[1] 段克勤,姚檀栋,王宁练,徐柏青,Thompson L G. 2012. 青藏高原中部全新世气候不稳定性的高分辨率冰芯记录. 中国科学: 地球科学, 42(9): 1441-1449.
[Duan K Q,Yao T D,Wang N L,Xu B Q,Thompson L G. 2012. High-resolution ice core records of Holocene climatic instability in the central Qinghai-Tibet Plateau. Scientia Sinica(Terrae), 42(9): 1441-1449]
[2] 冯虎元,安黎哲,王勋陵. 2000. 环境条件对植物稳定碳同位素组成的影响. 植物学通报, 17(4): 312-318.
[Feng H Y,An L Z,Wang X L. 2000. A review on effect of environmental factors on stable carbon isotope composition in plants. Chinese Bulletin of Botany, 17(4): 312-318]
[3] 冯净,徐洪河,蒋青. 2014. 新疆北部中—晚泥盆世植物稳定碳同位素研究. 植物学研究, 3(6): 227-237.
[Feng J,Xu H H,Jiang Q. 2014. Study on the stable carbon isotope of the Mid-Late Devonian plants from North Xinjiang. Botanical Research, 3(6): 227-237]
[4] 郝守刚,王德明. 2003. 中国云南早泥盆世坡松冲植物群: 探究早期陆生维管植物演化分异的窗口. 地球科学进展, 18(6): 877-883.
[Hao S G,Wang D M. 2003. The Early Devonian Posongchong flora of Yunnan,China: a window for research on evolution and diversity of early land vascular plants. Advance in Earth Sciences, 18(6): 877-883]
[5] 李明财,罗天祥,刘新圣,孔高强. 2007. 高山林线急尖长苞冷杉不同器官的稳定碳同位素组成分布特征. 应用生态学报, 18(12): 2654-2660.
[Li M C,Luo T X,Liu X S,Kong G Q. 2007. Distribution characteristics of δ13C values in different organs of Abies georgei growing at alpine timberline. Chinese Journal of Applied Ecology, 18(12): 2654-2660]
[6] 李星学,蔡重阳. 1978. 西南地区早泥盆世地层的一个标准剖面及其植物组合的划分与对比. 地质学报, 13(1): 1-12.
[Li X X,Cai C Y. 1978. A type-section of Lower Devonian strata in Southwest China with brief notes on the succession and correlation of its plant assemblages. Acta Geologica Sinica, 13(1): 1-12]
[7] 刘瑾,王永,姚培毅,迟振卿,李廷栋,耿树方. 2015. 末次冰消期以来内蒙古东部气候变化—基于风成砂—古土壤序列的地球化学记录. 中国地质, 42(4): 1103-1114.
[Liu J,Wang Y,Yao P Y,Chi Z Q,Li T D,Geng S F. 2015. A study of paleoclimate changes in east Inner Mongolia since the Last deglaciation on the basis of aeolian sand-paleosoil series geochemical records. Geology in China, 42(4): 1103-1114]
[8] 刘振峰,郝守刚,王德明,刘建波. 2004. 中国滇东非海相下泥盆统徐家冲组剖面研究. 见: 中国地质科学院地层古生物论文集编委会. 地层古生物论文集(第二十八辑). 北京: 地质出版社,61-88.
[Liu Z F,Hao S G,Wang D M,Liu J B. 2004. Study on the Xujiachong formation section of non-marine Lower Devonian of Eastern Yunnan,China. In: Editorial board of essays on stratigraphy and paleontology of Chinese Academy of Geological Sciences. Essays on Stratigraphy and Paleontology(Vol. 28). Beijing: Geological Publishing House,61-88]
[9] 刘贤赵,张勇,宿庆,田艳林,全斌,王国安. 2014. 现代陆生植物碳同位素组成对气候变化的响应研究进展. 地球科学进展, 29(12): 1341-1354.
[Liu X Z,Zhang Y,Su Q,Tian Y L,Quan B,Wang G A. 2014. Research progress in responses of modern terrestrial plant carbon isotope composition to climate change. Advances in Earth Science, 29(12): 1341-1354]
[10] 马晔,刘锦春. 2013. δ13C在植物生态学研究中的应用. 西北植物学报, 33(7): 1492-1500.
[Ma Y,Liu J C. 2013. Applications of δ13C in plant ecological research. Acta Botanica Boreali-Occidentalia Sinica, 33(7): 1492-1500]
[11] 任昊佳. 2005. 云南曲靖下泥盆统徐家冲组植物碳同位素研究. 北京大学地球与空间科学学院学士论文.
[Ren H J. 2005. Carbon Isotope of Fossil Plants From the Xujiachong Formation of Lower Devonian in Qujing,Yunnan. Bachelor thesis of School of Earth and Space Sciences,Peking University]
[12] 孙克勤,崔金钟,王士俊. 2010. 中国化石植物志. 第二卷,中国化石蕨类植物. 北京: 高等教育出版社.
