Abstract Wave-current interaction is one of the main types of flow interaction under complex hydrodynamic system,and the deposits of combined flow affected by wave-current interaction is one of the common sedimentary types studied in this area. In this paper,the movement mechanism of fine-grained sand and the sedimentary features under the wave-current interaction are reviewed and predicted,and the identification characteristics of sedimentary structures of combined-flow are summarized. The main conclusions include: (1)wave-current interaction leads to the waning flow suspended deposits in general. The microsedimentary mechanism include: the spray deposit beyond brink point(S1),residual vortex deposit(S2),the spray deposit under brink point(S3),avalanching deposit in the lee side(S4),vertical falling deposit(S5);(2)deposition processes under wave-current interaction are mainly controlled by the suspended sand amount and the deposition time,and the five sedimentary mechanisms resulted in different deposition associations and different morphologies of sea bed;(3)the identification on sedimentary structures of combined flow include: combined-flow ripple,combined-flow-ripple lamination,climbing combined-flow-ripple lamination,asymmetry hummocky cross-bedding,quasi-planar lamination,and frequent alternation of wave-ripple and current-ripple bedding. The studies in this paper are significant for understanding the sedimentology under complex hydrodynamic conditions and the identification of deep-water and shallow water sedimentary environments.
Fund:Co-funded by the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources(No. J1901-16)and the National Natural Science Foundation of China(No.41272119)
Cite this article:
Li Xiang-Dong. Mechanism of wave-current interaction and identification of sedimentary structures of combined-flow[J]. JOPC, 2022, 24(1): 45-60.
Li Xiang-Dong. Mechanism of wave-current interaction and identification of sedimentary structures of combined-flow[J]. JOPC, 2022, 24(1): 45-60.
[1]方欣华,杜涛. 2004. 海洋内波基础和中国海内波. 山东青岛: 中国海洋大学出版社,16-52. [Fang X H,Du T.2004. Foundamentals of Oceanic Internal Waves and Internal Waves in the China Seas. Shandong Qingdao: China Ocean University Press,16-52] [2]龚一鸣,徐冉,李保华. 2003. 分叉波痕在广西上泥盆统钙质浊积岩中的发现及意义. 地质论评, 19(1): 379-382. [Gong Y M,Xu R,Li B H.2003. Ripple marks with bifurcation from the calcareous turbidite sequence of the Upper Devonian in Guangxi,South China. Geological Review, 19(1): 379-382] [3]赖志云,赖庆伟. 2010. 丘状交错层理的成因探讨. 石油天然气学报(江汉石油学院学报), 32(5): 42-45. [Lai Z Y,Lai Q W.2010. Study on the genesis of moundy cross-stratification. Journal of Oil and Gas Technology, 32(5): 42-45] [4]李向东. 2013. 关于深水环境下内波、内潮汐沉积分类的探讨. 地质论评, 59(6): 1097-1109. [Li X D.2013. Proposed classification of internal-wave and internal-tide deposits in deep-water environment. Geological Review, 59(6): 1097-1109] [5]李向东. 2020a. 浅议沉积学中的流体问题. 世界地质, 39(1): 45-55. [Li X D.2020a. An overview of hydromechanics in sedi mentology. Global Geology, 39(1): 45-55] [6]李向东. 2020b. 丘状和似丘状交错层理成因机制研究进展. 古地理学报, 22(6): 1065-1080. [Li X D.2020b. Advances in genetic mechanism research on hummocky and hummocky-like cross-stratifications. Journal of Palaeogeography(Chinese Edition), 22(6): 1065-1080] [7]李向东,何幼斌,郑昭昌,刘娜,王丹,罗进雄,李华. 2010. 