Geochemical characteristics and geological significance of the Silurian Longmaxi Formation shale in Yanjin area,southwestern Sichuan Basin
He Jia-Wei1,2, Xie Yuan2, Hou Ming-Cai1, Liu Jian-Qing2, He Li2, Lu Yun-Fei1
1 Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China; 2 Chengdu Center,China Geological Survey,Chengdu 610081,China
Abstract In order to find out the element geochemical characteristics of Silurian Longmaxi Formation shale in Yanjin area,southwestern Sichuan Basin,as well as the material source and structural background of shale formation,the petromineralogy and geochemistry of 19 shale samples from Niuzhai section of Yanjin area were tested and analyzed. Combined with the previous research results and adjacent areas,the rare earth elements were mainly applied to discuss the sedimentary environment, the accumulation rate,material source and tectonic setting of the Longmaxi Formation shale in the study area. The results show that the mineral composition of the Longmaxi Formation in Niuzhai section of Yanjin is mainly quartz,carbonate minerals and clay minerals. The mineral triangle diagram shows that the Longmaxi Formation shale is mainly a combination of clay shale and mixed shale. The normalized partition pattern of rare earth elements is characterized by Ce deficit and weak Eu enrichment. The δCe values,Ni/Co and V/Cr values of the samples indicate that the paleo-water depth increases suddenly in the early stage and becomes shallow gradually in the later stage. Oxygen content gradually changes from anoxic reduction state in the early stage to weak oxidation state in the later stage. LaN/YbN values show that the shale deposition rate increases firstly and then decreases under the influence of sea level and terrigenous debris input. Provenance analysis shows that the source rocks area are mainly felsic igneous rocks and intermediate-acid geological bodies of granitoids. The La-Th-Sc diagram and tectonic setting characteristics show that the main tectonic setting of the source rocks is passive continental margin. Combined with previous studies and tectonic setting,it is inferred that the main source of the Longmaxi Formation shale is formed in the Passive continental margin of hypoxia,and the provenance is mainly from the Kang-Dian ancient land to the west of the study area,followed by the Central Guizhou uplift.
Corresponding Authors:
Xie Yuan,born in 1971,is a researcher and master supervisor in Chengdu Center, China Geological Survey. He is engaged in oil and gas geology and sedimentology. E-mail: chdxyuan@sina.cn.
About author: He Jia-Wei,born in 1992,is a Ph.D. student in Chengdu University of Technology. He is engaged in sedimentology and geochemistry. E-mail: 2019010170@stu.cdut.enu.cn.
Cite this article:
He Jia-Wei,Xie Yuan,Hou Ming-Cai et al. Geochemical characteristics and geological significance of the Silurian Longmaxi Formation shale in Yanjin area,southwestern Sichuan Basin[J]. JOPC, 2021, 23(6): 1174-1191.
He Jia-Wei,Xie Yuan,Hou Ming-Cai et al. Geochemical characteristics and geological significance of the Silurian Longmaxi Formation shale in Yanjin area,southwestern Sichuan Basin[J]. JOPC, 2021, 23(6): 1174-1191.
