Abstract Ooids,a typical type of sedimentary grains,are an important proxy for paleoclimate and paleoceanography. To better understand the formation mechanisms,depositional environments and geological significance of these carbonate grains,studies relating to paleontology,sedimentology,and petrography were carried out on the ooid-bearing limestones in the upper Du'an Formation of the Lower Carboniferous in Dujie section of Long'an area,Guangxi. Five ooid types have been identified: Radial ooids(O1),regular concentric-radial ooids(O2),irregular concentric-radial ooids(O3),micrite ooids(O4-A,O4-B),and composite ooids(O5). The microscopic fabric and depositional environments of these ooids uncovered different forming processes,indicating that the formation and distribution of the ooids were influenced by the hydrodynamic conditions. These ooids formed in the late Visean to Serpukhovian,corresponding to the onset of the ice age in the late Mississippian. Influenced by changes of ice volume,sea level changed frequently,resulting in shallow shoal and tidal flat environment in the study area. Dujie area was located in the low latitude,providing shallow,warm,and agitated waters for the ooid formation. Furthermore,calcimicrobes and microbial mats were abundant in the ooid-bearing limestone,indicating that the microbial activities were common and might be related to the formation of these ooids.
Fund:Financially supported by the National Natural Science Foundation of China(Nos. 41972002,41572004)
Corresponding Authors:
Huang Wen-Tao,born in 1990,doctor,is mainly engaged in research of microbialites. E-mail: wentao1990@126.com.
About author: Gong En-Pu,born in 1958,professor,is mainly engaged in researches of paleontology and stratigraphy. E-mail: gongep@mail.neu.edu.cn.
Cite this article:
Gong En-Pu,Yang Zhen-Yuan,Huang Wen-Tao et al. Ooids types of the upper Du'an Formation of lower Carboniferous in Dujie section of Long'an area in Guangxi and their geological significance[J]. JOPC, 2021, 23(1): 125-141.
Gong En-Pu,Yang Zhen-Yuan,Huang Wen-Tao et al. Ooids types of the upper Du'an Formation of lower Carboniferous in Dujie section of Long'an area in Guangxi and their geological significance[J]. JOPC, 2021, 23(1): 125-141.
[1] 陈百兵,齐永安,郑伟,李小燕. 2019. 豫西宜阳地区寒武系馒头组鲕粒中的泥晶方解石特征及其成因. 古地理学报, 21(4): 603-612. [Chen B B,Qi Y A,Zheng W,Li X Y.2019. Micritic calcites in ooids and their genetic analysis from the Cambrian Mantou Formation in Yiyang area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 21(4): 603-612] [2] 郭芪恒,金振奎,朱雷,朱小二,王金艺,吴进,李思澎. 2019. 北京西山地区下苇甸剖面寒武系张夏组鲕粒硅化成因探讨. 古地理学报, 21(4): 627-635. [Guo Q H,Jin Z K,Zhu L,Zhu X E,Wang J Y,Wu J,Li S P.2019. Mechanism for silicification of ooid: Example from the Cambrian Zhangxia Formation at Xiaweidian section in Western Hills of Beijing. Journal of Palaeogeography(Chinese Edition), 21(4): 627-635] [3] 蒋裕强,何沅翰,邢凤存,谷一凡,蒋婵. 2019. 下三叠统鲕粒灰岩中微生物矿化组构特征及意义: 以川东北地区飞仙关组为例. 沉积学报, 37(2): 268-277. [Jiang Y Q,He Y H,Xing F C,Gu Y F,Jiang C.2019. Characteristics and significance of microbial mineralization fabric in oolitic limestone: A case from Lower Triassic Feixianguan Formation,northeastern Sichuan Basin. Acta Sedimentologica Sinica, 37(2): 268-277] [4] 焦大庆,马永生,邓军,孟庆芬,李东海. 2003. 黔桂地区石炭纪层序地层格架及古地理演化. 现代地质, 17(3): 294-302. [Jiao D Q,Ma Y S,Deng J,Meng Q F,Li D H.2003. The sequence-stratigraphic framework and the evolution of paleogeography for Carboniferous of the Guizhou and Guangxi areas. Geoscience, 17(3): 294-302] [5] 邝国敦,李家骧,钟铿,苏一保,陶业斌. 1999. 