的特征和分布规律. 广西地质, 8(2): 19-29.
[Zhou H L,Zhang Z X.1995. Features of Permian reef in Guangxi and its distributing regulation. Guangxi Geology, 8(2): 19-29]
[29] 周怀玲,张振贤,王新宇. 2014. 广西二叠系. 湖北武汉: 中国地质大学出版社,1-336.
[Zhou H L,Zhang Z X,Wang X Y.2014. Permian of Guangxi. Wuhan,Hubei: China University of Geosicences Press,1-336]
[30] Ahr W M.1973. The carbonate ramp: An alternative to the shelf model. Gulf Coast Association of Geological Societies Transactions, 23: 221-225.
[31] Allaby A,Allaby M.1991. The Concise Oxford Dictionary of Earth Sciences. Oxford: Oxford University Press,1-337.
[32] Alvaro J J,Aretz M,Boulvain F,Munnecke A,Vachard D,Vennin E.2007. Paleozoic Reefs and Bioaccumulations: Climatic and Evolutionary Controls. Bath: The Geological Society Publishing House,1-291.
[33] Bambach R K,Knoll A H,Wang S C.2004. Origination,extinction,and mass depletions of marine diversity. Paleobiology, 30(4): 522-542.
[34] Bond D P G,Grasby S,Wignall P.2017. Anoxia,toxic metals and acidification: Volcanically-driven causes of the Middle Permian(Capitanian)mass extinction in NW Pangaea. EGU General Assembly Conference Abstracts, 19: 2200.
[35] Bond D P G,Wignall P,Wang W,Izon G,Jiang H S,Lai X L,Sun Y D,Newton R,Shao L Y,Védrine S.2010. The mid-Capitanian(Middle Permian)mass extinction and carbon isotope record of South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 292(1-2): 282-294.
[36] Bosence D.2005. A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic. Sedimentary Geology, 175(1): 49-72.
[37] Brett C E,Mclaughlin P I,Histon K,Schindler E,Ferretti A.2012. Time-specific aspects of facies: State of the art,examples,and possible causes. Palaeogeography,Palaeoclimatology,Palaeoecology,367-368(1): 6-18.
[38] Burchette T P,Wright V P.1992. Carbonate ramp depositional systems. Sedimentary Geology, 79(1): 3-57.
[39] Caggiati M,Gianolla P,Breda A,Celarc B,Preto N.2018. The start-up of the Dolomia Principale/Hauptdolomit carbonate platform(Upper Triassic)in the eastern Southern Alps. Sedimentology, 65(4): 1097-1131.
[40] Castell J M C,Betzler C,Rössler J,Hüssner H,Peinl M.2007. Integrating outcrop data and forward computer modelling to unravel the development of a Messinian carbonate platform in SE Spain(Sorbas Basin). Sedimentology, 54(2): 423-441.
[41] Cawood P A,Zhao G C,Yao J L,Wang W,Xu Y J,Wang Y J.2018. Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth-Science Reviews, 186: 173-194.
[42] Chen F Y,Xue W Q,Yan J X,Wignall P B,Meng Q,Luo J X,Feng Q L.2018. Alatoconchids: Giant Permian bivalves from South China. Earth-Science Reviews, 179: 147-167.
[43] Chen Z Q,Benton M J.2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience, 5(6): 375-383.
[44] Chesnel V,Samankassou E,Merino-Tomé O,Fernandez L P,Villa E.2016. Facies,geometry and growth phases of the Valdorria carbonate platform(Pennsylvanian,northern Spain). Sedimentology, 63(1): 60-104.
[45] Clapham M E,Payne J L.2011. Acidification,anoxia,and extinction: A multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology, 39(11): 1059-1062.
[46] Cloud Jr P E.1962. Environment of Calcium Carbonate Deposition West of Andros Island,Bahamas. Geological Survey Professional Paper, 350: 1-138.
[47] Corsetti F A,Kidder D L,Marenco P J.2006. Trends in oolite dolomitization across the Neoproterozoic-Cambrian boundary: A case study from Death Valley,California. Sedimentary Geology, 191(3): 135-150.
[48] Davies P J,Bubela B,Ferguson J.1978. The formation of ooids. Sedimentology, 25(5): 703-730.
[49] Day M O,Ramezani J,Bowring S A,Sadler P M,Erwin D H,Abdala F,Rubidge B S.2015. When and how did the terrestrial mid-Permian mass extinction occur?Evidence from the tetrapod record of the Karoo Basin,South Africa. Proceedings Biological Sciences, 282(1811): 1-8.
