Abstract Studies on the depositional architecture have extended from previous detailed characterization to analysis of genetic mechanism over the past decade. This paper introduces recent research progress in respects of the alluvial fan controlled by syn-depositional reverse faults,fluvial point bars influenced by accommodation space,fingered bars of shallow water delta,and gravity flow sedimentation within the intraslope minibasins. (1)In the compressional basin margin,the complex activities of syn-depositional reverse faults exert significant controls on the alluvial-fan architectural elements,stacking patterns,distribution,evolution,and size,showing distinctive alluvial-fan architecture models from the conventional alluvial fans developed in the stable structural conditions. (2)Under low accommodation space,the fluvial deposits are characterized by downstream-migrating point bars,showing distinctive microfacies types,distribution patterns,and cyclic characteristics. When the accommodation space/sediment supply(A/S)value increases,the point bars gradually evolve from scaly shape into banded shape,and ultimately point shape. (3)Similar to the fluvial-dominated deep-water delta,the shallow-water delta can develop fingered bars,whose plane morphologies,microfacies combination patterns and size are greatly influenced by climate,sediment supply and sedimentary water body. (4)Sediment gravity flows within the intraslope minibasins can form gravity-flow channels,lobes,and mass-transport deposits. These deposits exhibit distinctly spatial distribution patterns,size and architectural evolution models,which are influenced by the complex palaeogeomorphology and tectonic activity. A comprehensive and quantitative study based on integrated proto-model analysis,sedimentary physical and numerical simulation is essential to build quantitative and predictable architectural models for clastic systems,which is the future research direction for depositional architecture researches.
Fund:Co-funded by the National Natural Science Foundation of China (Nos.41772101,42002112),the National Science and Technology Major Project (No. 2017ZX05049-006-001), and the Strategic Cooperation Technology Projects of CNPC and CUPB(No. ZLZX2020-02)
About author: Wu Sheng-He,born in 1964,is a professor and Ph.D. supervisor of China University of Petroleum(Beijing)and is mainly engaged in reservoir characterization and modelling. E-mail: reser@cup.edu.cn.
Cite this article:
Wu Sheng-He,Yue Da-Li,Feng Wen-Jie et al. Research progress of depositional architecture of clastic systems[J]. JOPC, 2021, 23(2): 245-262.
Wu Sheng-He,Yue Da-Li,Feng Wen-Jie et al. Research progress of depositional architecture of clastic systems[J]. JOPC, 2021, 23(2): 245-262.