[1] 拜文华,王强,孙莎莎,梁峰,张琴,昌燕. 2019. 五峰组—龙马溪组页岩地化特征及沉积环境: 以四川盆地西南缘为例. 中国矿业大学学报, 48(6): 1276-1289. [Bai W H,Wang Q,Sun S S,Liang F,Zhang Q,Chang Y.2019. Geochemical characteristics and sedimentary environment of the Wufeng-Longmaxi shales: a case study from southwestern margin of the Sichuan basin. Journal of China University of Mining & Technology, 48(6): 1276-1289] [2] 陈洪德,郭彤楼,侯明才,刘文均,林良彪,李智武,徐胜林,钟怡江,黄福喜,王约,张成弓,陈安清. 2012. 中上扬子叠合盆地沉积充填过程与物质分布规律. 北京: 科学出版社. [Chen H D,Guo T L,Hou M C,Liu W J,Lin L B,Li Z W,Xu S L,Zhong Y J,Huang F X,Wang Y,Zhang C G,Chen A Q.2012. Sedimentary Filling Process and Material Distribution in the Middle Upper Yangtze Superimposed basin. Beijing: Science Press] [3] 陈旭,戎嘉余,周志毅,张元动,詹仁斌,刘建波,樊隽轩. 2001. 上扬子区奥陶—志留纪之交的黔中隆起和宜昌上升. 科学通报, 46(12): 1052-1056. [Chen X,Rong J Y,Zhou Z Y,Zhang Y D,Zhan R B,Liu J B,Fan J X.2001. The Qianzhong Uplift and Yichang Uplift at the turn of the Ordovician-Silurian in the Upper Yangtze District. Chinese Science Bulletin, 46(12): 1052-1056] [4] 陈旭,樊隽轩,陈清,唐兰,侯旭东. 2014. 论广西运动的阶段性. 中国科学: 地球科学, 44(5):842-850. [Chen X,Fan J X,Chen Q,Tang L,Hou X D.2014. Toward a stepwise Kwangsian Orogeny. Scientia Sinica-Terrae,44(5):842-850] [5] 陈志鹏,梁兴,张介辉,王高成,刘臣,李兆丰,邹辰. 2016. 昭通国家级示范区龙马溪组页岩气储层超压成因浅析. 天然气地球科学, 27(3): 442-448. [Chen Z P,Liang X,Zhang J H,Wang G C,Liu C,Li Z F,Zou C.2016. Genesis analysis of shale reservoir overpressure of Longmaxi Formation in Zhaotong Demonstration Area,Dianqianbei Depression. Natural Gas Geoscience, 27(3): 442-448] [6] 董大忠,邹才能,戴金星,黄士鹏,郑军卫,龚剑明,王玉满,李新景,管全中,张晨晨,黄金亮,王淑芳,刘德勋,邱振. 2016. 中国页岩气发展战略对策建议. 天然气地球科学, 27(3): 397-406. [Dong D Z,Zou C N,Dai J X,Huang S P,Zheng J W,Gong J M,Wang Y M,Li X J,Guan Q Z,Zhang C C,Huang J L,Wang S F,Liu D X,Qiu Z.2016. Suggestions on the development strategy of shale gas in China. Natural Gas Geoscience, 27(3): 397-406] [7] 冯洪真,Bernd-D.Erdtmann,王海峰. 2000. 上扬子区早古生代全岩Ce异常与海平面长缓变化. 中国科学(D辑: 地球科学), 30(1): 66-72. [Feng H Z,Bernd D E,Wang H F.2000. Early Paleozoic whole rock Ce anomaly and long-term sea level change in Upper Yangtze Region. Science in China(Series D), 30(1): 66-72] [8] 何佳伟. 2018. 上扬子西南缘雷波地区O-S过渡时期细粒沉积岩特征及页岩气前景研究. 成都理工大学硕士研究生论文. [He J W.2018. Characteristics of fine-grained sedimentary rocks and prospects of shale gas during the O-S transitional period in the Leibo area of the Southwestern Upper Yangtze. Masteral dissertation of Chengdu University of Technology] [9] 何利,宋春彦,刘建清. 2018. 川南马边地区五峰—龙马溪组页岩地球化学特征及有机质富集机理. 东北石油大学学报, 42(4): 52-65,8. [He L,Song C Y,Liu J Q.2018. Shale geochemical characteristics and enrichment mechanism of organic matter of Wufeng-Longmaxi formation in the Mabian area of southeast Sichuan Basin. Journal of Northeast Petroleum University, 42(4): 52-65,8] [10] 何龙,王云鹏,陈多福,王钦贤,王成. 2019. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系. 天然气地球科学, 30(2): 203-218. [He L,Wang Y P,Chen D F,Wang Q X,Wang C.2019. Relationship between sedimentary environment and organic matter accumulation in the black shale of Wufeng-Longmaxi Formations in Nanchuan area,Chongqing. Natural Gas Geoscience, 30(2): 203-218] [11] 侯东壮,吴湘滨,邓鑫楠. 2019. 