广西的石炭系. 武汉: 中国地质大学出版社,1-258. [Kuang G D,Li J X,Zhong K,Su Y B,Tao Y B.1999. Carboniferous of Guangxi. Wuhan: China University of Geosciences Press,1-258] [6] 李飞,吴思琴,刘柯. 2015. 鲕粒原生矿物识别及对海水化学成分变化的指示意义. 沉积学报, 33(3): 500-511. [Li F,Wu S Q,Liu K.2015. Identification of ooid primary mineralogy: A clue for understanding the variation in paleo-oceanic chemistry. Acta Sedimentologica Sinica, 33(3): 500-511] [7] 李开开,张学丰,贺训云,范俊佳. 2018. 川东北飞仙关组白云岩化作用对鲕粒滩储层的孔隙改造效应. 石油与天然气地质, 39(4): 706-718. [Li K K,Zhang X F,He X Y,Fan J J.2018. Modification of dolomitization on pores in oolitic shoal reservoirs of the Feixianguan Formation in the northeastern Sichuan Basin. Oil and Gas Geology, 39(4): 706-718] [8] 马永生,牟传龙,郭彤楼,谭钦银,余谦. 2005. 四川盆地东北部长兴组层序地层与储层分布. 地学前缘, 12(3): 179-185. [Ma Y S,Mou C L,Guo T L,Tan Q Y,Yu Q.2005. Sequence stratigraphy and reservoir distribution of the Changxing Formation in northeastern Sichuan Basin. Earth Science Frontiers, 12(3): 179-185] [9] 梅冥相. 2012. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20-32. [Mei M X.2012. Brief introduction on new advances on the origin of ooids. Acta Sedimentologica Sinica, 30(1): 20-32] [10] 苗卓伟,张永利,巩恩普,关长庆,阮氏梅香,黄文韬,王邓. 2016. 广西隆安下石炭统都结微生物岩微相特征与沉积环境研究. 地质论评, 62(5): 1134-1148. [Miao Z W,Zhang Y L,Gong E P,Guan C Q,Ruanshi M X,Huang W T,Wang D.2016. Sedimentary environment and microfacies analysis of the Lower Carboniferous microbial carbonates in the Dujie Village,Long’an County,Guangxi. Geological Review, 62(5): 1134-1148] [11] 倪胜利. 2017. 北京西郊下苇甸剖面寒武系叠层石中的底栖鲕粒: 基本特征和重要意义. 地质通报,36(2-3): 485-491. [Ni S L.2017. The benthic oolite within the stromatolitic bioherm of the Cambrian strata at the Xiaweidian section in the western suburb of Beijing: Essential features and important significance. Geological Bulletin of China,36(2-3): 485-491] [12] 齐永安,杨小伟,代明月,李妲,王敏,刑智峰. 2014. 豫西登封地区寒武系第三统鲕粒和鲕粒灰岩演化及其意义. 古地理学报, 16(1): 55-64. [Qi Y A,Yang X W,Dai M Y,Li D,Wang M,Xing Z F.2014. Evolution of ooids and oolitic limestones and their significance from the Cambrian Series 3 in Dengfeng area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 16(1): 55-64] [13] 宋文天,刘建波. 2020. 碳酸盐鲕粒包壳结构研究综述. 古地理学报, 22(1): 147-160. [Song W T,Liu J B.2020. A review of cortical structures of carbonate ooid. Journal of Palaeogeography(Chinese Edition), 22(1): 147-160] [14] 王炜,黄康俊,鲍征宇,钱一雄. 2011. 不同类型鲕粒灰岩储集层溶解动力学特征. 石油勘探与开发, 38(4): 495-502. [Wang W,Huang K J,Bao Z Y,Qian Y X.2011. Dissolution kinetics of different types of oolitic limestones in northeastern Sichuan Basin. Petroleum Exploration and Development, 38(4): 495-502] [15] 王向东,胡科毅,郄文昆,盛青怡,陈波,林巍,要乐,王秋来,祁玉平,陈吉涛,廖卓庭,宋俊俊. 2019. 中国石炭纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 139-159. [Wang X D,Hu K Y,Qie W K,Sheng Q Y,Chen B,Lin W,Yao L,Wang Q L,Qi Y P,Chen J T,Liao Z T,Song J J.2019. Carboniferous integrative stratigraphy and timescale of China. Science China Earth Sciences, 49(1): 139-159] [16] 邢延路,冯李强. 2015. 北京西山下苇甸剖面寒武系徐庄组鲕粒研究. 古地理学报, 17(4): 517-528. [Xing Y L,Feng L Q.2015. A study on ooids in limestones of the Cambrian Xuzhuang Formation at Xiaweidian outcrop in Western Hill of Beijing. Journal of Palaeogeography(Chinese Edition), 17(4): 517-528] [17] 余素玉,何镜宇,杨慕华. 1987. 河北唐山地区中寒武统张夏组鲕粒灰岩的岩石学研究. 地球科学, 12(3): 301-310. [Yu S Y,He J Y,Yang M H.1987. The petrologic study of oolitic limestone of Zhangxia Series of Middle Cambrian in Tangshan,Hebei. Earth Science-Journal of Wuhan College of Geology, 12(3): 301-310] [18] 赵自强,丁启秀. 1996. 