宁夏香山群徐家圈组发现深水复合流沉积构造. 地质学报, 84(2): 221-232. [Li X D,He Y B,Zheng Z C,Liu N,Wang D,Luo J X,Li H.2010. Deep-water combined-flow sedimentary structures in Xujiajuan Formation of Xiangshan Group,Ningxia. Acta Geologica Sinica, 84(2): 221-232] [8]李向东,陈海燕,陈洪达. 2019. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积. 地球科学进展, 34(12): 1301-1305. [Li X D,Chen H Y,Chen H D.2019. Deep-water combined-flow deposits of the upper Ordovician Lashenzhong Formation in Zhuozishan area,western margin of Ordos Basin. Advances in Earth Science, 34(12): 1301-1305] [9]林缅,袁志达. 2005. 振荡流作用下波状底床上流场特性的实验研究. 地球物理学报, 48(6): 1466-1474. [Lin M,Yuan Z D.2005. Investigation of characteristics of fluid field over wavy beds under oscillatory flow. Chinese Journal of Geophysics, 48(6): 1466-1474] [10]师庆民,冯乐,窦鲁星,刘绍莉,江煜波,孙晓倩. 2013. 基于驻波理论解释丘状交错层理: 以徐州地区贾园组风暴沉积为例. 沉积学报, 31(6): 1008-1013. [Shi Q M,Feng L,Dou L X,Liu S L,Jiang Y B,Sun X Q.2013. Explaining hummocky cross-stratification based on the theory of standing wave: a case from Jiayuan Group storm deposits in Xuzhou. Acta Sedimentologica Sinica, 31(6): 1008-1013] [11]王家豪,王华,曾劲彪,程海. 2017. 山东省中部上寒武统碳酸盐风暴沉积的综合模式. 地球科学, 42(1): 68-77. [Wang J H,Wang H,Zeng J B,Cheng H.2017. Integrative depositional model for carbonate tempestites in Upper Cambrian,central Shandong Province. Earth Science, 42(1): 68-77] [12]王涛,李家春. 1999. 波流相互作用研究进展. 力学进展, 29(3): 331-343. [Wang T,Li J C.1999. On wave-current interaction.Advances in Mechanics, 29(3): 331-343] [13]项立辉,刘健,曹志敏. 2007. 丘状交错层理研究述评. 海洋地质动态, 23(8): 19-24. [Xiang L H,Liu J,Cao Z M.2007. Review of hummocky cross-stratification research. Marine Geology Letter, 23(8): 19-24] [14]许安涛,李凤杰,刘奎,向鹏飞,赵晨圆,胡鹏. 2018. 北川甘溪下泥盆统风暴岩沉积特征及其沉积模式. 中国地质, 45(5): 1049-1062. [Xu A T,Li F J,Liu K,Xiang P F,Zhao C Y,Hu P.2018. The characteristics and sedimentary model of storm deposits in the Lower Devonian strata of Beichuan. Geology in China, 45(5): 1049-1062] [15]徐祥德,冉令坤. 2007. 波流相互作用与波动传播模态. 大气科学, 31(6): 1237-1250. [Xu X D,Ran L K.2007. Wave-flow interaction and wave-propagation modes. Chinese Journal of Atmospheric Sciences, 31(6): 1237-1250] [16]张昊,李凤杰,沈凡,陈政安,倪子尧. 2019. 四川盆地龙门山区甘溪石沟里泥盆系养马坝组风暴沉积特征及其地质意义. 古地理学报, 21(3): 441-450. [Zhang H,Li F J,Shen F,Chen Z A,Ni Z Y.2019. Storm deposits characteristics and its geological significance in the Devonian Yangmaba Formation from Shigouli section,Longmenshan area,Sichuan Basin. Journal of Palaeogeography(Chinese Edition), 21(3): 441-450] [17]钟建华,倪良田,邵珠福,李勇,刘选,毛毳,刘圣鑫,孙宁亮,陈彬,王凯,罗可,王韶洁,刘闯,刘宝,熊志强. 2016. 青岛灵山岛下白垩统风暴岩与风暴沉积的发现及意义. 古地理学报, 18(3): 381-398. [Zhong J H,Ni L T,Shao Z F,Li Y,Liu X,Mao C,Liu S X,Sun N L,Chen B,Wang K,Luo K,Wang S J,Liu C,Liu B,Xiong Z Q.2016. Tempestites and storm deposits in the Lower Cretaceous from Lingshan Island,Qingdao. Journal of Palaeogeography(Chinese Edition), 18(3): 381-398] [18]Arnott R W C.1993. Quasi-planar-laminated sandstone beds of the Lower Cretaceous Bootlegger Member,north-central Montana: evidence of combined-flow sedimentation. Journal of Sedimentary Research, 63(3): 488-494. [19]Arnott R W,Southard J B.1990. Exploratory flow-duct experiments on combined-flow bed configurations and some implications for interpreting storm-event stratification. Journal of Sedimentary Petrology, 60(2): 211-219. [20]Basilici G,de