Abstract Hummocky and hummocky-like cross-stratification(HCS and HCS-like)as the identification criteria for sedimentary environments have recently become confused because of the little knowledge on their genetic mechanism based on the following facts: HCS and HCS-like are often associated with storm deposits and turbidity current deposits,respectively; the views on HCS produced in shallow water environments and HCS-like produced in deep-water environments have been abandoned recently. According to the detail reviews on structural and morphologic characteristics and vertical sequence of HCS and HCS-like from literatures,here we found that: (1) the special features of HCS include the sharp or erosional basal contact,the internal truncation surface,close relationship with swaley cross-stratification,and the missing zone or amalgamation of HCS in vertical sequence;(2) the special features of HCS-like often include various thickness of individual lamina,hummocky layer interbedded with parallel bedding or small-scale cross-bedding under continuous deposition,and alternating sedimentary structures of upper and lower flow regime in vertical sequence. According to hydrodynamic theory and flume experiment achievements,these results show that the genetic mechanism of HCS and HCS-like could be divided into two parts,hydrodynamic mechanism and depositional mechanism. The hydrodynamic mechanism of HCS and HCS-like is same and could be interpreted by vertical vortex generated by baroclinic wave in nature. However,depositional mechanism of HCS and HCS-like is very different: HCS and HCS-like could be interpreted by erosion suspending sand mechanism and suspending sand settling mechanism,respectively,and the special features in HCS and HCS-like are due to the different sediment suspension concentration and depositional flow energy. The division for hydrodynamic and depositional mechanism of HCS and HCS-like is very significant in determining sedimentary environments from depositional flow evolution perspective.
[1] 陈锐明,罗根明,张克信,林启祥,寇晓虎. 2009. 青海同仁地区早三叠世晚期风暴岩的发现及其意义. 地质通报, 28(1): 63-71. [Chen R M,Luo G M,Zhang K X,Lin Q X,Kou X H.2009. Discovery of late Early Triassic tempestite in Tongren area,Qinghai,China and its significance. Geological Bulletin of China,28(1): 63-71] [2] 何幼斌,王文广. 2007. 沉积岩与沉积相. 北京: 石油工业出版社,38-39. [He Y B,Wang W G.2007. Sedimentary Rocks and Sedimentary Facies. Beijing: Petroleum Industry Press,38-39] [3] 赖志云,赖庆伟. 2010. 丘状交错层理的成因探讨. 石油天然气学报(江汉石油学院学报), 32(5): 42-45. [Lai Z Y,Lai Q W.2010. Study on the genesis of moundy cross-stratification. Journal of Oil and Gas Technology, 32(5): 42-45] [4] 李向东,何幼斌,郑昭昌,刘娜,王丹,罗进雄,李华. 2010. 宁夏香山群徐家圈组发现深水复合流沉积构造. 地质学报, 84(2): 221-232. [Li X D,He Y B,Zheng Z C,Liu N,Wang D,Luo J X,Li H.2010. Deep-water combined-flow sedimentary structures in Xujiajuan Formation of Xiangshan Group,Ningxia. Acta Geologica Sinica, 84(2): 221-232] [5] 李向东,陈海燕,陈洪达. 2019. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积. 地球科学进展, 34(12): 1301-1315. [Li X D,Chen H Y,Chen H D.2019. Deep-water combined-flow deposits of the Upper Ordovician Lashenzhong Formation in Zhuozishan Area,western margin of Ordos Basin. Advances in Earth Science, 34(12): 1301-1315] [6] 马瑞申,张良,杜远生,汪校锋. 2011. 豫北地区寒武系风暴岩沉积特征及其地质意义. 