贵州铜仁地区九门冲组黑色页岩地球化学特征及成岩环境研究. 地质与勘探, 55(3): 779-788. [Hou D Z,Wu X B,Deng X N.2019. Geochemical characteristics and diagenetic setting of the Jiumenchong Formation black shale in the Tongren Area of Guizhou Province. Geology and Exploration, 55(3): 779-788] [12] 李双建,肖开华,沃玉进,龙胜祥,蔡立国. 2008. 湘西、黔北地区志留系稀土元素地球化学特征及其地质意义. 现代地质, 22(2): 273-280. [Li S J,Xiao K H,Wo Y J,Long S X,Cai L G.2008. REE Geochemical characteristics and their geological signification in Silurian,West of Hunan Province and North of Guizhou Province. Geoscience, 22(2): 273-280] [13] 李艳芳,邵德勇,吕海刚,张瑜,张小龙,张同伟. 2015. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系. 石油学报, 36(12): 1470-1483. [Li Y F,Shao D Y,Lü H G,Zhang Y,Zhang X L,Zhang T W.2015. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation,Sichuan Basin. Acta Petrolei Sinica, 36(12): 1470-1483] [14] 刘本立. 1994. 地球化学基础. 北京: 北京大学出版社. [Liu B L.1994. Geochemical Basis. Beijing: Peking University Press] [15] 刘家铎,张成江,刘显凡,李佑国,阳正熙,吴德超. 2004. 扬子地台西南缘成矿规律及找矿方向. 北京: 地质出版社. [Liu J D,Zhang C J,Liu X F,Li Y G,Yang Z X,Wu D C.2004. The Metallogenic Regularity and Prospecting Direction of the Southwestern Margin of Yangtze Platform. Beijing: Geological Publishing House] [16] 刘江涛,卢坤辉,蔡英杰,李永杰,刘双莲. 2016. 涪陵焦石坝地区五峰组—龙马溪组页岩古氧相研究. 西安石油大学学报(自然科学版), 31(2): 18-24. [Liu J T,Lu K H,Cai Y J,Li Y J,Liu S L.2016. Study on Paleo-redox conditions of Wufeng Formation-Longmaxi Formation shale in Fuling Jiaoshiba Area. Journal of Xi'an Shiyou University(Natural Science), 31(2): 18-24] [17] 刘英俊,曹励明,李兆麟. 1984. 元素地球化学. 北京: 科学出版社. [Liu Y J,Cao L M,Li Z L.1984. Elemental Geochemistry. Beijing: Science Press] [18] 骆耀南. 1983. 康滇构造带的古板块历史演化. 地球科学, 8(3): 93-101. [Luo Y N.1983. The paleo-plate historical evolution of the Kangdian tectonic belt. Earth Science, 8(3): 93-101] [19] 梅冥相,马永生,邓军,李浩,郑宽兵. 2005. 加里东运动构造古地理及滇黔桂盆地的形成: 兼论滇黔桂盆地深层油气勘探潜力. 地学前缘, 12(3): 227-236. [Mei M X,Ma Y S,Deng J,Li H,Zheng K B.2005. Tectonic palaeogeographic changes resulting from the Caledonian movement and the formation of the Dianqiangui Baisn: discussion on the deep exploration potential of oil and gas in the Dianqiangui Basin. Earth Science Frontiers, 12(3): 227-236] [20] 梅庆华,何登发,桂宝玲,李英强,李皎,李传新. 2016. 川中地区新元古代—古生代初多幕裂陷过程及其演. 天然气地球科学,27(8): 1427-1438. [Mei Q H,He D F,Gui B L,Li Y Q,Li J,Li C X.2016. Multiple rifting and its evolution of central Sichuan Basin in the Neoproterozoic-Paleozoic. Natural Gas Geoscience,27(8):1427-1438] [21] 牟传龙,葛祥英,余谦,门欣,刘伟,何江林,梁薇. 2019. 川西南地区五峰—龙马溪组黑色页岩古气候及物源特征: 来自新地2井地球化学记录. 古地理学报, 21(5): 835-854. [Mou C L,Ge X Y,Yu Q,Men X,Liu W,He J L,Liang W.2019. Palaeoclimatology and provenance of black shales from Wufeng-Longmaxi Formations in southwestern Sichuan Province: from geochemical records of Well Xindi-2. Journal of Palaeogeography(Chinese Edition), 21(5): 835-854] [22] 牟传龙,周恳恳,梁薇,葛祥英. 2011. 中上扬子地区早古生代烃源岩沉积环境与油气勘探. 地质学报, 85(4): 526-532. [Mou C L,Zhou K K,Liang W,Ge X Y.2011. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration. Acta Geologica Sinica, 85(4): 526-532] [23] 蒲泊伶,董大忠,王凤琴,王玉满,黄金亮. 2020. 