Luca P H V,Poiré D G.2012. Hummocky cross-stratification-like structures and combined-flow ripples in the Punta Negra Formation(Lower-Middle Devonian,Argentine Precordillera): a turbiditic deep-water or storm-dominated prodelta inner-shelf system? Sedimentary Geology, 267-268: 73-92. [21]Banerjee I.1996. Population,trands,and cycles in combined-flow bedforms. Journal of Sedimentary Research, 66(5): 868-874. [22]Bowman A P,Howard D, Johnson H D.2014. Storm-dominated shelf-edge delta successions in a high accommodation setting: the palaeo-Orinoco Delta(Mayaro Formation),Columbus Basin,South-East Trinidad. Sedimentology, 61(3): 792-835. [23]Christensen D F,Brinkkemper J,Ruessink G,Aagaard T.2019. Field observations of intra-wave sediment suspension and transport in the intertidal and shallow subtidal zones. Marine Geology, 413: 10-26. [24]Collins D S,Johnson H D,Allison P A,Guilpain P,Damit A R.2017. Coupled ‘storm-flood’ depositional model: application to the Miocene-Modern Baram Delta Province,north-west Borneo. Sedimentology, 64(5): 1203-1235. [25]Davies A G,Soulsby R L,King H L.1988. A numerical model of the combined wave and current bottom boundary layer. Journal of Geophysical Research,93(C1): 491-508. [26]Doucette J S,O’Donoghue T.2006. Response of sand ripples to change in oscillatory flow. Sedimentology, 53(3): 581-596. [27]Dumas S,Arnott R W C,Southard J B.2005. Experiments on oscillatory-flow and combined-flow bed forms: implications for interpreting parts of the shallow-marine sedimentary record. Journal of Sedimentary Research, 75(3): 501-513. [28]Dumas S,Arnott R W C.2006. Origin of hummocky and swaley cross-stratification: The controlling influence of unidirectional current strength and aggradation rate. Geology, 34(12): 1073-1076. [29]Felletti F,Dall’olio E,Muttoni G.2016. Determining flow directions in turbidites: an integrated sedimentological and magnetic fabric study of the Miocene Marnoso Arenacea Formation(northern Apennines,Ita ly). Sedimentary Geology, 335: 197-215. [30]Harazim D,Mcilroy D.2015. Mud-rich density-driven flows along an early Ordovician storm-dominated shoreline: implications for shallow-marine facies models. Journal of Sedimentary Research, 85(5): 509-528. [31]Harms J C.1969. Hydraulic significance of some sand ripples. Geological Society of America Bulletin, 80(3): 363-396. [32]Hill P R,Meulé S,Longuépée H.2003. Combined-flow processes and sedimentary structures on the shoreface of the wave-dominated grande-riviére-de-la-baleine delta. Journal of Sedimentary Research, 73(2): 217-226. [33]Ghienne J F,Girard F,Moreau J,Rubino J I.2010. Late Ordovician climbing-dune cross-stratification: a signature of outburst floods in proglacial outwash environments? Sedimentology, 57(5): 1175-1198. [34]Greenwood B.1986. Hummocky cross-stratification in the surf zone: flow parameters and bedding genesis. Sedimentology, 33(1): 33-45. [35]Jobe Z R,Lowe D R,Morris W R.2012. Climbing-ripple successions in turbidite systems: depositional environments,sedimentation rates and accumulation times. Sedimentology, 59(3): 867-898. [36]Lamb M P,Myrow P M,Lukens C,Houck K,Strauss J.2008. Deposits from wave-influenced turbidity currents: Pennsylvanian Minturn Formation,Colorado,USA. Journal of Sedimentary Research, 78(7): 