[1] 冯文杰. 2017. 同生逆断层对冲断带渠汇体系与砂砾岩体内部构型的控制作用: 以准噶尔盆地西北缘三叠系为例. 中国石油大学(北京)博士论文: 1-142. [Feng W J.2017. The controlling effect of contemporaneous reverse fault on sediment transport routine to sink system and internal architecture of sandy-gravel bodies in thrust belt: a case study of Triassic in the northwestern margin of Junggar basin. Doctoral dissertation of China University of Petroleum(Beijing): 1-142] [2] 冯文杰,吴胜和,刘忠保,夏钦禹,张可,徐振华,向显鹏. 2017a. 逆断层正牵引构造对冲积扇沉积过程与沉积构型的控制作用: 水槽沉积模拟实验研究. 地学前缘, 24(6): 370-380. [Feng W J,Wu S H,Liu B Z,Xia Q Y,Zhang K,Xu Z H,Xiang X P.2017a. The controlling effects on depositional process and sedimentary architecture of alluvial fan by normal drag structure caused by thrust fault: insights from flume tank experiments. Earth Science Frontiers, 24(6): 370-380] [3] 冯文杰,吴胜和,张可,赵文凯,贾凤娟. 2017b. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示. 地质学报, 91(9): 2047-2064. [Feng W J,Wu S H,Zhang K,Zhao W K,Jia F J.2017b. Depositional process and sedimentary model of meandering-river shallow delta: Insights from numerical simulation and modern deposition. Acta Geologica Sinica, 91(9): 2047-2064] [4] 葛肖虹,王锡魁,昝淑芹,董清水,柳平. 1997. 试论吐鲁番—哈密盆地为剪切—背驮型盆地. 地质论评, 43(6): 561-568. [Ge X H,Wang X K,Zan S Q,Dong Q S,Liu P.1997. On the Turpan-Hami shear-piggyback type basin. Geological Review, 43(6): 561-568] [5] 和政军,王宗起,任纪舜. 1999. 华北北部侏罗纪大型推覆构造带前缘盆地沉积特征和成因机制初探. 地质科学, 34(2): 186-195. [He Z J,Wang Z Q,Ren J S.1999. A preliminary research on sedimentary features and genetic mechanism of frontal basins before Jurassic large-scale nappe in the northern region of North China. Chinese Journal of Geology, 34(2): 186-195] [6] 胡光义,肖大坤,范廷恩,宋来明,陈飞,井涌泉,高玉飞. 2019. 河流相储层构型研究新理论、新方法: 海上油田河流相复合砂体构型概念、内容及表征方法. 古地理学报, 21(1): 149-165. [Hu G Y,Xiao D K,Fan T E,Song L M,Chen F,Jing Y Q,Gao Y F.2019. New theory and method of fluvial reservoir architecture study: concepts,contents and characterization of offshore oilfield fluvial compound sand-body architecture. Journal of Palaeogeography(Chinese Edition), 21(1): 149-165] [7] 李磊,王英民,张莲美,黄志超. 2010. 尼日尔三角洲下陆坡限定性重力流沉积过程及响应. 中国科学: 地球科学, 40(11): 1591-1597. [Li L,Wang Y M,Zhang L M,Huang Z C.2010. Confined gravity flow sedimentary process and its impact on the lower continental slope,Niger Delta. Science China Earth Science, 40(11): 1591-1597] [8] 李磊,王英民,徐强,黄志超. 2012. 被动陆缘深水重力流沉积单元及沉积体系: 以尼日尔三角洲和珠江口盆地白云凹陷深水区为例. 地质论评, 58(5): 846-853. [Li L,Wang Y M,Xu Q,Huang Z C.2012. Deep-water gravity flow depositional elements and depositional systems in passive margin: case studies in deep-water areas of Niger Delta and Baiyun Sag,Pearl River Mouth Basin. Geological Review, 58(5): 846-853] [9] 梁宏伟. 2013. 基于井震结合的曲流河砂体分布与储层质量差异研究. 中国石油大学(北京)博士论文: 1-144. [Liang H W.2013. Research of meandering river sandbody architecture and reservoir quality differences based on base level cycle. Doctoral dissertation of China University of Petroleum(Beijing): 1-144] [10] 蔺鹏,吴胜和,张佳佳,胡光义,夏钦禹,范洪军,王南溯. 2018. 尼日尔三角洲盆地陆坡逆冲构造区海底扇分布规律. 石油与天然气地质, 39(5): 233-246. [Lin P,Wu S H,Zhang J J,Hu G Y,Xia Q Y,Fan H J,Wang N S.2018. Distribution of submarine fans in the thrust fault zone of continental slope,Niger Delta Basin. Oil & Gas Geology, 39(5): 233-246] [11] 蔺鹏,吴胜和,张佳佳,胡光义,王南溯,黄梅. 2019. 尼日尔三角洲盆地深水区逆冲构造演化特征. 海相油气地质, 24(1): 85-96. [Lin P,Wu S H,Zhang J J,Hu G Y,Wang N S,Huang M.2019. Characteristics and evolution of compressional structure in deep-water,Niger Delta Basin. Marine Origin Petroleum Geology, 24(1): 85-96] [12] 马世忠,杨清彦. 2000. 