中南区区域地层. 武汉: 中国地质大学出版社,71-123. [Zhao Z Q,Ding Q X.1996. Regional Stratigraphy of Central-South China. Wuhan: China University of Geosciences Press,71-123] [19] 周彦,谭秀成,刘宏,罗玉宏,张孝兰. 2007. 磨溪气田嘉二段鲕粒灰岩储层特征及成因机制. 西南石油大学学报, 29(4): 30-33. [Zhou Y,Tan X C,Liu H,Luo Y H,Zhang X L.2007. Oolitic limestone reservoir characteristics and its genetic mechanism of Jia2 Member in Moxi gas field. Journal of Southwest Petroleum University, 29(4): 30-33] [20] 周瑶琪,张晗,张振凯. 2017. 海相碳酸盐鲕粒形成过程的模拟实验研究. 中国石油大学学报(自然科学版), 41(3): 23-30. [Zhou Y Q,Zhang H,Zhang Z K.2017. Experiment study of synthesis for marine carbonate ooids genesis. Journal of China University of Petroleum(Natural Science Edition), 41(3): 23-30] [21] Ahern J P,Fielding C R.2019. Onset of the late Paleozoic glacioeustatic signal: A stratigraphic record from the paleotropical,oil-shale-bearing Big Snowy Trough of Central Montana,U.S.A. Journal of Sedimentary Research, 89: 761-783. [22] Bishop J W,Montañez I P,Gulbranson E L,Brenckle P L.2009. The onset of mid-Carboniferous glacio-eustasy: sedimentologic and diagenetic constraints,Arrow Canyon,Nevada. Palaeogeography,Palaeoclimatology,Palaeoecology, 276: 217-243. [23] Brehm U,Krumbein W E,Palinska K A.2006. Biomicrospheres generate ooids in the laboratory. Geomicrobiology Journal, 23(7): 545-550. [24] Caputo M V,Melo J H G,Streel M,Isbell J L. 2008. Late Devonian and early Carboniferous glacial records of South America. In: Fielding C R,Frank T D and Isbell J L(eds).Resolving the late Paleozoic ice age in time and space. Special Paper of the Geological Society of America, 441: 161-173. [25] Chen J T,Montañez I P,Qi Y P,Wang X D,Wang Q L,Lin W.2016. Coupled sedimentary and δ13C records of late Mississippian platform-to-slope successions from South China: insight into δ13C chemostratigraphy. Palaeogeography,Palaeoclimatology,Palaeoecology, 448: 162-178. [26] Davies P J,Martin K.1976. Radial aragonite ooids,Lizard Island,Great Barrier Reef,Queensland,Australia. Geology, 4(2): 120-122. [27] Davies P J,Bubela B,Ferguson J.1978. The formation of ooids. Sedimentology, 25(5): 703-730. [28] Diaz M R,Wagoner Norstrand J D,Eberli G P,Piggot A M,Zhou J,Klaus J S.2014. Functional gene diversity of oolitic sands from Great Bahama Bank. Geobiology, 12: 231-249. [29] Diaz M R,Swart P K,Eberli G P,Oehlert A M,Devlin Q,Saeid A,Altabet M A.2015. Geochemical evidence of microbial activity within ooids. Sedimentology, 62: 2090-2112. [30] Diaz M R,Eberli G P,Blackwelder P,Phillips B,Swart P K.2017. Microbially mediated organomineralization in the formation of ooids. Geology, 45(9): 771-774. [31] Diaz M R,Eberli G P.2019. Decoding the mechanism of formation in marine ooids: a review. Earth-Science Reviews, 190: 536-556. [32] Duguid S M A,Kyser T K,James N P,Rankey E C.2010. Microbes and ooids. Journal of Sedimentary Research, 80(3): 236-251. [33] Dvorjanin E S,Samoyluk A P,Egurnova M G,Zaykovsky N Y,Podladchikov Y Y,Belt F J G V D,Boer P L D.1996. Sedimentary cycles and paleogeography of the Dnieper Donets Basin during the late Viséan-Serpukhovian based on multiscale analysis of well logs. Tectonophysics, 268: 169-187. [34] Enos P,Wei J,Lehrmann D J.1998. Death in Guizhou: late Triassic drowning of the Yangtze carbonate platform. Sedimentary Geology, 118: 55-76. [35] Ferguson J,Bubela B,Davies P J.1978. Synthesis and possible mechanism of formation of radial carbonate ooids. Chemical Geology, 22: 285-308. [36] Fielding