Simulation experiment of sedimentary process and sedimentary architecture of alluvial fan under the control of normal faults
Wei Si-Yuan1, Liu Zhong-Bao1, Wu Sheng-He2, 3, Wang Xi-Tong1
1. School of Geosciences,Yangtze University,Wuhan 430100,China; 2. College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 3. State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China;
Abstract Normal fault structures are widely developed in basins and orogenic belts,which control the accommodation space and the distribution of sediments and thus affecting the morphology of alluvial fans. A flume tank experiment was carried to simulate and clarify the control of normal faults on the sedimentary process and internal architecture of alluvial fans.The results show that the large amount of sediments carried by debris flow tend to be unloaded near the hanging wall of faults and are subsequently reworked by traction current,which result in a triangular distributary gravel bar grows vertically on fault plane with the tip pointing to the source area. When the hydrodynamic force is strong,debris flow goes across distributary gravel bar and forms over-bar lobe at the tail of the distributary gravel bar. When the hydrodynamic force is weak,debris flow forms fault plane-dominated lobe along fault plane and is located on both sides of the distributary gravel bar. Under the control of normal faults and the barrier of distributary gravel bar,the unloading process of sediments varies greatly at different positions on the surface of alluvial fan. The particle size varies greatly among different facies,with coarsest grains developed on the fans of hanging wall,finer grained on over-bar lobe and finest sediments on fault plane-dominated lobe. The development process of alluvial fan can be divided into three stages,according to the sandbody thickness and fault throw of distributary gravel bar. The fault throw also affects the sedimentary architecture of alluvial fan,with larger the fault throw generating larger the accommodation space of hanging wall,longer development time of distributary gravel bar and more complex of the superposition pattern of the sand bodies inside the fan. The internal architecture of alluvial fan that is controlled by normal faults includes longitudinal sandbar,distributary gravel bar and debris flow lobe in the profile vertical perpendicular to the sediment source direction from the proximal to the distal end. Along sediment longitudinal section,composite channel,superimposed distributary gravel bar complex and superimposed bodies of multi-phased lobes are dominant facies.
Fund:Co-funded by the National Natural Science Foundation of China(No.41372116)and Master,s Thesis Program of Yangtze University(No. YS2018005)
Corresponding Authors:
Liu Zhong-Bao,born in 1966,is a professor and master supervisor in School of Geosciences,Yangtze University. He is currently engaged in the research on sedimentology. E-mail: lzb623@163.com.
About author: Wei Si-Yuan,born in 1994,is a master degree candidate in School of Geosciences,Yangtze University,and is currently engaged in the sedimentology and physical sedimentation simulation. E-mail: 201771283@yangtzeu.edu.cn.
Cite this article:
Wei Si-Yuan,Liu Zhong-Bao,Wu Sheng-He et al. Simulation experiment of sedimentary process and sedimentary architecture of alluvial fan under the control of normal faults[J]. JOPC, 2020, 22(6): 1095-1108.
Wei Si-Yuan,Liu Zhong-Bao,Wu Sheng-He et al. Simulation experiment of sedimentary process and sedimentary architecture of alluvial fan under the control of normal faults[J]. JOPC, 2020, 22(6): 1095-1108.