地质科技情报, 30(4): 15-20. [Ma R S,Zhang L,Du Y S,Wang X F.2011. Sedimentary characteristics and its geological implications of Cambrian tempestite in northern Henan Province. Geological Science and Technology Information, 30(4): 15-20] [7] 乔秀夫,宋天锐,高林志,彭阳,李海兵,高励,宋彪,张巧大. 1994. 碳酸盐岩振动液化地震序列. 地质学报, 68(1): 16-32. [Qiao X F,Song T R,Gao L Z,Peng Y,Li H B,Gao L,Song B,Zhang Q D.1994. Seismic sequence in carbonate rocks by vibrational liquefaction. Acta Geologica Sinica, 68(1): 16-32] [8] 沈锡昌. 1987. 一种新的波痕类型: 涡流波痕. 地质科技情报, 6(1): 101. [Shen X C.1987. A new wave-ripple type: Vortex wave-ripple. Geological Science and Technology Information, 6(1): 101] [9] 师庆民,冯乐,窦鲁星,刘绍莉,江煜波,孙晓倩. 2013. 基于驻波理论解释丘状交错层理:以徐州地区贾园组风暴沉积为例. 沉积学报, 31(6): 1008-1013. [Shi Q M,Feng L,Dou L X,Liu S L,Jiang Y B,Sun X Q.2013. Explaining hummocky cross-stratification based on the theory of standing wave: A case from Jiayuan Group storm deposits in Xuzhou. Acta Sedimentologica Sinica, 31(6): 1008-1013] [10] 王家豪,王华,曾劲彪,程海. 2017. 山东省中部上寒武统碳酸盐风暴沉积的综合模式. 地球科学, 42(1): 68-77. [Wang J H,Wang H,Zeng J B,Cheng H.2017. Integrative depositional model for carbonate tempestites in Upper Cambrian,Central Shandong Province. Earth Science, 42(1): 68-77] [11] 魏小洁,姜在兴,李一凡,张元福,赵伯宇,王俊辉. 2014. 渤海湾盆地东营凹陷利津洼陷古近系沙河街组湖相风暴沉积特征及控制因素. 古地理学报, 16(3): 377-384. [Wei X J,Jiang Z X,Li Y F,Zhang Y F,Zhao B Y,Wang J H.2014. Sedimentary characteristics and controlling factors of lacustrine storm deposits of the Paleogene Shahejie Formation in Lijin sag,Dongying Depression,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition), 16(3): 377-384] [12] 项立辉,刘健,曹志敏. 2007. 丘状交错层理研究述评. 海洋地质动态, 23(8): 19-24. [Xiang L H,Liu J,Cao Z M.2007. Review of hummocky cross-stratification research. Marine Geology Letter, 23(8): 19-24] [13] 许安涛,李凤杰,刘奎,向鹏飞,赵晨圆,胡鹏. 2018. 北川甘溪下泥盆统风暴岩沉积特征及其沉积模式. 中国地质, 45(5): 1049-1062. [Xu A T,Li F J,Liu K,Xiang P F,Zhao C Y,Hu P.2018. The characteristics and sedimentary model of Storm deposits in the Lower Devonian strata of Beichuan. Geology in China, 45(5): 1049-1062] [14] 张昊,李凤杰,沈凡,陈政安,倪子尧. 2019. 四川盆地龙门山区甘溪石沟里泥盆系养马坝组风暴沉积特征及其地质意义. 古地理学报, 21(3): 441-450. [Zhang H,Li F J,Shen F,Chen Z A,Ni Z Y.2019. Storm deposits characteristics and its geological significance in the Devonian Yangmaba Formation from Shigouli section,Longmenshan area,Sichuan Basin. Journal of Palaeogeography(Chinese Edition), 21(3): 441-450] [15] 郑斌嵩,牟传龙,梁薇,陈超. 2018. 扬子地台东南缘下寒武统清虚洞组风暴沉积特征及其重要意义. 地质学报, 92(7): 1524-1540. [Zheng B S,Mou C L,Liang W,Chao C.2018. The characteristics of storm deposits of the Lower Cambrian Qingxudong Formation in the southeastern margin of Yangtze platform and its significance. Acta Geologica Sinica, 92(7): 1524-1540] [16] 郑洽馀,鲁钟琪. 1980. 流体力学. 北京: 机械工业出版社: 262-305. [Zheng Q Y,Lu Z Q.1980. Fluid Mechanics. Beijing: China Machine Press,262-305] [17] 钟建华,倪良田,邵珠福,李勇,刘选,毛毳,刘圣鑫,孙宁亮,陈彬,王凯,罗可,王韶洁,刘闯,刘宝,熊志强. 2016. 青岛灵山岛下白垩统风暴岩与风暴沉积的发现及意义. 