Abstract The Silurian-Devonian in Susong area,Anhui Province are distributed in the western part of the Lower Yangtze stratigraphic subregion,the southeastern edge of the Dabie orogenic belt,and the eastern side of the southern end of the Tanlu fault zone. In order to obtain the provenance information of the Silurian-Devonian in Susong area,detrital zircon LA-ICP-MS U-Pb dating was performed on the fine sandstone and siltstone of the Fentou,Maoshan and Wutong formations exposed in Susong area. The results showed that the three samples all obtained major peak ages of about 970 Ma,820 Ma,and a secondary peak age of about 450 Ma. Detrital zircons are mainly derived from granitic rocks. Using the discriminant map of zircon in granite, most of dated zircons are recognized to be I-type and S-type granite zircons,while most of the Neoproterozoic and Caledonian granitic rocks in the Jiangnan orogenic belt and South China are type I and type S. Through comparison with the ages of detrital zircons from South China,the provenance of the studied strata mainly comes from the interior of the South China plate. Using the pattern map of the difference between zircon crystallization age and sedimentary age,the tectonic setting of the Silurian-Devonian in Susong area, Anhui Province was identified as the collision background.
Fund:Financially supported by the Public Welfare Geological Survey Project of Anhui Province(No.2015-g-24)
Corresponding Authors:
Li Shuang-Ying,born in 1956,is a professor and doctoral supervisor of Hefei University of Technology,and is mainly engaged in orogen sedimentology and stratigraphy.E-mail: lsysteven@126.com.
About author: Luo Li-Yuan,born in 1995,is a master degree candidate of Hefei University of Technology,and majors in palaeontology and stratigraphy. E-mail: Luo559@126.com.
Cite this article:
Luo Li-Yuan,Li Shuang-Ying. Detrital-zircon provenance analysis and its tectonic significance of the Silurian-Devonian in Susong area,Anhui Province[J]. JOPC, 2021, 23(5): 999-1009.
Luo Li-Yuan,Li Shuang-Ying. Detrital-zircon provenance analysis and its tectonic significance of the Silurian-Devonian in Susong area,Anhui Province[J]. JOPC, 2021, 23(5): 999-1009.
[1] 安徽省地质矿产局区域地质调查队. 1990. 安徽省岩相古地理图册. 合肥: 安徽科学技术出版社,1-322. [Regional Geological Survey Team of Anhui Bureau of Geology and Mineral Resources. 1990. Lithofacies Palaeogeography Altas of Anhui Province. Hefei: Anhui Science and Technology Press,1-322] [2] 邓奇,王剑,汪正江,崔晓庄,施美凤,杜秋定,马龙,廖世勇,任光明. 2016. 江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约. 大地构造与成矿学, 40(4): 753-771. [Deng Q,Wang J,Wang Z J,Cui X Z,Shi M F,Du Q D,Ma L,liao S Y,Ren G M. 2016. Magmatic activity in the Middle Neoproterozoic(830~750 Ma)and its restriction on tectonic evolution in the Jiangnan orogenic belt. Geotectonica et Metallogenia, 40(4): 753-771] [3] 丁道桂,王东燕,刘运黎. 2009. 下扬子地区古生代盆地的改造变形. 地学前缘, 16(4): 61-73. [Ding D G,Wang D Y,Liu Y L. 2009. Transformation and deformation of the Paleozoic basins in lower Yangtze areas. Earth Science Frontiers, 16(4): 61-73] [4] 郭佩,刘池洋,王建强,李长志. 2017. 碎屑锆石年代学在沉积物源研究中的应用及存在问题. 沉积学报, 35(1): 46-56. [Guo P,Liu C Y,Wang J Q,Li C Z. 2017. Considerations on the application of detrital-zircon geochronology to sedimentary provenance analysis. Acta Sedimentologica Sinica, 35(1): 46-56] [5] 黄正清. 2017. 