沉积相带对川南龙马溪组页岩气富集的影响. 中国地质, 47(1): 111-120. [Pu B L,Dong D Z,Wang F Q,Wang Y M,Huang J L.2020. The effect of sedimentary facies on Longmaxi shale gas in southern Sichuan Basin. Geology in China, 47(1): 111-120] [24] 邱振,谈昕,卢斌,陈留勤. 2018. 四川盆地巫溪地区五峰组—龙马溪组硅质岩地球化学特征. 矿物岩石地球化学通报, 37(5): 880-887. [Qiu Z,Tan X,Lu B,Chen L Q.2018. Geochemical characteristics of cherts from the Wufeng and Longmaxi Formations in the Wuxi Area,Sichuan Basin. Bulletin of Mineralogy,Petrology and Geochemistry, 37(5): 880-887] [25] 邱振,邹才能,王红岩,董大忠,卢斌,陈振宏,刘德勋,李贵中,刘翰林,何江林,魏琳. 2020. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素. 天然气地球科学, 31(2): 163-175. [Qiu Z,Zou C N,Wang H Y,Dong D Z,Lu B,Chen Z H,Liu D X,Li G Z,Liu H L,He J L,Wei L.2020. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China. Natural Gas Geoscience, 31(2): 163-175] [26] 戎嘉余,陈旭,王怿,詹仁斌,刘建波,黄冰,唐鹏,吴荣昌,王光旭. 2011. 奥陶—志留纪之交黔中古陆的变迁: 证据与启示. 中国科学: 地球科学, 41(10): 1407-1415. [Rong J Y,Chen X,Wang Y,Zhan R B,Liu J B,Huang B,Tang P,Wu R C,Wang G X.2011. Northward expansion of Central Guizhou Oldland through the Ordovician and Silurian transition: evidence and implications. Scientia Sinica-Terrae, 41(10): 1407-1415] [27] 宋健,赵省民,陈登超,邓坚,苗忠英,明承栋,陆程. 2012. 内蒙古西部额济纳旗及邻区二叠纪暗色泥岩微量元素和稀土元素地球化学特征. 地质学报, 86(11): 63-70. [Song J,Zhao X M,Chen D C,Deng J,Miao Z Y,Ming C D,Lu C.2012. Rare earth and trace elements geochemical characteristics of the dark Permian mudstones in Ejinaqi and its surrounding areas,western Inner Mongolia. Acta Geologica Sinica, 86(11): 63-70] [28] 田洋,赵小明,王令占,涂兵,谢国刚,曾波夫. 2015. 鄂西南利川三叠纪须家河组地球化学特征及其对风化、物源与构造背景的指示. 岩石学报, 31(1): 261-272. [Tian Y,Zhao X M,Wang L Z,Tu B,Xie G G,Zeng B F.2015. Geochemistry of clastic rocks from the Triassic Xujiahe Formation,Lichuan area,southwestern Hubei: implications for weathering,provenance and tectonic setting. Acta Petrologica Sinica, 31(1): 261-272] [29] 万方,许效松. 2003. 川滇黔桂地区志留纪构造—岩相古地理. 古地理学报, 5(2): 180-186. [Wan F,Xu X S.2003. Tectonic-lithofacies palaeogeography of the Silurian in Sichuan-Yunnan-Guizhou-Guangxi region. Journal of Palaeogeography(Chinese Edition), 5(2): 180-186] [30] 王辰,刘建朝,张海东,杨阳,杨飞,张旭阳. 2017. 湘西花垣地区奥陶—志留系沉积岩稀土元素地球化学特征及地质意义. 矿物岩石地球化学通报, 36(3): 516-522. [Wang C,Liu J C,Zhang H D,Yang Y,Yang F,Zhang X Y.2017. REE geochemical characteristics of Ordovician-Silurian sedimentary rocks in the Huayuan Area,Hunan Province and their geological significances. Bulletin of Mineralogy,Petrology and Geochemistry, 36(3): 516-522] [31] 王淑芳,董大忠,王玉满,李新景,黄金亮. 2015. 四川盆地志留系龙马溪组富气页岩地球化学特征及沉积环境. 矿物岩石地球化学通报, 34(6): 1203-1212. [Wang S F,Dong D Z,Wang Y M,Li X J,Huang J L.2015. Geochemical characteristics the sedimentation environment of the gas-enriched shale in the Silurian Longmaxi Formation in the Sichuan Basin. Bulletin of Mineralogy,Petrology and Geochemistry, 34(6): 1203-1212] [32] 王玉满,李新景,董大忠,张晨晨,王淑芳. 2017. 上扬子地区五峰组—龙马溪组优质页岩沉积主控因素. 天然气工业, 37(4): 9-20. [Wang Y M,Li X J,Dong D Z,Zhang C C,Wang S F.2017. Main factors controlling the sedimentation of high-quality shale in Wufeng-Longmaxi Fm,Upper Yangtze region. Natural Gas Industry, 37(4): 9-20] [33] 王志峰,张元福,梁雪莉,程飞,金其虎,刘伟,张海波,李海鹏. 2014. 