480-498. [37]Li M Z,Amos C L.1999. Sheet flow and large wave ripples under combined wave and currents: field observations,model predictions and effects on boundary layer dynamics.Continental Shelf Research, 19(5): 637-663. [38]Li M,O’Connor B A.2007. Numerical study of sediment transport above rippled beds under the action of combined waves and currents. Sedimentology, 54(6): 1345-1363. [39]Lu J,Wang X H,Babanin A V,Aijaz S,Qiao F.2017. Modeling of suspended sediment concentrations under combined wave-current flow over rippled bed. Estuarine,Coastal and Shelf Science, 199: 59-73. [40]McKie T.1994. Geostrophic versus friction-dominated storm flow: palaeo current evidence from the Late Permian Brotherton Formation,England. Sedimentary Geology, 93(1-2): 73-84. [41]Meene J W H,Boersma J R,Terwindt J H J.1996. Sedimentary structures of combined flow deposits from the shoreface-connected ridges along the central Dutch coast. Marine Geology, 131(3-4): 151-175. [42]Midtgaard H.1996. Inner-shelf to lower-shoreface hummocky sandstone bodies with evidence for geostrophic influenced combined flow,Lower Cretaceous,West Greenland. Journal of Sedimentary Research, 66(2): 343-353. [43]Molgat M,Arnott R W C.2001. Combined tide and wave influence on sedimentation patterns in the Upper Jurassic Swift Formation,south-eastern Alberta. Sedimentology, 48(6): 1353-1369. [44]Morsilli M,Pomar L.2012. Internal waves vs. surface storm waves: a review on the origin of hummocky cross-stratification.Terra Nova, 24(4): 273-282. [45]Mulder T,Razin P,Faugeres J C.2009. Hummocky cross-stratification-like structures in deep-sea turbidites: Upper Cretaceous Basque basins(Western Pyrenees,France).Sedimentology, 56(4): 997-1015. [46]Myrow P M,Southard J B.1991. Combined-flow model for vertical stratification sequences in shallow marine storm-deposited beds. Journal of Sedimentary Petrology, 61(2): 202-210. [47]Myrow P M,Fischer W,Goodge J W.2002. Wave-modified turbidites: combined-flow shoreline and shelf deposits,Cambrian,Antarctica. Journal of Sedimentary Research, 72(5): 641-656. [48]Nøttvedt A,Kreisa R D.1987. Model for the combined-flow origin of hummocky cross-stratification. Geology, 15(4): 357-361. [49]Patacci M,Haughton P D W,Mccaffrey W D.2014. Rheological com plexity in sediment gravity flows forced to decelerate against a confining slope,Braux,SE France. Journal of Sedimentary Research, 84(4): 270-277. [50]Paz M,Ponce J J,Buatois L A,Mngano M G,Carmona N B,Pereira E,Desjardins P R.2019. Bottomset and foreset sedimentary processes in the mixed carbonate-siliciclastic Upper Jurassic-Lower Cretaceous Vaca Muerta Formation,Picún Leufú Area,Argentina.Sedimentary Geology, 389: 161-185. [51]Perillo M M,Best J L,Garcia M H.2014a. A new phase diagram for combined-flow bedforms. Journal of Sedimentary Research, 84(4): 301-313. [52]Perillo M M,Best J L,Yokokawa M,Sekiguchi T,Takagawa T,Garcia M H.2014b. A unified model for bedform development and equilibrium under unidirectional,oscillatory and combined-flows. Sedimentology, 61(7): 2063-2085. [53]Plint A G,Macquaker J H S,Varban B L.2012. Bedload transport of mud across a wide,storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation,Western Canada foreland basin. Journal of Sedimentary Research, 82(11): 