[Sun K Q,Cui J Z,Wang S J. 2010. Fossil flora of China. Volume 2,Fossil Pteridophytes in China. Beijing: Higher Education Press]
[13] 肖良,漆亚玲,马文忠,李相传,郭俊锋,孙楠,姚肖永. 2017a. 吐哈盆地北缘中侏罗世化石植物稳定碳同位素的古环境意义. 沉积学报, 35(3): 489-498.
[Xiao L,Qi Y L,Ma W Z,Li X C,Guo J F,Sun N,Yao X Y. 2017a. Stable carbon isotope of Middle Jurassic plant fossils in the north edge of Turpan-Hami Basin,Xinjiang and their palaeoenvironmental implications. 2017a. Acta Sedimentologica Sinica, 35(3): 489-498]
[14] 肖良,安永福,李相传,郭俊锋,孙楠,姚肖永,杨望暾. 2017b. 现生和化石枫香碳同位素的变化—对古环境重建的指示. 西安科技大学学报, 37(5): 688-696.
[Xiao L,An Y F,Li X C,Guo J F,Sun N,Yao X Y,Yang W T. 2017b. Variation in stable carbon isotope of recent and fossil Liquidambar-Indication for palaeoenvironmental reconstruction. Journal of Xi'an University of Science and Technology, 37(5): 688-696]
[15] 解三平,孙柏年,阎德飞,丛培允,肖良,韦利杰. 2006. 滇西新近纪植物气孔、碳同位素组成与古环境分析. 沉积学报, 24(6): 883-888.
[Xie S P,Sun B N,Yan D F,Cong P Y,Xiao L,Wei L J. 2006. Stomata,Carbon isotopic composition of the plants from the Neogene in West Yunnan and Paleoenvironmental analysis. Acta Sedimentologica Sinica, 24(6): 883-888]
[16] 徐陈鹏,李久乐,王宁练. 2019. 唐古拉冰芯包裹气体氧稳定同位素气候环境指示意义. 北京师范大学学报(自然科学版), 55(1): 145-152.
[Xu C P,Li J L,Wang N L. 2019. Climatic and environmental indications of stable oxygen isotopes in enclosed air bubbles in Tanggula ice core. Journal of Beijing Normal University(Natural Science), 55(1): 145-152]
[17] 薛进庄,郝守刚. 2014. 志留纪—早泥盆世维管植物的系统发育、幕式演化和地理分布: 植物大化石证据. 古地理学报, 16(6): 861-877.
[Xue J Z,Hao S G. 2014. Phylogeny,episodic evolution and geographic distribution of the Silurian-Early Devonian vascular plants: Evidences from plant megafossils. 2014. Journal of Palaeogeography(Chinese Edition), 16(6): 861-877]
[18] 袁子能,邢磊,张海龙,赵美训. 2012. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用. 地球科学进展, 27(3): 276-283.
[Yuan Z N,Xing L,Zhang H L,Zhao M X. 2012. Progress of biomarker stable hydrogen isotope and its application to marine paleoenvironmental reconstruction. Advances in Earth Science, 27(3): 276-283]
[19] 赵少军,魏强,徐海量,郭宏伟,王希义,赵新风. 2017. 树木年轮对塔里木河生态环境变迁的印证. 中国沙漠, 37(3): 594-600.
[Zhao S J,Wei Q,Xu H L,Guo H W,Wang X Y,Zhao X F. 2017. Response of the tree-ring to ecological environment change of the Tarim River. Journal of Desert Research, 37(3): 594-600]
[20] 郑淑霞,上官周平. 2006. 陆生植物稳定碳同位素组成与全球变化. 应用生态学报, 17(4): 733-739.
[Zheng S X,Shangguan Z P. 2006. Terrestrial plant stable carbon isotope composition and global change. Chinese Journal of Applied Ecology, 17(4): 733-739]
[21] 朱耿睿,李育. 2015. 基于柯本气候分类的1961—2013年中国气候区类型及变化. 干旱区地理, 38(6): 1121-1132.
[Zhu G R,Li Y. 2015. Types and changes of Chinese climate zones from 1961 to 2013 based on Köppen climate classification. Arid Land Geography, 38(6): 1121-1132]
[22] 钟阿娇,叶青,蔡小敏,孔庆玉,吴高宣,吴思锜,吴永红. 2020. 近8000年太湖沉积记录的气候变化与古里雅冰芯对比研究. 甘肃科技, 36(22): 35-37.
[Zhong A J,Ye Q,Cai X M,Kong Q Y,Wu G X,Wu S Q,Wu Y H. 2020. A comparative study of the climate change recorded by Taihu Lake sedimentation in the last 8000 years and the Guliya ice core. Gansu Science and Technology, 36(22): 35-37]
[23] Arens N C,Jahren A H,Amundson R. 2000. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology, 26(1): 137-164.