下扬子盆地构造演化特征与页岩气主要富集层位. 上海国土资源, 38(1): 87-92. [Huang Z Q. 2017. Tectonic evolutionary characteristics and the main enriched layers of shale gases in the lower Yangtze basins. Shanghai Land & Resources, 38(1): 87-92] [6] 李海滨. 2011. 下扬子地区中—新生代的挤压变形与伸展改造及其油气勘探意义. 岩石学报, 27(3): 770-778. [Li H B. 2011. The Mesozoic-Cenozoic compressional deformation,extensional modification and their significance for hydrocarbon exploration in Lower Yangtze region. Acta Petrologica Sinica, 27(3): 770-778] [7] 李亚辉. 2010. 下扬子区海相中、古生界地质结构分区及其油气勘探选区意义. 地质力学学报, 16(3): 271-280. [Li Y H. 2010. Structural division of marine Mesozoic-Paleozoic in lower Yangtze region and its significance for petroleum exploration targets. Journal of Geomechanics, 16(3): 271-280] [8] 刘小平. 2011. 苏北地区古生界页岩气形成地质条件. 天然气地球科学, 22(6): 1100-1108. [Liu X P. 2011. Geological conditions of shale gas forming in Paleozoic Subei Area. Natural Gas Geoscience, 22(6): 1100-1108] [9] 王洪浩,李江海,孙唯童,李维波. 2016. 志留纪全球古板块再造及岩相古地理. 古地理学报, 18(2): 185-196. [Wang H H,Li J H,Sun W T,Li W B. 2016. Global palaeo-plate reconstruction and lithofacies palaeogeography in the Silurian. Journal of Palaeogeography(Chinese Edition), 18(2): 185-196] [10] 王伟,卢桂梅,黄思访,薛尔堃. 2019. 扬子陆块古—中元古代地质演化与 Columbia 超大陆重建. 矿物岩石地球化学通报, 38(1): 30-52. [Wang W,Lu G M,Huang S F,Xue E K. 2019. Geological evolution of the Yangtze Block in Paleo-to Meso-Proterozoic and its implication on the reconstruction of the Columbia Supercontinent. Bulletin of Mineralogy,Petrology and Geochemistry, 38(1): 30-52] [11] 吴浩若. 2005. 下扬子区加里东期构造古地理问题. 古地理学报, 7(2): 243-248. [Wu H R. 2005. Discussion on tectonopalaeogeography of Lower Yangtze Area during the Caledonian Period. Journal of Palaeogeography(Chinese Edition), 7(2): 243-248] [12] 吴元保,郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1595. [Wu Y B,Zheng Y F. 2004. Mineralogical studies of zircon orgin and constrains on the interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589-1595] [13] 向磊,舒良树. 2010. 华南东段前泥盆纪构造演化: 来自碎屑锆石的证据. 中国科学: 地球科学, 40(10): 1377-1388. [Xiang L,Shu L S. 2010. Pre-Devonian tectonic evolution in the eastern section of South China Block: geochronological evidence from detrital Zircons. Science China: Earth Science, 40(10): 1377-1388] [14] 张芳容,舒良树,王德滋,于津海,沈渭洲. 2009. 华南东段加里东期花岗岩类形成构造背景探讨. 地学前缘, 16(1): 248-260. [Zhang F R,Shu L S,Wang D Z,Yu J H,Shen W Z. 2009. Discussions on the tectonic setting of Caledonian granitoids in the eastern segment of South China. Earth Science Frontiers, 16(1): 248-260] [15] 张芳容. 2011. 江西中—南部加里东期花岗岩地质地球化学特征及其成因. 南京大学博士论文: 1-127. [Zhang F R. 2011. Geological and geochemical characteristics and genesis of Caledonian granite in central and southern Jiangxi Province. Doctoral dissertation of Nanjing Univeristy: 1-127] [16] 张义楷. 2003. 望江—潜山盆地形成演化与含油气系统研究. 西北大学硕士论文: 1-89. [Zhang Y K. 2003. Study on formation evolution and hydrocarbon bearing system of Wangjiang-Qianshan Basin. Masteral dissertation of Northwest University: 1-89] [17] 周健,李迪,林春明,张妮,于洪洲,张关龙,张奎华. 2018. 高邮凹陷戴南组稀土元素和锆石U-Pb年代特征及构造意义. 