古地理学报, 18(3): 381-398. [Zhong J H,Ni L T,Shao Z F,Li Y,Liu X,Mao C,Liu S X,Sun N L,Chen B,Wang K,Luo K,Wang S J,Liu C,Liu B,Xiong Z Q.2016. Tempestites and storm deposites in the Lower Cretaceous from Lingshan Island,Qingdao. Journal of Palaeogeography(Chinese Edition), 18(3): 381-398] [18] Allen P A.1985. Hummocky cross-stratification is not produced purely under progressive gravity waves. Nature, 313(6003): 562-564. [19] Aguirre J,Braga J C,Martín J M,Puga-Bernabéu Á,Pérez-Asensio J N,Snchez-Almazo I M,Génio L.2015. An enigmatic kilometer-scale concentration of small mytilids(Late Miocene,Guadalquivir Basin,S Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 436: 199-213. [20] Arnott R W C,Hand B M.1989. Bedforms,primary structures and grain fabric in the presence of suspended sediment rain. Journal of Sedimentary Petrology, 59(6): 1062-1069. [21] Arnott R W,Southard J B.1990. Exploratory flow-duct experiments on combined-flow bed configurations and some implications for interpreting storm-event stratification. Journal of Sedimentary Petrology, 60(2): 211-219. [22] Basilici G,de Luca P H V,Poiré D G.2012. Hummocky cross-stratification-like structures and combined-flow ripples in the Punta Negra Formation(Lower-Middle Devonian,Argentine Precordillera): A turbiditic deep-water or storm-dominated prodelta inner-shelf system? Sedimentary Geology, 267-268: 73-92. [23] Bdenas B,Aurell M,Gasca J M.2018. Facies model of a mixed clastic-carbonate,wave-dominated open-coast tidal flat(Tithonian-Berriasian,north-east Spain). Sedimentology, 65(5): 1631-1666. [24] Bourgeois J.1980. A transgressive shelf sequence exhibiting hummocky cross-stratification: The Cape Sebastian sandstone(Upper Cretaceous),south-western Oregon. Journal of Sedimentary Petrology, 50(3): 681-702. [25] Brenchley P J.1989. Storm sedimentation.Geology Today,5(4):133-137. [26] Bridge J S,Best J L.1988. Flow,sediment transport and bedform dynamics over the transition from dunes to upper-stage plane beds: Implications for the formation of planar laminae. Sedimentology, 35(5): 753-763. [27] Campbell C V.1966. Truncated wave-ripple lamina. Journal of Sedimentary Petrology, 36(3): 825-828. [28] Cheel R J,Leckie D A.1992. Coarse-grained storm beds of the Upper Cretaceous Chungo Member(Wapiabi Formation),southern Alberta,Canada. Journal of Sedimentary Petrology, 62(6): 933-945. [29] Craft H,Bridge S.1987. Shallow-marine sedimentary processes in the Late Devonian Catskill Sea,New York State. GSA Bulletin, 98(3): 338-355. [30] Datta B,Sarkar S,Chaudhuri A K.1999. Swaley cross-stratification in medium to coarse sandstone produced by oscillatory and combined flows: Examples from the Proterozoic Kansapathar Formation,Chhattisgarh Basin, M.P., India. Sedimentary Geology, 129(1-2): 51-70. [31] DeCelles P G,Cavazza W.1992. Constraints on the formation of Pliocene hummocky cross-stratification in Calabria(Southern Italy)from consideration of hydraulic and dispersive equivalence,grain-flow theory,and suspended-load fallout rate. Journal of Sedimentary Petrology, 62(4): 555-568. [32] Dott R H Jr,Bourgeois J.1982. Hummocky stratification: Significance of variable bedding sequences. Geological Society of America Bulletin, 93(8): 663-680. [33] Dott R H Jr,Bourgeois J.1983. Hummocky stratification: Significance of its variable bedding sequences: Reply. Geological Society of America Bulletin, 94(10): 1249-1251. [34] Duke W L.1985. Hummocky cross-stratification,tropical storms,and intense winter storms. Sedimentology, 32(2): 167-194. [35] Dumas S,Arnott R W C,Southard J B.2005. Experiments on oscillatory-flow and combined-flow bed forms: Implications for interpreting parts of the shallow-marine sedimentary record. Journal of Sedimentary Research, 75(3): 501-513. [36] Dumas S,Arnott R W C.2006. Origin of hummocky and swaley