曲流点坝沉积模式、三维构形及其非均质模型. 沉积学报, 18(2): 241-247. [Ma S Z,Yang Q Y.2000. The depositional model,3-D architecture and heterogeneous model of point bar in meandering channels. Acta Sedimentologica Sinica, 18(2): 241-247] [13] 王宗起,闫臻. 2002. 秦岭晚古生代弧前增生的背驮型盆地体系. 地质通报, 21(8): 456-464. [Wang Z Q,Yan Z.2002. Late Paleozoic forearc accretionary piggyback type basin system in the South Qinling,Central China. Geological Bulletin of China, 21(8): 456-464] [14] 蔚远江,何登发,雷振宇,尹成,张立平,胡素云,董大忠. 2004. 准噶尔盆地西北缘前陆冲断带二叠纪逆冲断裂活动的沉积响应. 地质学报, 78(5): 612-625. [Wei Y J,He D F,Lei Z Y,Yin C,Zhang L P,Hu S Y,Dong D Z.2004. Sedimentary response to the activity of the Permian thrusting fault in the foreland thrust belt of the northwestern Junggar Basin. Acta Geologica Sinica, 78(5): 612-625] [15] 蔚远江,胡素云,雷振宇,何登发,张立平,许世军. 2005. 准噶尔西北缘前陆冲断带三叠纪—侏罗纪逆冲断裂活动的沉积响应. 地学前缘, 12(4): 423-437. [Wei Y J,Hu S Y,Lei Z Y,He D F,Zhang L P,Xu S J.2005. Sedimentary response to Triassic-Jurassic thrust faulting in the foreland thrust belt of the northwestern Junggar Basin. Earth Science Frontiers, 12(4): 423-437] [16] 吴胜和,岳大力,刘建民,束青林,范峥,李宇鹏. 2008. 地下古河道储层构型的层次建模研究. 中国科学D辑: 地球科学,38(增刊1): 111-121. [Wu S H,Yue D L,Liu J M,Shu Q L,Fan Z,Li Y P.2008. Hierarchy modeling of subsurface palaeochannel reservoir architecture. Science in China(Series D):Earth Sciences,38(z1): 111-121] [17] 吴胜和,冯文杰,印森林,喻宸,张可. 2016. 冲积扇沉积构型研究进展. 古地理学报, 18(4): 497-512. [Wu S H,Feng W J,Yin S L,Yu C,Zhang K.2016. Research advances in alluvial fan depositional architecture. Journal of Palaeogeography(Chinese Edition), 18(4): 497-512] [18] 吴胜和,徐振华,刘钊. 2019. 河控浅水三角洲沉积构型. 古地理学报, 21(2): 202-215. [Wu S H,Xu Z H,Liu Z.2019. Depositional architecture of fluvial-dominated shoal water delta. Journal of Palaeogeography(Chinese Edition), 21(2): 202-215] [19] 夏钦禹,吴胜和,冯文杰. 2018. 定量评价同生逆断层及其伴生褶皱活动性: 以准噶尔盆地西北缘湖湾区为例. 新疆石油地质, 39(3): 296-303. [Xia Q Y,Wu S H,Feng W J.2018. Quantitative evaluation of activities for contemporaneous reverse faults and associated folds: a case study of Huwan District in northwestern margin of Junggar basin. Xinjiang Petroleum Geology, 39(3): 296-303] [20] 徐振华,吴胜和,刘钊,赵军寿,吴峻川,耿红柳,张天佑,刘照玮. 2019. 浅水三角洲前缘指状砂坝构型特征: 以渤海湾盆地渤海BZ25油田新近系明化镇组下段为例. 石油勘探与开发, 46(2): 1-12. [Xu Z H,Wu S H,Liu Z,Zhao J S,Wu J C,Geng H L,Zhang T Y,Liu Z W.2019. Reservoir architecture of the finger bar within shoal water delta front: insights from the Lower Member of Minghuazhen Formation,Neogene,Bohai BZ25 Oilfield,Bohai Bay Basin,East China. Petroleum Exploration and Development, 46(2): 1-12] [21] 薛良清,Galloway W E.1991. 扇三角洲、辫状河三角洲与三角洲体系的分类. 地质学报, 65(2): 141-153. [Xue L Q,Galloway W E.1991. Fan-delta,braid delta and the classification of delta systems. Acta Geologica Sinica, 65(2): 141-153] [22] 薛培华. 1991. 河流点坝相储层模式概论. 北京: 石油工业出版社,23-35. [Xue P H.1991. An Introduction to Reservoir Models of Point Bar Facies. Beijing: Petroleum Industry Press,23-35] [23] 印森林. 2014. 同沉积逆断裂对冲积体系及其内部构型的控制作用: 以准噶尔盆地西北缘三叠系为例. 