地质学报, 92(12): 2453-2468. [Zhou J,Li D,Lin C M,Zhang N,Yu H Z,Zhang G L,Zhang K H. 2018. Rare earth elements and zircon U-Pb geochronology characteristics of the Dainan Formation in the Gaoyou Depression and their tectonic significance. Acta Geologica Sinica, 92(12): 2453-2468] [18] Cawood P A,Hawkesworth C J,Dhuime B. 2012. Deterial zircon record and tectonic setting. Geology, 40(10): 875-878. [19] Chen J F,Foland K A,Xing F,Xu X S,Zhou T X. 1991. Magmatism along the southeast margin of the Yangtze Block: Precambrian collision of the Yangtze and Cathaysia Blocks of China. Geology, 19(8): 815-818. [20] Chen H,Ni P,Chen R Y,Lü Z C,Pang Z S,Wang G G,Yuan H X. 2016. Chronology and geological significance of spillite-keratophyre in Pingshui Formation,northwest Zhejiang Province. Geology in China, 43(2): 410-418. [21] Deng T,Xu D,Chi G,Zhu Y,Wang Z,Chen G,Li Z,Zhang J,Ye T,Yu D. 2019. Revisiting the ca. 845-820 Ma S-type granitic magmatism in the Jiangnan Orogen: new insights on the Neoproterozoic tectono-magmatic evolution of South China. International Geology Review, 61(4): 383-403. [22] Gao J,Klemd R,Long L L,Xiong X M,Qian Q. 2009. Adakitic signature formed by ractional crystallization: an interpretation for the Neo-Proterozoic meta-plagiogranites of the NE Jiangxi ophiolitic mélange belt,South China. Lithos, 110(1-4): 277-293. [23] Gao L Z,Chen J,Ding X Z,Liu Y R,Zhang C H,Zhang H,Liu Y X,Pang W H,Zhang Y H. 2011. Zircon SHRIMP U-Pb dating of the tuff bed of Lengjiaxi and Banxi groups,northeastern Hunan: constraints on the Wuling Movement. Geologica Bulletin of China, 30(7): 1001-1008. [24] Griffin W L,Belousova E A,Shee S R,Pearson N J,O’Reilly S Y. 2004. Archean crustal evolution in the northern Yilarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231-282. [25] Li W X,Li X H. 2003. Adakitic granites within the NE Jiangxi ophiolites,South China: geochemical and Nd isotopic evidence. Precambrian Research, 122(1-4): 29-44. [26] Li X H,Li Z X,Ge W,Zhou H,Li W,Liu Y,Wingate M T D. 2003a. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ac. 825 Ma. Precambrian Research, 122(1-4): 45-83. [27] Li Z X,Li X H,Kinny P D,Wang J. 1999. The breakup of Rodinia: Did it start with a mantle plume beneath South China. Earth and Planet Science Letters, 173(3): 171-181. [28] Li Z X,Li X H,Kinny P D,Wang J,Zhang S,Zhou H W. 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton,South China and correlations and correlations with other continents: evidence for a mantle super plume that broke up Rodinia. Precambrian Research, 122(1-4): 85-109. [29] Li Z X,Li X H,Wartho J A,Clark C,Li W X,Zhang C L,Bao C M. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny,southeastern South China: new age constraints and pressure-temperature conditions. Geological Society of America Bulletin, 122(5-6): 772-793. [30] Liu Y,Hu Z,Gao S,Detlef G,Xu J,Gao C. 2008. In situ analysis of majorand trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 1-43. [31] Ludwing K R. 2003. Isoplot: A Geochronological Toolkit for Microsoft Excel,Special Publication. Berkeley Geochronology Center:1-70. [32] Sláma,Kosler J,Condon D J,Crowley J L,Gerdes A,Hanchar J M,Horstwood M S A,Morris G A,Nasdala L,Norberg N,Schaltegger U,Schoene B,Tubrett M N,Whitehouse M J. 2008. Plesovice zircon: a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35. [33] Wan Y S,Liu D Y,Xu M H,Zhuang J M,Song B,Shi Y R,Du L L. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in northwestern Fujian,Cathaysia block,China: tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research, 12(1-2): 66-183. [34] Wan Y S,Liu D Y,Wilde S M,Cao J J,Chen B,Dong C Y,Song B,Du L L. 2010. Evolution of the Yunkai Terrane,south China: evidence from SHRIMP zircon U-Pb dating,geochemistry and Nd isotope. Journal of Asian Earth Sciences, 37(2): 140-153. [35] Wang X L,Zhou J C,Qiu J S,Zhang W L,Liu X M,Zhang G L. 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi Province,South China: implications for the tectonic evolution. Precambrian Research, 145(1-2): 111-130. [36] Wang Y J,Fan W M,Zhao G C,Ji S C,Peng T P. 2007. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implication on the Caledonian event in the South China Block. Gondwana Research, 12(4): 404-416. [37] Wang Y J,Zhang A M,Fan W M,Zhao G C,Zhang G W,Zhang Y Z,Zhang F F,Li S Z. 2011. Kwangsian crustal anatexis within the eastern South China Block: geochemical,zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127: 239-260. [38] Wang Y J,Wu C M,Zhang A M,Fan W M,Zhang Y H,Zhang Y Z,Peng T P,Yin C Q. 2012. Kwangsian and Indosinian reworking of the eastern South China Block: constraints on zircon U-Pb geochronology and metamorphism of amphibolites and granulites. Lithos, 150: 227-242. [39] Wang Y J,Zhang A M,Fan W M,Zhang Y H and Zhang Y Z. 2013. Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block: geochronological and geochemical evidence. Lithos, 160: 37-54. [40] Wiedenbeck M,Allé P,Corfu F,Griffin W L,Meier M,Oberli F. 1995. Three natural zircon standards for U-Th-Pb,Lu-Hf,trace element and REE analyses. Geostandards Newsletter, 19(1): 1-23. [41] Wei S D,Liu H,Zhao J H. 2018. Tectonic evolution of the western Jiangnan Orogen: constraints from the Neoproterozoic igneous rocks in the Fanjingshan region,South China. Precambrian Research, 318: 89-102. [42] Xue H,Ma F,Song Y,Xie Y. 2010. Geochronology and geochemisty of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogen,China Constraints on the timing and process of amalgamation between the Yangtze and Cathaysia blocks. Acta Petrologica Sinica, 26: 3215-3244. [43] Yao J L,Shu L S,Cawood P A,Li J Y. 2016. Delineating and characterizing the boundary of the Cathaysia block and the Jiangnan orogenic belt in South China. Precambrian Research, 275: 265-277. [44] Ye M F,Li X H,Li W X,Liu Y,Li Z X. 2007. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research, 12: 144-156. [45] Yin C,Lin S,Davis D W,Xing G,Davis W J,Cheng G,Xiao W,Li L. 2013. Tectonic evolution of the southeastern margin of the Yangtze Block: constraints from SHRIMP U-Pb and LA-ICP-MS Hf isotopic studies of zircon from the eastern Jiangnan Orogenic Belt and implications for the tectonic interpretation of South China. Precambrian Research, 236: 145-156. [46] Yusuke S,Kazue S,Hisashi A,Satoki O,Kentaro H,Takuya S,Takafumi H. 2017. Geochemical characteristics of zircons in the Ashizuri A-type granitoids: an additional granite topology tool for detrital zircon studies. Island Arc,26(6). https://doi.org/10.1111/iar.12216. [47] Zhang H,Gao L Z,Li T D,Geng S F,Liu Y X,Ding X Z,Shi Z G. 2015. SHRIMP zircon U-Pb dating of the Luojiamen Formation in western Zhejiang Province and its geological implications. Geological Bulletin of China, 34(2-3): 447-455. [48] Zhao J H,Zhou M F. 2013. Neoproterozoic high-Mg basalts formed by melting of ambient mantle in South China. Precambrian Research, 233: 193-205.