cross-stratification: The controlling influence of unidirectional current strength and aggradation rate. Geology, 34(12): 1073-1076. [37] Eoff J D.2014. Sedimentary facies of the upper Cambrian(Furongian;Jiangshanian and Sunwaptan)Tunnel City Group,Upper Mississippi Valley: Newinsight on the old stormy debate. Sedimentary Geology, 302: 102-121. [38] Eyles N,Clark B M.1986. Significance of hummocky and swaley cross-stratification in late Pleistocene lacustrine sediments of the Ontario basin,Canada. Geology, 14(8): 679-682. [39] Garrison J R,Miller S P,Mestas-Nuñez A M,Williams J.2013. Record of historical gulf of Mexico storms preserved in the stratigraphy of Gum Hollow delta,Nueces bay,Texas,USA: An example of tropical-cyclone-induced hyperpycnal deposition. Journal of Sedimentary Research, 83(1): 1-11. [40] Greenwood B.1986. Hummocky cross-stratification in the surf zone: Flow parameters and bedding genesis. Sedimentology, 33(1): 33-45. [41] Harms J C,Southard J B,Spearing D R,Walker R G.1975. Depositional environments as interpreted from primary sedimentary structures and stratification sequences. SEPM Course Notes,(2):161. [42] Hunter R E,Clifton H E.1982. Cyclic deposits and hummocky cross-stratification of probable storm origin in Upper Cretaceous rocks of the cape Sebastian area,Southwestern Oregon. Journal of Sedimentary Petrology, 52(1): 127-143. [43] Ito M,Ishigaki A,Nishikawa T,Saito T.2001. Temporal variation in the wavelength of hummocky crosss-tratification;implications for storm intensity through Mesozoic and Cenozoic. Geology, 29(1): 87-89. [44] Kneller B C,Branney M J.1995. Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology, 42(4): 607-616. [45] Lamb M P,Myrow P M,Lukens C,Houck K,Strauss J.2008. Deposits from wave-influenced turbidity currents: Pennsylvanian Minturn Formation,Colorado,USA. Journal of Sedimentary Research, 78(7): 480-498. [46] Leckie D.1988. Wave formed coarse-grained ripples and their relationship to hummocky cross-stratification. Journal of Sedimentary Petrology, 58(4): 607-622. [47] Leclair S F,Arnott R W C.2005. Parallel lamination formed by high-density turbidity currents. Journal of Sedimentary Petrology, 75(1): 1-75. [48] Legler B,Hampson G J,Jackson C A-L.2014. Facies relationships and stratigraphic architecture of distal,mixed tide-and wave-influenced deltaic deposits: Lower Sego sandstone,western Colorado,USA. Journal of Sedimentary Research, 84(8): 605-625. [49] Matheson E J,Dalrymple R W,James N P.2016. Swell-dominated carbonates on a Mississippian ramp in the Canadian rocky mountain front ranges. Journal of Sedimentary Research, 86(8): 843-862. [50] McKie T.1994. Geostrophic versus friction-dominated storm flow: Palaeocurrent evidence from the Late Permian Brotherton Formation,England. Sedimentary Geology, 93(1-2): 73-84. [51] Midtgaard H.1996. Inner-shelf to lower-shoreface hummocky sandstone bodies with evidence for geostrophic influenced combined flow,Lower Cretaceous,West Greenland. Journal of Sedimentary Research, 66(2): 343-353. [52] Monaco P.1992. Hummocky cross-stratified deposits and turbidites in some sequences of the Umbria-Marche area(central Italy)during the Toarcian. Sedimentary Geology, 77(1-2): 123-142. [53] Monaco P.1994. Hummocky cross-stratifications and trace fossils in the Middle Toarcian of some sequences