中国石油大学(北京)博士论文: 1-145. [Yin S L.2014. The controlling effects of contemporaneous reverse fault on alluvial depositional system and its internal architecture: a case study of Triassic in the Northwestern Margin of Junggar Basin. Doctoral dissertation of China University of Petroleum(Beijing): 1-145] [24] 印森林,吴胜和,李俊飞,冯文杰. 2014. 同生逆断层正牵引构造对高频层序地层结构及沉积充填的控制作用. 地质论评, 60(2): 310-320. [Yin S L,Wu S H,Li J F,Feng W J.2014. The controlling effect on high frequency sequence stratigraphic architecture and depositional filling by normal drag structure,caused by contemporaneous reverse fault. Geological Review, 60(2): 310-320] [25] 印森林,唐勇,胡张明,吴涛,张磊,张纪易. 2016a. 构造活动对冲积扇及其油气成藏的控制作用. 新疆石油地质, 37(4): 391-400. [Yin S L,Tang Y,Hu Z M,Wu T,Zhang L,Zhang J Y.2016a. Controls of tectonic activity on alluvial fan deposits and hydrocarbon accumulation: a case study of Permian and Triassic alluvial fans in Northwestern Margin of Junggar Basin. Xinjiang Petroleum Geology, 37(4): 391-400] [26] 印森林,吴胜和,胡张明,吴小军,陈燕辉,任翔. 2016b. 正牵引构造对冲积扇储层内部构型的控制作用. 石油实验地质, 38(6): 811-820. [Yin S L,Wu S H,Hu Z M,Wu X J,Chen Y H,Ren X.2016b. Controlling effect of normal drag structure on the internal reservoir architecture in an alluvial fan. Petroleum Geology & Experiment,38(6): 811-820] [27] 印森林,刘忠保,陈燕辉,吴小军. 2017. 冲积扇研究现状及沉积模拟实验: 以碎屑流和辫状河共同控制的冲积扇为例. 沉积学报, 35(1): 10-23. [Yin S L,Liu Z B,Chen Y H,Wu X J.2017. Research progress and sedimentation experiment simulation about alluvial fan: a case study on alluvial fan controlled by debris flow and braided river. Acta Sedimentologica Sinica, 35(1): 10-23] [28] 岳大力,吴胜和,刘建民. 2007. 曲流河点坝地下储层构型精细解剖方法. 石油学报, 28(4): 99-103. [Yue D L,Wu S H,Liu J M.2007. An accurate method for anatomizing architecture of subsurface reservoir in point bar of meandering river. Acta Petrolei Sinica, 28(4): 99-103] [29] 岳大力,李伟,王军,王武荣,李健. 2018. 基于分频融合地震属性的曲流带预测与点坝识别: 以渤海湾盆地埕岛油田馆陶组为例. 古地理学报, 20(6): 941-950. [Yue D L,Li W,Wang J,Wang W R,Li J.2018. Prediction of meandering belt and point-bar recognition based on spectral-decomposed and fused seismic attributes: a case study of the Guantao Formation,Chengdao Oilfield,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition), 20(6): 941-950] [30] 张昌民,尹太举,朱永进,柯兰梅. 2010. 浅水三角洲沉积模式. 沉积学报, 28(5): 933-944. [Zhang C M,Yin T J,Zhu Y J,Ke L M.2010. Shallow-water deltas and models. Acta Sedimentologica Sinica, 28(5): 933-944] [31] 张佳佳. 2019. 西非陆坡区逆冲相关微盆地内层序地层及海底扇构型研究. 中国石油大学(北京)博士论文: 1-164. [Zhang J J.2019. Research on the sequence stratigraphy and submarine fan architecture within the thrust-related intraslope minibasins offshore West Africa. Doctoral dissertation of China University of Petroleum(Beijing): 1-164] [32] 张佳佳,吴胜和. 2019. 海底扇朵叶沉积构型研究进展. 中国海上油气, 31(5): 88-106. [Zhang J J,Wu S H.2019. Research progress on the depositional architecture of submarine-fan lobes. China Offshore Oil and Gas, 31(5): 88-106] [33] 张进,马宗晋,任文军. 2005. 宁夏中南部新生界沉积特征及其与青藏高原演化的关系. 地质学报, 79(6): 757-773. [Zhang J,Ma Z J,Ren W J.2005. The sedimentary characteristics of Cenozoic Strata in central and southern Ningxia and their relationships with the development of the Qinghai-Tibetan Plateau. Acta Geologica Sinica, 79(6): 757-773] [34] 张莉,鲍志东,林艳波,陈玉明,林晓海,窦鲁星,孔彬. 2017. 浅水三角洲砂体类型及沉积模式:以松辽盆地南部乾安地区白垩系姚家组一段为例. 