[24] Beerling D J,Lake J A,Berner R A,Hickey L J,Taylor D W,Royer D L. 2002. Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere. Geochimica et Cosmochimica Acta, 66(21): 3757-3767.
[25] Benner R A,Fogel M L,Sprague E K,Hodson R E. 1987. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature, 329: 708-710.
[26] Barral A,Gomez B,Fourel F,Daviero-Gomez V,Lécuyer C. 2017. CO2 and temperature decoupling at the million-year scale during the Cretaceous Greenhouse. Scientific Reports, 7(1): 4-10.
[27] Boyce C K,Hotton C L,Fogel M L,Cody G D,Hazen R M,Knoll A H,Heuber F M. 2007. Devonian landscape heterogeneity recorded by a giant fungus. Geology, 35: 399-402.
[28] Cascales-Miñana B,Xue J Z,Rial G,Gerrienne P,Huang P,Steemans P. 2017. Revisiting the spore assemblages from the Lower Devonian Posongchong Formation of Wenshan,Yunnan Province,southwestern China. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 108(4): 339-354.
[29] Chakraborty S,Jana B N,Bhattacharya S K,Robertson Ⅰ. 2011. Carbon isotopic composition of fossil leaves from the Early Cretaceous sediments of western India. Journal of Earth System Science, 120(4): 703-711.
[30] Chapman T,Cui Y,Schubert B A. 2019. Stable carbon isotopes of fossil plant lipids support moderately high pCO2 in the early Paleogene. ACS Earth and Space Chemistry, 3: 1966-1973.
[31] Chen F,Yuan Y,Wei W. 2011. Climatic response of Picea crassifolia tree-ring parameters and precipitation reconstruction in the western Qilian Mountains,China. Journal of Arid Environments, 75: 1121-1128.
[32] Chen F H,Rao Z G,Zhang J W,Jin M,Ma J Y. 2006. Variations of organic carbon isotopic composition and its environmental significance during the last glacial on western Chinese Loess Plateau. Chinese Science Bulletin, 13: 1593-1602.
[33] Cui Y,Schubert B A. 2018. Towards determination of the source and magnitude of atmospheric pCO2 change across the early Paleogene hyperthermals. Global and Planetary Change, 170: 120-125.
[34] Cui Y,Schubert B A,Jahren A H. 2020. A 23 m.y. record of low atmospheric CO2. Geology, 48(9): 888-892.
[35] Deines P. 1980. The isotopic composition of reduced organic carbon. In: Fritz P,Fontes J(eds). Handbook of Environmental Isotope Geochemistry,Vol. 1. Amsterdam: Elsevier,329-406.
[36] Diefendorf A F,Mueller K E,Wing S L,Koch P L,Freeman K H. 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences of the United States of America. 107: 5738-5743.
[37] Farquhar G D,von Caemmerer S,Berry J A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149: 78-90.
[38] Farquhar G D,O'Leary M H,Berry J A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9: 121-137.
[39] Farquhar G D,Ehleringer J R,Hubick K T. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40: 503-537.
[40] Feng X H,Epstein S. 1995. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochimica et Cosmochimica Acta, 59(12): 2599-2608.
[41] Fletcher B J,Beerling D J,Chaloner W. 2004. Stable carbon isotopes and the metabolism of the terrestrial Devonian organism Spongiophyton. Geobiology, 2: 107-119.
[42] Foster G L,Royer D L,Lunt D J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature Communicatuins, 8: 14845.
[43] Francey R J,Grifford R M,Sharkey T D,Weir B. 1985. Physiological influences on carbon isotope discrimination in huon pine(Lagarostrobos franklinii). Oecologia, 66(2): 211-218.
[44] Gerrienne P. 1996. A biostratigraphic method based on a quantification of fossil tracheophyte characters-Its application to the Lower Devonian Posongchong flora(Yunnan Province,China). Palaeobotanist, 45: 194-200.
[45] Graham L E,Cook M E,Hanson D T,Pigg K B,Graham J M. 2010. Structural,physiological,and stable carbon isotopic evidence that the enigmatic Paleozoic fossil Prototaxites formed from rolled liverwort mats. Am. J. Bot., 97(2): 268-275.
[46] Gröcke D R. 2002. The carbon isotope composition of ancient CO2 based on higher-plant organic matter. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences, 360: 633-658.
[47] Hao S G,Xue J Z. 2013. The Early Devonian Posongchong Flora of Yunnan: A Contribution To An Understanding of the Evolution and Early Diversification of Vascular Plants. Beijing: Science Press.