801-822. [54]Prave A R,Duke W L.1990. Small-scale hummocky cross-stratification in turbidites: a form of antidune stratification? Sedimentology, 37(3): 531-539. [55]Pomar L,Molina J M,Ruiz-Ortiz P A,Vera J A.2019. Storms in the deep: tempestite- and beach-like deposits in pelagic sequences(Jurassic,Subbetic,South of Spain).Marine and Petroleum Geology, 107: 365-381. [56]Quin J M.2011. Is most hummocky cross-stratification formed by large-scale ripples? Sedimentology, 58(6): 1414-1433. [57]Raaf de J F M,Boersma J R,Gelder V A.1977. Wave-generated structures and sequences from a shallow marine succession,Lower Carboniferous,County Cork,Ireland. Sedimentology, 24(4): 451-483. [58]Raushan P K,Singh S K,Debnath K,Mukherjee M,Mazumder B S.2018. Distribution of turbulent energy in combined wave current flow. Ocean Engineering, 167: 310-316. [59]Ribberink J S,Werf J J,O’Donoghue T. 2007. Sand motion induced by oscillatory flows: Sheet flow and vortex ripples.In: Geurts B J et al(eds). Particle Laden Flow: From Geophysical to Kolmogorov Scales. Springer,3-14. [60]Ruessink B G,Michallet H,Abreu T,Sancho F,van der A D A,van der Werf J J,Silva P A.2011. Observations of velocities,sand concentrations,and fluxes under velocity-asymmetric oscillatory flows. Journal of Geophysical Research, 116: C03004. [61]Singh S K,Debnath K.2016. Combined effects of wave and current in free surface turbulent flow. Ocean Engineering, 127: 170-189. [62]Southard J B,Lambie J M,Federico D C,Pile H T,Weidman C R.1990. Experiments on bed configurations in fine sands under bidirectional purely oscillatory flow,and the origin of hummocky cross-stratification. Journal of Sedimentary Petrology, 60(1): 1-17. [63]Tinterri R,Magalhaes P M,Tagliaferri A,Cunha R S.2016. Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes: examples from the Marnoso-arenacea Formation(northern Italy)and Annot Sandstones(south eastern France). Sedimentary Geology, 344: 382-407. [64]Villard P V,Osborne P D.2002. Visualization of wave-induced suspension patterns over two-dimensional bedforms. Sedimentology, 49(2): 363-378. [65]Wagoner de Meene J W H,Boersma J R,Terwindt J H J.1996. Sedimentary structures of combined flow deposits from the shoreface-connected ridges along the central Dutch coast. Marine Geology, 131(3-4): 151-175. [66]Wu X,Parsons D R.2019. Field investigation of bedform morphodynamics under combined flow. Geomorphology, 339: 19-30. [67]Yamaguchi N,Sekiguchi H.2010. Effects of settling and preferential deposi tion of sediment on ripple roundness under shoaling waves. Journal of Sedimentary Research, 80(9): 781-790. [68]Yokokawa M.1995. Combined-flow ripples: genetic experiments and applications for geologic records.In: Memoirs from the Faculty of Science: Kyushu University,Series D. Earthand Planetary Sciences,Fukuoka,Japan, 29(1): 38. [69]Yokokawa M,Masuda F,Endo N.1995. Sand particle movement on migrating combined-flow ripples. Journal of Sedimentary Research,A65(1): 40-44. [70]Zedler E A,Street R L.2006. Sediment transport over ripples in oscillatory flow. Journal of Hydraulic Engineering, 132(2): 180-193. [71]Zhang C,Zheng J H,Wang Y G,Demirbilek Z.2011. Modeling wave-current bottom boundary layers beneath shoaling and breaking waves. Geo-Marine Letters, 31(1): 189-201.