[1] 陈欢庆,舒治睿,林春燕,邓西里,刘红现. 2014a. 粒度分析在砾岩储层沉积环境研究中的应用: 以准噶尔盆地西北缘某区克下组冲积扇储层为例. 西安石油大学学报(自然科学版), 29(6): 6-12. [Chen H Q,Shu Z R,Lin C Y,Deng X L,Liu H X.2014a. Application of grain-size analysis in research of conglomerate reservoir: Taking alluvial fan reservoir in the lower member of Kelamay Formation in some area of northwest margin of Zhunger Basin as an example. Journal of Xi,an Shiyou University(Natural Science Edition), 29(6): 6-12] [2] 陈欢庆,赵应成,高兴军,邓晓娟,孙作兴. 2014b. 准噶尔盆地西北缘克下组冲积扇类型. 大庆石油地质与开发, 33(2): 6-9. [Chen H Q,Zhao Y C,Gao X J,Deng X J,Sun Z X.2014b. Types of the alluvial fans of Lower Karamay Formation in the northwestern margin of Junggar Basin. Petroleum Geology & Oilfield Development in Daqing, 33(2): 6-9] [3] 陈欢庆,梁淑贤,舒治睿,邓晓娟,彭寿昌. 2015. 冲积扇砾岩储层构型特征及其对储层开发的控制作用: 以准噶尔盆地西北缘某区克下组冲积扇储层为例. 吉林大学学报(地球科学版), 45(1): 13-24. [Chen H Q,Liang S X,Shu Z R,Deng X J,Peng S C.2015. Characteristics of conglomerate reservoir architecture of alluvial fan and its controlling effects to reservoir development: Taking alluvial fan reservoir in some area of northwest margin of Junggar Basin as an example. Journal of Jilin University(Earth Science Edition), 45(1): 13-24] [4] 冯文杰,吴胜和,许长福,夏钦禹,伍顺伟,黄梅,景亚菲. 2015. 冲积扇储集层窜流通道及其控制的剩余油分布模式: 以克拉玛依油田一中区下克拉玛依组为例. 石油学报, 36(7): 858-870. [Feng W J,Wu S H,Xu C F,Xia Q Y,Wu S W,Huang M,Jing Y F.2015. Water flooding channel of alluvial fan reservoir and its controlling distribution pattern of remaining oil: A case study of Triassic Lower Karamay Formation,Yizhong area,Karamay oilfield,NW China. Acta Petrolei Sinica, 36(7): 858-870] [5] 冯文杰,吴胜和,刘忠保,夏钦禹,张可,徐振华,向显鹏. 2017a. 逆断层正牵引构造对冲积扇沉积过程与沉积构型的控制作用: 水槽沉积模拟实验研究. 地学前缘, 24(6): 370-380. [Feng W J,Wu S H,Liu Z B,Xia Q Y,Zhang K,Xu Z H,Xiang X P.2017a. The controlling effects on depositional process and sedimentary architecture by normal drag structure caused by thrust fault: Insights from flume tank experiments. Earth Science Frontiers, 24(6): 370-380] [6] 冯文杰,吴胜和,印森林,张莉,李俊飞,夏钦禹. 2017b. 准噶尔盆地西北缘三叠系干旱型冲积扇储层内部构型特征. 地质论评, 63(1): 219-234. [Feng W J,Wu S H,Yin S L,Zhang L,Li J F,Xia Q Y.2017b. Internal architecture characteristics of Triassic arid alluvial fan in northwestern margin of Junggar Basin. Geological Review, 63(1): 219-234] [7] 冯有良. 2006. 断陷湖盆沟谷及构造坡折对砂体的控制作用. 石油学报, 27(1): 13-16. [Feng Y L.2016. Control of valley and tectonic slope break zone on sand bodies in rift subsidence basin. Acta Petrolei Sinica, 27(1): 13-16] [8] 冯有良,徐秀生. 2006. 同沉积构造坡折带对岩性油气藏富集带的控制作用: 以渤海湾盆地古近系为例. 石油勘探与开发,33(1):22-25. [Feng Y L,Xu X S.2006. Syndepositional structural slope-break zone controls on lithologic reservoirs: A case from Paleogene Bohai Bay Basin. Petroleum Exploration and Development, 33(1): 22-25] [9] 靳军,刘大卫,纪友亮,杨召,高崇龙,王剑,段小兵,桓芝俊,罗妮娜. 2019. 砾质辫状河型冲积扇相类型、成因及分布规律: 以准噶尔盆地西北缘现代白杨河冲积扇为例. 沉积学报, 37(2): 254-267. [Jin J,Liu D W,Ji Y L,Yang Z,Gao C L,Wang J,Duan X B,Huan Z J,Luo N N.2019. Research on lithofacies types,cause mechanisms and distribution of a gravel braided-river alluvial fan: A case study of the modern Poplar River alluvial fan,northwestern Junggar Basin. Acta Sedimentologica Sinica, 37(2): 254-267] [10] 雷振宇,鲁兵,蔚远江,张立平,石昕. 2005. 准噶尔盆地西北缘构造演化与扇体形成和分布. 