石油勘探与开发, 44(5): 727-736. [Zhang L,Bao Z D,Lin Y B,Chen Y M,Lin X H,Dou L X,Kong B.2017. Genetic types and sedimentary model of sandbodies in a shallow-water delta: a case study of the first Member of Cretaceous Yaojia Formation in Qian’an area,south of Songliao Basin,NE China. Petroleum Exploration and Development, 44(5): 727-736] [35] 赵晓明,刘丽,谭程鹏,范廷恩,胡光义,张迎春,张文彪,宋来明. 2018. 海底水道体系沉积构型样式及控制因素: 以尼日尔三角洲盆地陆坡区为例. 古地理学报, 20(5): 825-840. [Zhao X M,Liu L,Tan C P,Fan T E,Hu G Y,Zhang Y C,Zhang W B,Song L M.2018. Styles of submarine-channel architecture and its controlling factors: a case study from the Niger Delta Basin slope. Journal of Palaeogeography(Chinese Edition), 20(5): 825-840] [36] 周银邦,吴胜和,岳大力,杜庆龙,钟欣欣,刘志鹏,刘江丽,白振强. 2009. 点坝内部侧积层倾角控制因素分析及识别方法. 中国石油大学学报(自然科学版), 33(2): 7-11. [Zhou Y B,Wu S H,Yue D L,Du Q L,Zhong X X,Liu Z P,Liu J L,Bai Z Q.2009. Controlling factor analysis and identification method of lateral accretion shale beddings angle in point bar. Journal of China University of Petroleum(Edition of Natural Science), 33(2): 7-11] [37] 朱晨涛. 2017. 准噶尔盆地东南缘中—新生代盆山关系及构造演化过程. 浙江大学硕士论文: 1-77. [Zhu C T.2017. Mesozoic-Cenozoic basin-mountain relationships and tectonic evolution process of Southeastern Junggar. Masteral dissertation of Zhejiang University: 1-77] [38] 朱筱敏,刘媛,方庆,李洋,刘云燕,王瑞,宋静,刘诗奇,曹海涛,刘相男. 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例. 地学前缘, 19(1): 89-99. [Zhu X M,Liu Y,Fang Q,Li Y,Liu Y Y,Wang R,Song J,Liu S Q,Cao H T,Liu X N.2012. Formation and sedimentary model of shallow delta in large-scale lake: example from Cretaceous Quantou Formation in Sanzhao Sag,Songliao Basin. Earth Science Frontiers, 19(1): 89-99] [39] 朱筱敏,潘荣,赵东娜,刘芬,吴冬,李洋,王瑞. 2013. 湖盆浅水三角洲形成发育与实例分析. 中国石油大学学报(自然科学版), 37(5): 7-14. [Zhu X M,Pan R,Zhao D N,Liu F,Wu D,Li Y,Wang R.2013. Formation and development of shallow-water deltas in lacustrine basin and typical case analyses. Journal of China University of Petroleum (Edition of Natural Sciences), 37(5): 7-14] [40] 邹才能,赵文智,张兴阳,罗平,王岚,刘柳红,薛叔浩,袁选俊,朱如凯,陶士振. 2008. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报, 82(6): 813-825. [Zou C N,Zhao W Z,Zhang X Y,Luo P,Wang L,Liu L H,Xue S H,Yuan X J,Zhu R K,Tao S Z.2008. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake basins. Acta Geologica Sinica, 82(6): 813-825] [41] Allen J R L.1977. The plan shape of current ripples in relation to flow conditions. Sedimentology, 24(1): 53-62. [42] Adeogba A A,Mchargue T R,Graham S A.2005. Transient fan architecture and depositional controls from near-surface 3-D seismic data,Niger Delta continental slope. AAPG Bulletin, 89(5): 627-643. [43] Bhattacharya J P,Giosan L.2003. Wave-influenced deltas: geomorphological implications for facies reconstruction. Sedimentology, 50: 187-210. [44] Bhattacharya J P,Walker R G.1992. Deltas. In: Walker R G,James N P(eds). Facies Models: Response to Sea Level Change. Geol. Assoc. Can.,195-218. [45] Brown J R L F,Loucks R G,Trevio R H,Hammes U,Douglas A R,Murgulet D,Peterson R N,Abeyta A,Foreman B Z,Swenson J B,Olariu M I,Zeng H.2004. Understanding growth-faulted,intraslope subbasins by applying sequence-stratigraphic principles: examples