四川盆地五峰组—龙马溪组不同水动力成因页岩岩相特征. 石油学报, 35(4): 623-632. [Wang Z F,Zhang Y F,Liang X L,Cheng F,Jing Q H,Liu W,Zhang H B,Li H P.2014. Characteristics of shale lithofacies formed under different hydrodynamic conditions in the Wufeng-Longmaxi Formation,Sichuan Basin. Acta Petrolei Sinica, 35(4): 623-632] [34] 王中刚,于学元,赵振华. 1989. 稀土元素地球化学. 北京: 科学出版社. [Wang Z G,Yu X Y,Zhao Z H.1989. Geochemistry of Rare Earth Elements. Beijing: Science Press] [35] 文玲,胡书毅,田海芹. 2002. 扬子地区志留纪岩相古地理与石油地质条件研究. 石油勘探与开发, 29(6): 11-14. [Wen L,Hu S Y,Tian H Q.2002. Lithofacies paleogeography and petroleum geology of the Silurian in Yangtze area. Petroleum Exploration and Development, 29(6): 11-14] [36] 肖斌,刘树根,冉波,李智武,叶玥豪,李金玺,姜磊,王瀚,唐卫. 2017. 渝东北地区页岩的稀土元素地球化学特征. 煤炭学报, 42(11): 2936-2944. [Xiao B,Liu S G,Ran B,Li Z W,Ye Y H,Li J X,Jiang L,Wang H,Tang W.2017. Distribution characteristic of rare earth elements of shale in northeastern Chongqing. Journal of China Coal Society, 42(11): 2936-2944] [37] 熊小辉,王剑,余谦,杨宇宁,熊国庆,牛丙超,郭秀梅,邓奇. 2015. 富有机质黑色页岩形成环境及背景的元素地球化学反演: 以渝东北地区田坝剖面五峰组—龙马溪组页岩为例. 天然气工业, 35(4): 25-32. [Xiong X H,Wang J,Yu Q,Yang Y N,Xiong G Q,Niu B C,Guo X M,Deng Q.2015. Element geochemistry inversion of the environment and background of organic-rich black shale formations: a case study of the Wufeng-Longmaxi black shale in the Tianba section in northeastern Chongqing. Natural Gas Industry, 35(4): 25-32] [38] 张建军,牟传龙,周恳恳,冯丽霞,伍皓,陈小炜. 2017. 滇西户撒盆地芒棒组砂岩地球化学特征及物源区和构造背景分析. 地质学报, 91(5): 1083-1096. [Zhang J J,Mou C L,Zhou K K,Feng L X,Wu H,Chen X W.2017. Geochemical characteristic of sandstones from the Mangbang Formation in the Husa Basin,Western Yuannan,and its constraints on provenances and tectonic setting. Acta Geologica Sinica, 91(5): 1083-1096] [39] 张金亮,张鑫. 2007. 塔中地区志留系砂岩元素地球化学特征与物源判别意义. 岩石学报, 23(11): 2990-3002. [Zhang J L,Zhang X.2007. Element geochemistry of sandstones in the Silurian of central Tarim basin and the significance in provenance discrimination. Acta Petrologica Sinica, 23(11): 2990-3002] [40] 严德天,陈代钊,王清晨,汪建国. 2009. 扬子地区奥陶系—志留系界线附近地球化学研究. 中国科学(D辑: 地球科学), 39(3): 285-299. [Yan D T,Chen D Z,Wang Q C,Wang G J.2009. Geochemical study near the Ordovician Silurian boundary in the Yangtze Region. Science in China(Series D), 39(3): 285-299] [41] 杨刚,谢渊,刘建清,何利,杨瀚. 2019. 四川盆地西南缘雷波—永善地区志留系龙马溪组黑色页岩地球化学特征与意义. 四川地质学报, 39(4): 670-678. [Yang G,Xie Y,Liu J Q,He L,Yang H.2019. Geochemical characteristics and their significances of black shale of the Silurian Longmaxi Formation in the Leibo-Yongshan Region on the southwestern margin of the Sichuan Basin. Acta Geologica Sichuan, 39(4): 670-678] [42] 杨守业,李从先. 1999. REE示踪沉积物物源研究进展. 地球科学进展, 14(2): 63-66. [Yang S Y,Li C X.1999. Research progress in REE tracer for sediment source. Advances in Earth Science, 14(2): 63-66] [43] 尹福光,许效松,万方,陈明. 2001. 华南地区加里东期前陆盆地演化过程中的沉积响应. 地球学报, 22(5): 425-428. [Yi F G,Xu X S,Wan F,Chen M.2001. The sedimentary response to the evolutionary process of Caledonian foreland basin system in South China. Acta Geoscientia Sinica, 22(5): 425-428] [44] 张金川,徐波,聂海宽,汪宗余,林拓,姜生玲,宋晓微,张琴,王广源,张培先. 2008. 