石油与天然气地质, 26(1): 86-91. [Lei Z Y,Lu B,Wei Y J,Zhang L P,Shi X.2005. Tectonic evolution and development and distribution of fans on northwestern edge of Junggar Basin. Oil and Gas Geology, 26(1): 86-91] [11] 林畅松,潘元林,肖建新,孔凡仙,刘景彦,郑和荣. 2000. “构造坡折带”: 断陷盆地层序分析和油气预测的重要概念. 地球科学, 25(3): 260-266. [Lin C S,Pan Y L,Xiao J X,Kong F X,Liu J Y,Zheng H R.2000. Structural slope-break zone: Key concept for stratigraphic sequence analysis and petroleum forecasting in fault subsidence basins.Earth Science, 25(3): 260-266] [12] 刘大卫,纪友亮,高崇龙,靳军,杨召,段小兵,桓芝俊,罗妮娜. 2018. 砾质辫状河型冲积扇沉积微相及沉积模式: 以准噶尔盆地西北缘现代白杨河冲积扇为例. 古地理学报,20(3):435-451. [Liu D W,Ji Y L,Gao C L,Jin J,Yang Z,Duan X B,Huan Z J,Luo N N.2018. Microfacies and sedimentary models of gravelly braided-river alluvial fan: A case study of modern Baiyanghe-river alluvial fan in northwestern margin of Junggar Basin. Journal of Palaeogeography(Chinese Edition),20(3):435-451] [13] 孟祥超,李小华,施强,杨西娟. 2009. 冲积扇背景下的砂体沉积类型及优势储集砂体. 大庆石油地质与开发, 28(3): 19-22. [Meng X C,Li X H,Shi Q,Yang X J.2009. Sand-body sedimentary modes and favorable reservoir sand bodies of alluvial fan. Petroleum Geology and Oilfield Development in Daqing, 28(3): 19-22] [14] 任建业,陆永潮,张青林. 2004. 断陷盆地构造坡折带形成机制及其对层序发育样式的控制. 地球科学, 29(5): 596-602. [Ren J Y,Lu Y C,Zhang Q L.2004. Forming mechanism of structural slope-break and its control on sequence style in faulted basin.Earth Science, 29(5): 596-602] [15] 石若峰,刘忠保,冯文杰. 2017. 冲积扇发育过程中砾石颗粒对砂坝和沟流的控制作用: 基于冲积扇水槽模拟实验. 断块油气田, 24(3): 311-315. [Shi R F,Liu Z B,Feng W J.2017. Dominations of gravel particles to sandbar and channel in the process of alluvial fan development based on alluvial fan flume experiment. Fault-Block Oil & Gas Fie1d, 24(3): 311-315] [16] 吴胜和,范峥,许长福,岳大力,郑占,彭寿昌,王伟. 2012. 新疆克拉玛依油田三叠系克下组冲积扇内部构型. 古地理学报,14(3):331-340. [Wu S H,Fan Z,Xu C F,Yue D L,Zheng Z,Peng S C,Wang W.2012. Internal architecture of alluvial fan in the Triassic Lower Karamay Formation in Karamay oilfield,Xinjiang. Journal of Palaeogeography(Chinese Edition), 14(3): 331-340] [17] 吴胜和,冯文杰,印森林,喻宸,张可. 2016. 冲积扇沉积构型研究进展. 古地理学报, 18(4): 497-512. [Wu S H,Feng W J,Yin S L,Yu C,Zhang K.2016. Research advances in alluvial fan depositional architecture. Journal of Palaeogeography(Chinese Edition), 18(4): 497-512] [18] 印森林,吴胜和,陈恭洋,许长福,彭寿昌,程乐利. 2016a. 同生逆断层对冲积扇沉积构型的控制作用: 以准噶尔盆地西北缘三叠系下克拉玛依组为例. 地学前缘, 22(1): 218-228. [Yin S L,Wu S H,Chen G Y,Xu C F,Peng S C,Cheng L L.2016a. The controlling effect of contemporaneous reverse fault on alluvial fan depositional architecture: A case study of Traissic Lower Karamay Formation at the Northwestern margin of Junggar Basin. Earth Science Frontiers, 22(1): 218-228] [19] 印森林,唐勇,胡张明,吴涛,张磊,张纪易. 2016b. 构造活动对冲积扇及其油气成藏的控制作用: 以准噶尔盆地西北缘二叠系—三叠系冲积扇为例. 新疆石油地质, 37(4): 391-400. [Yin S L,Tang Y,Hu Z M,Wu T,Zhang L,Zhang J Y.2016b. Controls of tectonic activity on alluvial fan deposits and hydrocarbon accumulation: A case study of Permian and Triassic alluvial fans in northwestern margin of Junggar Basin. Xinjiang Petroleum Geology, 37(4): 391-400] [20] 印森林,刘忠保,陈燕辉,吴小军. 2017. 冲积扇研究现状及沉积模拟实验: 以碎屑流和辫状河共同控制的冲积扇为例. 沉积学报, 35(1): 10-23. [Yin S L,Liu Z B,Chen Y H,Wu X J.2017. Research progress and sedimentation experiment simulation about alluvial fan: A case study on alluvial fan controlled by debris flow and braided river. Acta Sedimentologica Sinica, 35(1): 10-23] [21] 喻宸,吴胜和,岳大力,郑联勇,杜文博,张善严,陈诚,刘志刚. 2016. 