C R,Frank T D,Isbell J L.2008. The late Paleozoic ice age: a review of current understanding and synthesis of global climate patterns. In: Fielding C R,Frank T D,Isbell J L(eds).Resolving the late Paleozoic ice age in time and space. Special Paper of the Geological Society of America, 441: 343-354. [37] Fielding C R,Frank T D.2015. Onset of the glacioeustatic signal recording late Paleozoic Gondwanan ice growth: new data from palaeotropical East Fife,Scotland. Palaeogeography,Palaeoclimatology,Palaeoecology, 426: 121-138. [38] Flügel E.2010. Microfacies of Carbonate Rocks: Analysis,Interpretation and Application. Berlin: Springer,1-984. [39] Friedman G M,Amiel A J,Braun M,Miller D S.1973. Generation of carbonate particles and laminates in algal mats: example from sea-marginal hypersaline pool,Gulf of Aqaba,Red Sea. AAPG Bulletin, 57(3): 541-557. [40] Garzanti E,Sciunnach D.1997. Early Carboniferous onset of Gondwanian glaciation and Neo-tethyan rifting in South Tibet. Earth and Planetary Science Letters, 148(1-2): 359-365. [41] Gerdes G,Piewak D,Riege H,Taher A G,Krumbein W E,Reineck H E.1994. Structural diversity of biogenetic carbonate particles in microbial mats. Sedimentology, 41: 1273-1294. [42] González C R.1990. Development of the late Paleozoic glaciations of the South American Gondwana in western Argentina. Palaeogeography,Palaeoclimatology,Palaeoecology, 79: 275-287. [43] Grossman E L,Yancey T E,Jones T E,Bruckschen P,Chuvashov B,Mazzullo S J,Mii H S.2008. Glaciation,aridification,and carbon sequestration in the Permo-Carboniferous: the isotopic record from low latitudes. Palaeogeography,Palaeoclimatology,Palaeoecology, 268(3-4): 222-233. [44] Halley R B.1977. Ooid fabric and fracture in the Great Salt Lake and the geologic record. Journal of Sedimentary Petrology, 47(3): 1099-1120. [45] Harris P M,Diaz M R,Eberli G P.2019. The formation and distribution of modern ooids on Great Bahama Bank. Annual Review of Marine Science, 11: 491-516. [46] Heydari E,Moore C H.1994. Paleoceanographic and paleoclimatic controls on ooid mineralogy of the Smackover Formation,Mississippi Salt Basin: Implications for Late Jurassic seawater composition. Journal of Sedimentary Research, 64(1): 101-114. [47] Huang W T,Maillet M,Zhang Y L,Guan C Q,Miao Z W,Samankassou E,Gong E P.2020. The onset of the major glaciation of the LPIA: Record from South China. International Journal of Earth Sciences, 109(1): 281-300. [48] Isbell J L,Miller M F,Wolfe K L,Lenaker P A.2003. Timing of late Paleozoic glaciation in Gondwana: was glaciation responsible for the development of Northern Hemisphere cyclothems?. In: Chan M A,Archer A W(eds). Extreme depositional environments: Mega end members in geologic time. Boulder,Colorado: Special Paper of the Geological Society of America, 370: 5-24. [49] Land L S,Behrens E W,Frishman S A.1979. The ooids of Baffin Bay,Texas. Journal of Sedimentary Petrology, 49(4): 1269-1277. [50] Li F,Yan J X,Algeo T,Wu X.2013. Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids(Moyang,South China). Global and Planetary Change, 105: 102-120. [51] Li F,Yan J X,Chen Z Q,Ogg J G,Tian L,Korngreen D,Liu K,Ma Z L,Woods A D.2015. Global oolite deposits across the Permian-Triassic boundary: a synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis. Earth-Science Reviews, 149: 163-180. [52] Li F,Yan J X,Burne R V,Chen Z Q,Algeo T J,Zhang W,Tian L,Gan Y L,Liu K,Xie S C.2017. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids. Palaeogeography,Palaeoclimatology, Palaeoecology, 486: 96-107. [53] Limarino C,Tripaldi A,Marenssi S,Fauqué L.2006. Tectonic,sea-level,and climatic controls on late Paleozoic sedimentation in the western basins of Argentina. Journal of South American Earth Sciences, 22: 205-226. [54] Mariotti G,Pruss S B,Summons R E,Newman S A,Bosak T.2018. Contribution of benthic processes to the growth of ooids on a low-energy shore in Cat Island,the Bahamas. Minerals, 8(6): 252. [55] Montañez I P,Poulsen C J.2013. The late Paleozoic ice age: an evolving paradigm. Annual Review of Earth and Planetary Sciences, 41: 629-656. [56] Opdyke B N,Wilkinson B H.1990. Paleolatitude distribution of Phanerozoic marine ooids and cements. Palaeogeography,Palaeoclimatology, Palaeoecology, 78(1-2): 135-148. [57] Perez Loinaze V S P,Limarino C O,Cesari S N.2010. Glacial events in Carboniferous sequences from Paganzo and Río Blanco Basins(Northwest Argentina): Palynology and depositional setting. Geologica Acta, 8: 399-418. [58] Qie W K,Zhang X H,Du Y S,Zhang Y.2011. Lower Carboniferous carbon isotope stratigraphy in South China: Implications for the late Paleozoic glaciation. Science China Earth Sciences, 54(1): 84-92. [59] Rankey E C,Reeder S L.2012. Tidal sands of the Bahamian archipelago. In: Davis R A,Dalrymple R W(eds).Principles of Tidal Sedimentology. Berlin: Springer-Verlag,537-565. [60] Riding R.2006. Cyanobacterial calcification,carbon dioxide concentrating mechanisms,and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4: 299-316. [61] Simone L.1980. Ooids: a review. Earth-Science Reviews, 16: 319-355. [62] Smith L B,Read J F.2000. Rapid onset of late Paleozoic glaciation on Gondwana: Evidence from upper Mississippian strata of the Midcontinent,United States. Geology, 28: 279-282. [63] Summons R E,Bird L R,Gillespie A L,Pruss S B,Roberts M,Sessions A L.2013. Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora. Geobiology, 11: 420-436. [64] Sumner D Y,Grotzinger J P.1993. Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids. Journal of Sedimentary Petrology, 63(5): 974-982. [65] Tan Q,Shi Z J,Tian Y M,Wang Y,Wang C C.2017. Origin of ooids in ooidal muddy laminates: A case study of the lower Cambrian Qingxudong formation in the Sichuan Basin,South China. Geological Journal, 53: 1716-1727. [66] Trower E J,Lamb M P,Fischer W W.2017. Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates. Earth and Planetary Science Letters, 468: 112-118. [67] Veevers J J,Powell C M.1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America Bulletin, 98: 475-487. [68] Wang X,Qie W,Sheng Q,Qi Y,Wang Y,Liao Z,Shen S,Ueno K.2013. Carboniferous and lower Permian sedimentological cycles and biotic events of South China. Geological Society of London Special Publications, 376: 33-46. [69] Woods A D.2013. Microbial ooids and cortoids from the lower Triassic(Spathian)Virgin Limestone,Nevada,USA: evidence for an Early Triassic microbial bloom in shallow depositional environments. Global and Planetary Change, 105: 91-101. [70] Wright V P,Wagonerstone S D.2001. Onset of late Palaeozoic glacio-eustasy and the evolving climates of low latitude areas: a synthesis of current understanding. Journal of the Geological Society, 158: 579-582. [71] Yang B,Zhang X H,Qie W K,Wei Y,Huang X,Xia H D.2020. Variabilities of carbonate δ13C signal in response to the late Paleozoic glaciations,Long’an,South China. Frontiers of Earth Science, 14: 344-359.