from the south Texas Oligocene Frio Formation. AAPG Bulletin, 88(11): 1501-1522. [46] Brice J C.1974. Evolution of meander loops. Geological Society of America Bulletin, 85(4): 581-586. [47] Burpee A P,Slingerland R L,Edmonds D A,Parsons D,Best J,Cederberg J,McGuffin A,Caldwell R,Nijhuis A,Royce J.2015. Grain-size controls on the morphology and internal geometry of river-dominated deltas. Journal of Sedimentary Research, 85(6): 699-714. [48] Caldwell R L,Edmonds D A.2014. The effects of sediment properties on deltaic processes and morphologies: a numerical modeling study. Journal of Geophysical Research-Earth Surface, 119(5): 961-982. [49] Clarke L E,Quine T A,Nicholas A P.2010. An experimental investigation of autogenic behavior during alluvial fan evolution. Geomorphology, 115(3): 278-285. [50] Clark I R,Cartwright J A.2009. Interactions between submarine channel systems and deformation in deepwater fold belts: examples from the Levant Basin,Eastern Mediterranean sea. Marine and Petroleum Geology, 26(8): 1465-1482. [51] Clark I R,Cartwright J A.2011. Key controls on submarine channel development in structurally active settings. Marine and Petroleum Geology, 28(7): 1333-1349. [52] Damuth J E,Olson H C.2015. Latest Quaternary sedimentation in the northern Gulf of Mexico intraslope basin province: Ⅰ. Sediment facies and depositional processes. Geosphere, 11(6): 1689-1718. [53] Daniel J F.1971. Channel movement of meandering Indiana streams. United States Geological Survey Professional Paper 732-A,A1-A18. [54] Deptuck M E,Piper D J,Savoye B,Gervais A.2008. Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55(4): 869-898. [55] Donaldson A C.1974. Ancient deltaic depositional environments recognized in Pennsylvania rocks of northern Ohio River valley. In: Donahue J,Rollins H B(eds). Conemaugh(Glenshaw)Marine Events,Field Guidebook,Pittsburgh Geological Society,F1-F11. [56] Edmonds D A,Slingerland R L.2010. Significant effect of sediment cohesion on delta morphology. Nature Geoscience, 3(2): 105-109. [57] Feng W J. Wu S H,Liu J L,Zhang C M,Yin Y S,Yin T J.2019. The depositional evolution and internal sedimentary architecture of a flood event-dominated experimental alluvial fan. Arabian Journal of Geosciences, 12(9): 1-18. [58] Fisk H N,Mcfarlan E,Kolb C R,Wilbert L J.1953. Sedimentary framework of the modern Mississippi Delta. Journal of Sedimentary Research, 23(2): 132-132. [59] Galloway W E.1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In: Broussard M(ed). Deltas: Models for Exploration. Houston: Houston Geological Society,87-98. [60] Gervais A,Savoye B,Mulder T,Gonthier E.2006. Sandy modern turbidite lobes: a new insight from high resolution seismic data. Marine and Petroleum Geology, 23(4): 485-502. [61] Ghinassi M,Ielpi A.2015. Stratal architecture and morphodynamics of downstream-migrating fluvial point bars(Jurassic Scalby Formation,U.K.). Journal of Sedimentary Research, 85(7): 1123-1137. [62] Ghinassi M,Ielpi A,Aldinucci M,Fustic M.2016. Downstream-migrating fluvial point bars in the rock record. Sedimentary Geology, 334: 66-96. [63] Heinio