[50] Diaz M R,Wagoner Norstrand J D,Eberli G P,Piggot A M,Zhou J,Klaus J S.2014. Functional gene diversity of oolitic sands from Great Bahama Bank. Geobiology, 12(3): 231-249.
[51] Duguid S M A,Kyser T K,James N P,Rankey E C.2010. Microbes and ooids. Journal of Sedimentary Research, 80(3-4): 236-251.
[52] Erwin D H,Bowring S A,Jin Y G.2002. End-Permian mass extinctions: A review. Special Paper of the Geological Society of America, 356: 363-383.
[53] Flügel E.2004. Microfacies of Carbonate Rocks: Analysis,Interpretation and Application. Berlin,Heidelberg: Springer-Verlag,1-976.
[54] Flügel E,Kiessling W.2002. Patterns of Phanerozoic Reef Crises. In: Kiessling W,Flügel E,Golonka J(eds). Phanerozoic Reef Patterns. Tulsa: Society for Sedimentary Geology,691-733.
[55] Ginsburg R N,James N P.1974. Holocene Carbonate Sediments of Continental Shelves. In: BurkC A,Drake C L(eds). The Geology of Continental Margins. New York: Springer-Verlag,137-155.
[56] Gischler E.2011. Sedimentary facies of Bora Bora,Darwin's type barrier reef(Society Islands,South Pacific): The unexpected occurrence of non-skeletal grains. Journal of Sedimentary Research, 81(1-2): 1-17.
[57] Godet A.2013. Drowning unconformities: Palaeoenvironmental significance and involvement of global processes. Sedimentary Geology, 293(4): 45-66.
[58] Groves J R,Wang Y.2013. Timing and size selectivity of the Guadalupian(Middle Permian)fusulinoidean extinction. Journal of Paleontology, 87(2): 183-196.
[59] Hallock P.2001. Coral Reefs,Carbonate Sediments,Nutrients,and Global Change. In: Stanley Jr G D(ed). The History and Sedimentology of Ancient Reef Systems. Boston: Springer,387-427.
[60] Hinojosa J L,Brown S T,Chen J,Depaolo D J,Paytan A,Shen S Z,Payne J L.2012. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology, 40(8): 743-746.
[61] Huang Y G,Chen Z Q,Zhao L S,Stanley Jr G D,Yan J X,Pei Y,Yang W R,Huang J H.2017. Restoration of reef ecosystems following the Guadalupian-Lopingian boundary mass extinction: Evidence from the Laibin area,South China. Palaeogeography,Palaeoclimatology,Palaeoecology. In press.
[62] Hutchison C S,Vijayan V R.2010. What are the Spratly Islands?Journal of Asian Earth Sciences, 39(5): 371-385.
[63] Insalaco E,Skelton P,Palmer T J.2000. Carbonate platform systems: Components and interactions. Geological Society London Special Publications, 178(1): 1-8.
[64] James N P.1977. Facies Models 7. Introduction to Carbonate Facies Models. Geoscience Canada, 4(3): 123-125.
[65] James N P.1997. The cool water carbonate depositional realm. Society for Sedimentary Geology, 56: 1-20.
[66] Kelley B M,Lehrmann D J,Yu M Y,Minzoni M,Enos P,Li X W,Lau K V,Payne J L.2017. The Late Permian to Late Triassic Great Bank of Guizhou: An isolated carbonate platform in the Nanpanjiang Basin of Guizhou Province,China. AAPG Bulletin, 101(4): 553-562.
[67] Kiessling W,Flügel E.2002. Paleoreefs: A database on Phanerozoic reefs. Society for Sedimentary Geology, 72: 77-92.
[68] Kiessling W,Flügel E,Golonka J.2003. Patterns of Phanerozoic carbonate platform sedimentation. Lethaia, 36(3): 195-225.
[69] Kiessling W,Simpson C.2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology, 17(1): 56-67.
[70] Kleipool L M,Jong K D,Vaal E L D,Reijmer J J G.2017. Seismic characterization of switching platform geometries and dominant carbonate producers(Miocene,Las Negras,Spain). Sedimentology,64(6).
[71] Kuznetsov V.1990. The evolution of reef structures through time: Importance of tectonic and biological controls. Facies, 22(1): 159-168.
[72] ?abaj M A,Pratt B R.2016. Depositional dynamics in a mixed carbonate-siliciclastic system: Middle-Upper Cambrian Abrigo Formation,Southeastern Arizona,U.S.A. Journal of Sedimentary Research, 86(1): 11-37.