细粒冲积扇沉积特征研究: 以酒西盆地老君庙构造带古近系白杨河组为例. 现代地质, 30(3): 643-654. [Yu C,Wu S H,Yue D L,Zheng L Y,Du W B,Zhang S Y,Chen C,Liu Z G.2016. Sedimentary characteristics of fine-gained alluvial fan: A case study of the Paleogene Baiyanghe Formation in Laojunmiao Structural Belt,Jiuxi Basin. Geoscience, 30(3): 643-654] [22] 朱筱敏. 2008. 沉积岩石学. 北京: 石油工业出版社. [Zhu X M. 2008. Sedimentary Petrology.Beijing: Petroleum Industry Press] [23] Adam B P,Paul M S,Jerry D H,Susan H C.2008. Debris-flow runout predictions based on the average channel slope(ACS).Engineering Geology, 98(1-2): 29-40. [24] Blair T C,Mcpherson J G.1998. Recent debris-flow processes and resultant form and facies of the dolomite alluvial fan,Owens Valley,California. Journal of Sedimentary Research, 6(5): 800-818. [25] Clarke L E.2015. Experimental alluvial fans: Advances in understanding of fan dynamics and processes. Geomorphology, 244: 135-145 [26] Daniël S R,Christiaan J B,Maarten A P,Ronald T B,Simon R T,Chao L,Bin W,Li X Q,Jie Z,Zheng H B.2017. Geochemical characterization of the middle and late Pleistocene alluvial fan-dominated infill of the northern part of the Weihe Basin,Central China.Palaeogeography,Palaeoclimatology,Palaeoecology, 482: 57-69. [27] Drew F.1873. Alluvial and lacustrine deposits and glacial records of the Upper-Indus basin.Quarterly Journal of the Geological Society,29(1/2):441-471. [28] Ezquerro L,Luzón A,Simón J L,Liesa C L.2019. Alluvial sedimentation and tectono-stratigraphic evolution in a narrow extensional zigzag basin margin(northern Teruel Basin,Spain). Journal of Palaeogeography,8(4):368-392. [29] Fabien G,Vincent S,Stéphane D,Jacques M,Marina C,Isabelle M,Carole P.2015. Experimental modelling of tectonics-erosion-sedimentation interactions in compressional,extensional,and strike-slip settings.Geomorphology, 244: 146-168. [30] Feng Y L,Li S T,Lu Y C.2013. Sequence stratigraphy and architectural variability in Late Eocene lacustrine strata of the Dongying Depression,Bohai Bay Basin,eastern China.Sedimentary Geology, 295: 1-26. [31] Fernandez J,Bluck B J,Viseras C.1993. The effects of fluctuating base level on the structure of alluvial fan and associated fan delta deposits: An example from the Tertiary of the Betic Cordillera. Sedimentology, 40(5): 879-893. [32] Francesco M,Francesco B,Michele S,Mauro C,Grazia C,Roberto D F,Fausto G,Massimiliano R B.2018. Alluvial fan shifts and stream captures driven by extensional tectonics in central Italy. Journal of the Geological Society, 175(5): 788-805. [33] Giles P T.2010. Investigating the use of alluvial fan volume to represent fan size in morphometric studies.Geomorphology, 121(3-4): 317-328. [34] Nilsen T H.1982. Alluvial Fan Deposits. In: Scholle P A,Spearing D(eds).Sandstone Depositional Environments. American Association of Petroleum Geologists,Memoir, 31: 49-87. [35] Stanistreet I G,McCarthy T S.1993. The Okavango Fan and the classification of subaerial fan systems. Sedimentary Geology, 85(1): 115-133. [36] Waters J V,Jones S J,Armstrong H A.2010. Climatic controls on late Pleistocene alluvial fans.Geomorphology,115(3/4): 228-251.