P,Davies R J,Yang J,Song P,He W,Howlett D M,Ge Z,Nemec W,Nugraha H D,Jackson C A L,Johnson H D.2006. Degradation of compressional fold belts: deep-water Niger Delta. AAPG Bulletin, 90(5): 753-770. [64] Jackson R G.1976. Depositional model of point bars in the lower Wabash River. Journal of Sedimentary Research, 46(3): 579-594. [65] Janocko M,Nemec W,Henriksen S,Warchol M.2013. The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Marine and Petroleum Geology, 41: 7-34. [66] Jolly B A,Lonergan L,Whittaker A C.2016. Growth history of fault-related folds and interaction with seabed channels in the toe-thrust region of the deep-water Niger delta. Marine and Petroleum Geology, 70: 58-76. [67] Kendall C G St C. 2012. Deepwater Architecture-SEPM Strata.http://www.sepmstrata.org/page.aspx?&pageid=70&3. [68] Leeder M R.1973. Fluviatile fining-upward cycles and the magnitude of paleochannels. Geological Magazine, 110(3): 265-276. [69] Leonardi N,Canestrelli A,Sun T,Fagherazzi S.2013. Effect of tides on mouth bar morphology and hydrodynamics. Journal of Geophysical Research: Oceans, 118(9): 4169-4183. [70] Lorenz J C,Heinze D M,Clark J A.1985. Determination of width of meander-belt sandstone reservoirs from vertical downhole data,Mesaverde Group,Piceance Greek Basin,Colorado. AAPG Bulletin, 69(5): 710-721. [71] Madof A S,Christie-Blick N,Anders M H.2009. Stratigraphic controls on a salt-withdrawal intraslope minibasin,north-central Green Canyon,Gulf of Mexico: implications for misinterpreting sea level change. AAPG Bulletin, 93(4): 535-561. [72] Mcpherson J G,Shanmugam G,Moiola R J.1987. Fan-delta and braid deltas: varieties of coarse-grained deltas. Geological Society of America Bulletin, 99(3): 331-340. [73] Miall A D.1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Science Reviews, 22: 261-308. [74] Miall A D.1988. Reservoir heterogeneities in fluvial sandstones: lessons from outcrop studies. AAPG Bulletin, 72(6): 682-697. [75] Nardin W,Edmonds D A.2014. Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nature Geoscience, 7(10): 722-726. [76] Nardin W,Edmonds D A,Fagherazzi S.2016. Influence of vegetation on spatial patterns of sediment deposition in deltaic islands during flood. Advances in Water Resources, 93: 236-248. [77] Nichols G.1989. Structural and sedimentological evolution of part of the west central Spanish Pyrenees in the Late Tertiary. Journal of the Geological Society, 146(5): 851-857. [78] Olson H C,Damuth J E,Nelson C H.2016. Latest Quaternary sedimentation in the northern Gulf of Mexico intraslope basin province: Ⅱ—stratigraphic analysis and relationship to glacioeustatic climate change. Interpretation, 4(1): SC81-SC95. [79] Postma G.1990. An analysis of the variation in delta architecture. Terra Nova, 2(2): 124-130. [80] Prather B E,Pirmez C A R L O S,Winker C D.2012. Stratigraphy of linked intraslope basins: brazos-Trinity system western Gulf of Mexico. Application of the principles of seismic geomorphology to continental-slope and base-of-slope systems: case studies from seafloor and near-seafloor analogues. SEPM Special Publication, 