[73] Lees A,Buller A T.1972. Modern temperate-water and warm-water shelf carbonate sediments contrasted. Marine Geology, 13(5): M67-M73.
[74] Léonide P,Floquet M,Durlet C,Baudin F,Pittet B,Lécuyer C.2012. Drowning of a carbonate platform as a precursor stage of the Early Toarcian global anoxic event(Southern Provence sub-Basin,South-east France). Sedimentology, 59(1): 156-184.
[75] Li F,Yan J X,Algeo T J,Wu X.2013. Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids(Moyang,South China). Global and Planetary Change, 105: 102-120.
[76] Li F,Yan J X,Chen Z Q,Ogg J G,Tian L,Korngreen D,Liu K,Ma Z L,Woods A D.2015. Global oolite deposits across the Permian-Triassic boundary: A synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis. Earth-Science Reviews, 149: 163-180.
[77] Li F,Yan J X,Burne R V,Chen Z Q,Algeo T J,Zhang W,Tian L,Gan Y L,Liu K,Xie S C.2017. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids. Palaeogeography,Palaeoclimatology,Palaeoecology, 486: 96-107.
[78] Li F,Gong Q L,Burne R V,Tang H,Su C P,Zeng K,Zhang Y F,Tan X C.2019. Ooid factories operating under hothouse conditions in the earliest Triassic of South China. Global and Planetary Change, 172: 336-354.
[79] Lüdmann T,Paulat M,Betzler C,Möbius J,Lindhorst S,Wunsch M,Eberli G P.2016. Carbonate mounds in the Santaren Channel,Bahamas: A current-dominated periplatform depositional regime. Marine Geology, 376: 69-85.
[80] Markello J R,Koepnick R B,Waite L E,Collins J F,Lukasik J,Simo J.2008. The Carbonate Analogs Through Time(Catt)Hypothesis and the Global Atlas of Carbonate Fields: A Systematic and Predictive Look at Phanerozoic Carbonate Systems. In: Lukasik J,Simo J A(eds). Controls on Carbonate Platform and Reef Development. Tulsa: SEPM Special Publication,15-45.
[81] McGhee Jr G R,Clapham M E,Sheehan P M,Bottjer D J,Droser M L.2013. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography,Palaeoclimatology,Palaeoecology, 370: 260-270.
[82] Mei M X.2007. Revised classification of microbial carbonates: Complementing the classification of limestones. Earth Science Frontiers, 14(5): 222-232.
[83] Mitterer R M.1968. Amino acid composition of organic matrix in calcareous oolites. Science, 162(3861): 1498-1499.
[84] Mitterer R M.1972. Biogeochemistry of aragonite mad and oolites. Geochimica et Cosmochimica Acta, 36(12): 1407-1422.
[85] Moore C H,Wade W J.2013. The Impact of Global Tectonics and Biologic Evolution on the Carbonate System. In: Moore C H,Wade W J(eds). Developments in Sedimentology. Amsterdam:Elsevier,39-48.
[86] Mutti M,Hallock P.2003. Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints. International Journal of Earth Sciences, 92(4): 465-475.
[87] Nelson C S.1988. An introductory perspective on non-tropical shelf carbonates. Sedimentary Geology, 60(1): 3-12.
[88] Ota A,Isozaki Y.2006. Fusuline biotic turnover across the Guadalupian-Lopingian(Middle-upper Permian)boundary in mid-oceanic carbonate buildups: Biostratigraphy of accreted limestone in Japan. Journal of Asian Earth Sciences, 26: 353-368.
[89] Pérez-Huerta A,Coronado I,Hegna T A.2016. Understanding biomineralization in the fossil record. Earth-Science Reviews, 179: 95-122.
[90] Perry C T,Salter M A,Harborne A R,Crowley S F,Jelks H L,Wilson R W.2011. Fish as major carbonate mud producers and missing components of the tropical carbonate factory. Proceedings of the National Academy of Sciences, 108(10): 3865-3869.
[91] Phelps R M,Kerans C,Rui D G,Jeremiah J,Hull D,Loucks R G.2015. Response and recovery of the Comanche carbonate platform surrounding multiple Cretaceous oceanic anoxic events,northern Gulf of Mexico. Cretaceous Research, 54: 117-144.
[92] Pomar L.2001a. Ecological control of sedimentary accommodation: Evolution from a carbonate ramp to rimmed shelf,Upper Miocene,Balearic Islands. Palaeogeography,Palaeoclimatology,Palaeoecology, 175(1-4): 249-272.
[93] Pomar L.2001b. Types of carbonate platforms: A genetic approach. Basin Research, 13(3): 313-334.