中国页岩气资源勘探潜力. 天然气工业,28(6): 136-140,159-160. [Zhang J C,Xu B,Nie H K,Wang Z Y,Lin T,Jiang S L,Song X W,Zhang Q,Wang G Y,Zhang P X.2008. Exploration potential of shale gas resources in China. Natural Gas Industry,28(6): 136-140,159-160] [45] 张琴,梁峰,王红岩,雷治安,漆麟. 2018. 页岩元素地球化学特征及古环境意义: 以渝东南地区五峰—龙马溪组为例. 中国矿业大学学报, 47(2): 380-390. [Zhang Q,Liang F,Wang H Y,Lei Z A,Qi L.2018. Elements geochemistry and paleo sedimentary significance: a case study of the Wufeng-Longmaxi shale in southeast Chongqing. Journal of China University of Mining & Technology, 47(2): 380-390] [46] 赵圣贤,杨跃明,张鉴,王兰生,王兴志,罗超,田冲. 2016. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比. 天然气地球科学, 27(3): 470-487. [Zhao S X,Yang Y M,Zhang J,Wang L S,Wang X Z,Luo C,Tian C.2016. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale,Sichuan Basin,SW China. Natural Gas Geoscience, 27(3): 470-487] [47] 郑宇龙,牟传龙,王秀平. 2019. 四川盆地南缘五峰组—龙马溪组沉积地球化学及有机质富集模式: 以叙永地区田林剖面为例. 地球科学与环境学报, 41(5): 541-560. [Zheng Y L,Mou C L,Wang X P.2019. Sedimentary geochemistry and patterns of organic matter enrichment of Wufeng-Longmaxi Formations in the Southern Margin of Sichuan Basin,China: a case study of Tianlin Profile in Xuyong Area. Journal of Earch Sciences and Environment, 41(5): 541-560] [48] 周圆圆,邱楠生,腾格尔,王杰,曹涛涛,罗厚勇. 2016. 茂名油柑窝组油页岩元素地球化学特征及其地质意义. 矿物岩石地球化学通报, 35(6): 1270-1279. [Zhou Y Y,Qiu N S,Tenger,Wang J,Cao T T,Luo H Y.2016. Geochemical characteristics and the geological significance of oil shales from the Youganwo Formation,Maoming Basin,China. Bulletin of Mineralogy,Petrology and Geochemistry, 35(6): 1270-1279] [49] Allègre C J,Minster J F.1978. Quantitative models of trace element behavior in magmatic processes. Earth & Planetary Science Letters, 38(1): 1-25. [50] Bhatia M R.1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sedimentary Geology, 45(1-2): 97-113. [51] Bhatia M R,Crook K A W.1986. Trace element characteristics of greywackes and tectonic discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. [52] Chen C,Mu C L,Zhou K K,Liang W,Ge X Y,Wang X P,Wang Q Y,Zheng B S.2016. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin,South China. Marine and Petroleum Geology, 76: 159-175. [53] Condie K C.1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104(1-4): 1-37. [54] Eltom H,Abdullatif O,Makkawi M,Abdulraziq A.2017. Microporosity in the Upper Jurassic Arab-d carbonate reservoir,central Saudi Arabia: an outcrop analogue study. Journal of Petroleum Geology,36(3): 281-297. [55] Floyd P A,Leveridge B E.1987. Tectonic environment of the Devonian Gramscatho Basin,south Cornwall: framework mode and geochemical evidence from turbidite sandstones. Journal of the Geological Society, 144(4): 531-542. [56] Han S B,Zhang J C,Wang C S,Tang X.2018. Elemental geochemistry of lower Silurian Longmaxi shale in southeast Sichuan Basin,South China: constraints for paleoenvironment. Geological Journal, 53(4): 1458-1464. [57] Haskin L A,Wildeman T R,Frey F A,Collins K A,Keedy C R,Haskin M A.1966. Rare earths in sediments. Journal