99: 83-109. [81] Prélat A,Covault J A,Hodgson D M,Fildani A,Flint S S.2010. Intrinsic controls on the range of volumes,morphologies,and dimensions of submarine lobes. Sedimentary Geology, 232(1): 66-76. [82] Rosen T,Xu Y J.2013. Recent decadal growth of the Atchafalaya River Delta complex: effects of variable riverine sediment input and vegetation succession. Geomorphology, 194: 108-120. [83] Shanmugam G.2016. Submarine fans: a critical retrospective(1950-2015). Journal of Palaeogeography, 5(2): 110-184. [84] Shultz M R,Hubbard S M.2005. Sedimentology,stratigraphic architecture,and ichnology of gravity-flow deposits partially ponded in a growth-fault-controlled slope minibasin,Tres Pasos Formation(Cretaceous),southern Chile. Journal of Sedimentary Research, 75(3): 440-453. [85] Smith D G,Hubbard S M,Leckie D A,Fustic M.2009. Counter point bar deposits: lithofacies and reservoir significance in the meandering modern Peace River and ancient McMurray Formation,Alberta,Canada. Sedimentology, 56(6): 1655-1669. [86] Spychala Y T,Hodgson D M,Flint S S,Mountney N P.2015. Constraining the sedimentology and stratigraphy of submarine intraslope lobe deposits using exhumed examples from the Karoo Basin,South Africa. Sedimentary Geology, 322: 67-81. [87] Sylvester Z,Cantelli A,Pirmez C.2015. Stratigraphic evolution of intraslope minibasins: insights from surface-based model. AAPG Bulletin, 99(6): 1099-1129. [88] Syvitski J P,Saito Y.2007. Morphodynamics of deltas under the influence of humans. Global and Planetary Change,57(3-4): 261-282. [89] Tejedor A,Longjas A,Caldwell R,Edmonds D A,Zaliapin I,Foufoula-Georgiou E.2016. Quantifying the signature of sediment composition on the topologic and dynamic complexity of river delta channel networks and inferences toward delta classification. Geophysical Research Letters, 43(7): 3280-3287. [90] Wynn R B,Cronin B T,Peakall J.2007. Sinuous deep-water channels: genesis,geometry and architecture. Marine and Petroleum Geology, 24: 341-387. [91] Yan N,Mountney N P,Colombera L,Dorrell R M.2017. A 3D forward stratigraphic model of fluvial meander-bend evolution for prediction of point-bar lithofacies architecture. Computers & Geosciences, 105: 65-80. [92] Yue D L,Li W,Wang W R,Hu G Y,Shen B B,Wang W F,Zhang M L,Hu J J.2019. Analyzing the architecture of point bar of meandering fluvial river using ground penetration radar: a case study from Hulun Lake Depression,China. Interpretation, 7(2): T437-T454. [93] Zhang J J,Wu S H,Fan T E,Fan H J,Jiang L,Chen C,Wu Q Y,Lin P.2016. Research on the architecture of submarine-fan lobes in the Niger Delta Basin,offshore West Africa. Journal of Palaeogeography, 5(3): 185-204. [94] Zhang J J,Wu S H,Hu G Y,Fan T E,Yu B,Lin P,Jiang S N.2018. Sea-level control on the submarine fan architecture in a deepwater sequence of the Niger Delta Basin. Marine and Petroleum Geology, 94: 179-197. [95] Zhao X M,Qi K,Liu L,Gong C L,Mccaffrey W D.2018. Development of a partially-avulsed submarine channel on the Niger Delta continental slope: architecture and controlling factors. Marine and Petroleum Geology, 95: 30-49.