[94] Pomar L,Ward W C.1995. Sea-Level Changes,Carbonate Production and Platform Architecture: The Llucmajor Platform,Mallorca,Spain. In: Haq B U(ed). Sequence Stratigraphy and Depositional Response to Eustatic,Tectonic and Climatic Forcing. Dordrecht: Kluwer Academic Publishers,87-112.
[95] Pomar L,Hallock P.2008. Carbonate factories: A conundrum in sedimentary geology. Earth-Science Reviews, 87(3-4): 134-169.
[96] Pomar L,Kendall C.2008. Architecture of Carbonate Platforms: A Response to Hydrodynamics and Evolving Ecology. In: Lukasik J,Simo J A(eds). Controls on Carbonate Platform and Reef Development. Tulsa: SEPM Special Publication,187-216.
[97] Porter S M.2007. Seawater chemistry and early carbonate biomineralization. Science, 316(5829): 1302-1302.
[98] Porter S M.2010. Calcite and aragonite seas and the de novo acquisition of carbonate skeletons. Geobiology, 8(4): 256-277.
[99] Pruss S B,Bottjer D J,Corsetti F A,Baud A.2006. A global marine sedimentary response to the end-Permian mass extinction: Examples from southern Turkey and the western United States. Earth-Science Reviews, 78(3): 193-206.
[100] Racki G,Wignall P B.2005. Chapter 10 late permian double-phased mass extinction and volcanism: An oceanographic perspective. Developments in Palaeontology and Stratigraphy, 20: 263-297.
[101] Read J F.1982. Carbonate platforms of passive(extensional)continental margins: Types,characteristics and evolution. Tectonophysics, 81(3): 195-212.
[102] Read J F.1985. Carbonate platform facies models. AAPG Bulletin, 69(1): 1-21.
[103] Riding R,Braga J C,Martin J M.1991. Oolite stromatolites and thrombolites,Miocene,Spain: Analogues of recent giant Bahamian examples. Sedimentary Geology, 71(3-4): 121-127.
[104] Robbins L,Tao Y,Evans C.1997. Temporal and spatial distribution of whitings on Great Bahama Bank and a new lime mud budget. Geology, 25(10): 947-950.
[105] Sahney S,Benton M J.2008. Recovery from the most profound mass extinction of all time. Proceedings Biological Sciences, 275(1636): 759-765.
[106] Sarg J F.1988. Carbonate Sequence Stratigraphy. In: Wilgus C K,Hastings B S,Kendall C G S C,Posamentier H W,Ross C A,Wagoner Wagoner J C(eds). Sea Level Changes: An Integrated Approach. Tulsa: SEPM Special Publications,155-182.
[107] Schlager W.1981. The paradox of drowned reefs and carbonate platforms. GSA Bulletin, 92(4): 197-211.
[108] Schlager W.1997. On the definition of Ramp. Gaea heidelbergensis, 3(304): 165-193.
[109] Schlager W.1999. Scaling of sedimentation rates and drowning of reefs and carbonate platforms. Geology, 27(2): 183-186.
[110] Schlager W.2000. Sedimentation rates and growth potential of tropical,cool-water and mud-mound carbonate systems. Geological Society London Special Publications, 178(1): 217-227.
[111] Schlager W.2003. Benthic carbonate factories of the Phanerozoic. International Journal of Earth Sciences, 92(4): 445-464.
[112] Schlager W,Keim L.2009. Carbonate platforms in the Dolomites area of the Southern Alps: Historic perspectives on progress in sedimentology. Sedimentology, 56(1): 191-204.
[113] Shen J W,Xu H L.2005. Microbial carbonates as contributors to Upper Permian(Guadalupian-Lopingian)biostromes and reefs in carbonate platform margin setting,Ziyun County,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 218(3-4): 217-238.
[114] Shen S Z,Zhang Y C.2008. Earliest Wuchiapingian(Lopingian,Late Permian)brachiopods in southern Hunan,South China: Implications for the Pre-Lopingian Crisis and Onset of Lopingian Recovery/Radiation. Journal of Paleontology, 82(5): 924-937.
[115] Shinn E A,Steinen R P,Lidz B H,Swart P K.1989. Whitings,a sedimentologic dilemma. Journal of Sedimentary Research, 59(1): 147-161.
[116] Song H J,Tong J N,Chen Z Q.2011. Evolutionary dynamics of the Permian-Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeography,Palaeoclimatology,Palaeoecology, 308(1): 98-110.