[48] Keeley J E,Monson R K,Rundel P W. 2012. Evolution of photosynthesis Ⅱ: evolution and expansion of CAM and C4 photosynthetic types. In: Flexas J,Loreto F,Medrano H(eds). Terrestrial Photosynthesis in a Changing Environment: A Molecular,Physiological,and Ecological Approach. Cambridge: Cambridge University Press,386-395.
[49] Kelly E F,Blecker S W,Yonker C M,Olson C G,Wohl E E,Todd L C. 1998. Stable isotope composition of soil organic matter and phytoliths as paleoenvironmental indicators. Geoderma, 82: 59-81.
[50] Kohn M J. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of(paleo)ecology and(paleo)climate. Proceedings of the National Academy of Sciences of the United States of America, 107(46): 19691-19695.
[51] Korol R,Kirschbaum M U,Farquhar G D,Jeffreys M. 1999. Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. Tree Physiology, 19(9): 551-562.
[52] Le Hir G,Donnadieu Y,Goddéris Y,Meyer-Berthaud B,Ramstein G,Blakey R C. 2011. The climate change caused by the land plant invasion in the Devonian. Earth Planet. Sci. Lett., 310: 203-212.
[53] Martinelli L A,Almeida S,Brown I F,Moreira M Z,Victoria R L,Sternberg L S L,Ferreira C A C,Thomas W W. 1998. Stable carbon isotope ratio of tree leaves,boles and fine litter in a tropical forest in Rondônia,Brazil. Oecologia, 114: 170-179.
[54] O'Leary M H. 1981. Carbon isotope fractionation in plants. Phytochemistry, 20(4): 553-567.
[55] Petit J R,Jouzel J,Raynaud D,Barkov N I,Barnola J-M,Basile I,Bender M,Chappellaz J,Davis M,Delaygue G,Delmotte M,Kotlyakov V M,Legrand M,Lipenkov V Y,Lorius C,Pépin L,Ritz C,Saltzman E,Stievenard M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core,Antarctica. Nature, 399: 429-436.
[56] Schubert B A,Jahren A H. 2012. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochimica et Cosmochimica Acta, 96: 29-43.
[57] Schubert B A,Jahren A H. 2015. Global increase in plant carbon isotope fractionation following the Last Glacial Maximum caused by increase in atmospheric pCO2. Geology, 43(5): 435-438.
[58] Schubert B A,Jahren A H. 2018. Incorporating the effects of photorespiration into terrestrial paleoclimate reconstruction. Earth-Science Reviews, 177: 637-642.
[59] Wagoner de Water P K,Leavitt S W,Betancourt J L. 1994. Trends in stomatal density and 13C/12C ratios of Pinus flexilis needles during last glacial-interglacial cycle. Science, 264: 239-243.
[60] Wan Z Z. 2012. Stable carbon and nitrogen isotopic studies of Devonian land plants-An indicator of paleoclimate and paleoenvironmental changes. Ph.D. Thesis,University of Cincinnati,Cincinnati.
[61] Wan Z Z,Algeo T J,Gensel P G,Scheckler S E,Stein W E,Cressler Ⅲ W L,Berry C M,Xu H H,Rowe H D,Sauer P E. 2019. Environmental influences on the stable carbon isotopic composition of Devonian and Early Carboniferous land plants. Palaeogeography,Palaeoclimatology,Palaeoecology, 531:109100.
[62] Wang G A,Li J Z,Liu X Z,Li X Y. 2013. Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in North China and their relevance to paleovegetation reconstruction. Quaternary Science Reviews, 63: 83-90.
[63] Wang D M,Hao S G,Liu Z F. 2002. Researches on plants form the Lower Devonian Xujiachong Formation in the Qujing district,eastern Yunnan. Acta Geologica Sinica, 76(4): 393-407.
[64] Wang D M. 2007. Two species of Zosterophyllum from South China and dating of the Xujiachong Formation with a biostratigraphic method. Acta Geologica Sinica, 81(4): 525-538.
[65] Wellman C H,Zhu H C,Marshall J E A,Wang Y,Berry C M,Xu H H. 2012. Spore assemblages from the Lower Devonian Xujiachong Formation from Qujing,Yunnan,China. Palaeontology, 55(3): 583-611.
[66] Xue J Z,Deng Z Z,Huang P,Huang K J,Benton M J,Cui Y,Wang D M,Liu J B,Shen B,Basinger J F,Hao S G. 2016. Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant. Proceedings of the National Academy of Sciences of the United States of America, 113(34): 9451-9456.
[67] Yan D F,Sun B N,Xie S P,Li X C,Wen W W. 2009. Response to paleoatmospheric CO2 concentration of Solenites vimineus(Phillips)Harris(Ginkgophyta)from the Middle Jurassic of the Yaojie Basin,Gansu Province,China. Science in China Series D: Earth Sciences, 52(12): 2029-2039. |