of Geophysical Research, 71(24): 6091-6105. [58] Hayashi K I,Fujisawa H,Holland H D,Ohmoto H.1997. Geochemistry of ~1.9 ga sedimentary rocks from northeastern Labrador,Canada. Geochimica Et Cosmochimica Acta,61(19): 4115. [59] Jones B,Manning D A C.1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology,111(1/2/3/4): 111-129. [60] Melchin M J,Mitchell C E,Holmden C,Storch P.2013. Environmental changes in the Late Ordovician-Early Silurian: review and new insights from black shales and nitrogen isotopes. Geological Society of America Bulletin, 125(11-12): 1635-1670. [61] Morad S,Felitsyn S.2001. Identification of primary Ce-anomaly signatures in fossil biogenic apatite: implication for the Cambrian oceanic anoxia and phosphogenesis. Sedimentary Geology, 143(3-4): 259-264. [62] Moradi A V,Sari A,Akkaya P.2016. Geochemistry of the Miocene oil shale(hanili formation)in the Ankr-orum Basin,central Turkey: implications for paleoclimate conditions,source-area weathering,provenance and tectonic setting. Sedimentary Geology, 341: 289-303. [63] Morford J L,Emerson S.1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta,63(11/12): 1735-1750. [64] Rasmussen B,Buick R,Taylor W R.1998. Removal of oceanic REE by authigenic precipitation of phosphatic minerals. Earth & Planetary Science Letters, 164(1): 135-149. [65] Roser B P,Korsch R J.1986. Determination of tectonic setting of sandstone-mudstone suites using content and ratio. The Journal of Geology, 94: 635-650. [66] Rudnick R L,Gao S,Ling W L,Liu Y S,Mcdonough W F.2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia,north China craton. Lithos,77(1-4): 609-637. [67] Shields G,Stille P.2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175(1-2): 29-48. [68] Tawfik H A,Ghandour I M,Maejima W,Armstrong A J S,Hameed A A.2015. Petrography and geochemistry of the siliciclastic araba formation(Cambrian),East Sinai,Egypt: implications for provenance,tectonic setting and source weathering. Geological Magazine,154(1): 1-23. [69] Wang Z W,Wang J,Fu X G,Zhan W Z,Armstrong A J S,Zeng S Q.2018. Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin,Tibet: implications for paleoenvironment,provenance,and tectonic setting. Journal of Asian Earth Sciences, 160: 118-135. [70] Wignall P B.1994. Black Shales. Oxford,UK: Oxford Press. [71] Wilde P,Quinby-Hunt M S,Erdtmann B D.1996. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sedimentary Geology, 101(1-2): 43-53. [72] Wright J,Schrader H,Holser W T.1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta, 51(3): 631-644. [73] Zhao S Z,Li Y,Min H J,Yu Q,Wang Z J,Deng T,Liu H,Chen J.2019. Mechanisms controlling organic matter enrichment in the Lower Silurian Longmaxi Formation black shale unit,southwestern margin of the Yangtze Platform,China. Arabian Journal of Geosciences, 12: 252-267. [74] Zheng B S,Zhou R J,Mou C L,Wang X P,Xiao Z H,Chen Y.2020. Nature of the Late Ordovician-Early Silurian Xiaohe section,Hunan-Hubei area,South China: implications for the Kwangsian Orogeny. International Geology Review,62(10):1262-1272.