[117] Stanley S M.2006. Influence of seawater chemistry on biomineralization throughout phanerozoic time: Paleontological and experimental evidence. Palaeogeography,Palaeoclimatology,Palaeoecology, 232(2): 214-236.
[118] Stanley S M,Yang X.1994. A double mass extinction at the end of the Paleozoic era. Science, 266(5189): 1340-1344.
[119] Sun Y D,Joachimski M M,Wignall P B,Yan C B,Chen Y L,Jiang H S,Wang L N,Lai X L.2012. Lethally hot temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370.
[120] Trower E J,Cantine M D,Gomes M L,Grotzinger J P,Knoll A H,Lamb M P,Lingappa U,O'reilly S S,Present T M,Stein N.2018. Active ooid growth driven by sediment transport in a high-energy shoal,Little Ambergris Cay,Turks and Caicos Islands. Journal of Sedimentary Research, 88(9): 1132-1151.
[121] Tucker M E,Wright V P.1990. Carbonate Sedimentology. Oxford: Blackwell Science,1-482.
[122] Vachard D,Pille L,Gaillot J.2010. Palaeozoic Foraminifera: Systematics,palaeoecology and responses to global changes. Revue de micropaléontologie, 53(4): 209-254.
[123] Vecsei A.2000. Database on isolated low-latitude carbonate banks. Facies, 43(1): 205-221.
[124] Wang X,Qie W,Sheng Q,Qi Y,Wang Y,Liao Z,Shen S,Ueno K.2013. Carboniferous and Lower Permian sedimentological cycles and biotic events of South China. Geological Society London Special Publications, 376(1): 33-46.
[125] Weidlich O.2002. Permian reefs re-examined: Extrinsic control mechanisms of gradual and abrupt changes during 40 my of reef evolution. Geobios, 35: 287-294.
[126] Weidlich O,Bernecker M.2003. Supersequence and composite sequence carbonate platform growth: Permian and Triassic outcrop data of the Arabian platform and Neo-Tethys. Sedimentary Geology, 158(1-2): 87-116.
[127] Weiner S,Dove P M.2003. An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 54(1): 1-29.
[128] Wignall P B.2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1-2): 1-33.
[129] Wignall P B,Bond D P G,Haas J,Wang W,Jiang H,Lai X,Altiner D,Védrine S,Hips K,Zajzon N.2012. Capitanian(Middle Permian)mass extinction and recovery in western Tethys: A fossil,facies,and δ13C study from Hungary and Hydra Island(Greece). Palaios, 27(2): 78-89.
[130] Williams H D,Burgess P M,Wright V P,Della Porta G,Granjeon D.2011. Investigating Carbonate Platform Types: Multiple Controls and a continuum of geometries. Journal of Sedimentary Research, 29(3): 163-177.
[131] Wilson J L.1975. Carbonate Facies in Geologic History. Berlin,Heidelberg: Springer-Verlag,1-471.
[132] Wilson M E J,Hall R.2010. Tectonic influences on SE Asian carbonate systems and their reservoir development. Special Publication-Society for Sedimentary Geology 95: 13-40.
[133] Woods A D.2013. Microbial ooids and cortoids from the Lower Triassic(Spathian)Virgin Limestone,Nevada,USA: Evidence for an Early Triassic microbial bloom in shallow depositional environments. Global and Planetary Change, 105(142): 91-101.
[134] Wright V P,Burgess P M.2005. The carbonate factory continuum,facies mosaics and microfacies: An appraisal of some of the key concepts underpinning carbonate sedimentology. Facies, 51(1-4): 17-23.
[135] Wu S G,Zhen Y,Wang D W,Lü F L,Lüdmann T,Fulthorpe C,Wang B.2014. Architecture,development and geological control of the Xisha carbonate platforms,northwestern South China Sea. Marine Geology, 350(2): 71-83.
[136] Xie S C,Pancost R D,Wang Y,Yang H,Wignall P B,Luo G M,Jia C L,Chen L.2010. Cyanobacterial blooms tied to volcanism during the 5 my Permo-Triassic biotic crisis. Geology, 38(5): 447-450.
[137] Xu Y J,Cawood P A,Du Y S,Hu L S.2017. Aulacogen Formation in response to opening the Ailaoshan ocean: Origin of the Qin-Fang Trough,South China. Journal of Geology, 125(5): 1-20.
[138] Zhang G,Zhang X,Li D,Farquhar J,Shen S,Chen X,Shen Y.2015. Widespread shoaling of sulfidic waters linked to the end-Guadalupian(Permian)mass extinction. Geology, 43(12): 1091-1094. |