of Umbria-marche Apennines.Geobios,17(S3): 679-688. [54] Morsilli M,Pomar L.2012. Internal waves vs. surface storm waves: A review on the origin of hummocky cross-stratification.Terra Nova, 24(4): 273-282. [55] Mulder T,Razin P, Faugeres J-C.2009. Hummocky cross-stratification-like structures in deep-sea turbidites: Upper Cretaceous Basque basins(Western Pyrenees,France).Sedimentology, 56(4): 997-1015. [56] Myrow P M.1992. Bypass-zone tempestite facies model and proximality trends for an ancient muddy shoreline and shelf. Journal of Sedimentary Petrology, 62(1): 99-115. [57] Myrow P M,Fischer W,Goodge J W.2002. Wave-modified turbidites: Combined-flow shoreline and shelf deposits,Cambrian,Antarctica. Journal of Sedimentary Research, 72(5): 641-656. [58] Myrow P M,Lukens C,Lamb M P,Houck K,Strauss J.2008. Dynamics of a transgressive prodeltaic system: Implications for geography and climate within a Pennsylvanian intracratonic basin,Colorado,U.S.A. Journal of Sedimentary Research, 78(8): 512-528. [59] Peng Y,Steel R J,Olariu C.2017. Transition from storm wave-dominated outer shelf to gullied upper slope: The mid-Pliocene Orinoco shelf margin,South Trinidad. Sedimentology, 64(6): 1511-1539. [60] Perillo M M,Best J L,Garcia M H.2014a. A new phase diagram for combined-flow bedforms. Journal of Sedimentary Research, 84(4): 301-313. [61] Perillo M M,Best J L,Yokokawa M,Sekiguchi T,Takagawa T,Garcia M H.2014b. A unified model for bedform development and equilibrium under unidirectional,oscillatory and combined-flows. Sedimentology, 61(7): 2063-2085. [62] Pomar L,Molina J M,Ruiz-Ortiz P A,Vera J A.2019. Storms in the deep: Tempestite-and beach-like deposits in pelagic sequences(Jurassic,Subbetic,South of Spain). Marine and Petroleum Geology, 107: 365-381. [63] Prave A R,Duke W L.1990. Small-scale hummocky cross-stratification in turbidites: A form of antidune stratification? Sedimentology, 37(3): 531-539. [64] Quin J M.2011. Is most hummocky cross-stratification formed by large-scale ripples? Sedimentology, 58(6): 1414-1433. [65] Rust B R,Gibling M R.1990. Three-dimensional antidunes as HCS mimics in a fluvial sandstone: The Pennsylvanian south bar Formation near Sydney,Nova Scotia. Journal of Sedimentary Petrology, 60(4): 540-548. [66] Seguret M,Moussine-Pouchkine A,Gabaglia G R,Bouchette F.2001. Storm deposits and storm-generated coarse carbonate breccias on a pelagic outer shelf(South-East Basin,France).Sedimentology, 48(2): 231-254. [67] Smith R D A,Ainsworth R B.1989. Short Paper: Hummocky cross-stratification in the Downton of the Welsh borderland. Journal of the Geological Society,London, 146(6): 897-900. [68] Southard J B,Lambie J M,Federico D C,Pile H T,Weidman C R.1990. Experiments on bed configurations in fine sands under bidirectional purely oscillatory flow,and the origin of hummocky cross-stratification. Journal of Sedimentary Petrology, 60(1): 1-17. [69] Swift D J P,Figueiredo Jr A G,Freeland G L,Oertel G F.1983. Hummocky cross-stratification and megaripples: A geological double standard? Journal of Sedimentary Petrology, 53(4): 1295-1317. [70] Walker R G,Duke W L,Leckie D A.1983. Hummocky stratification: Significance of its variable bedding sequences: Discussion.Geological Society of America Bulletin, 94(10): 1245-1249. [71] Yagishita K.1994. Antidunes and traction-carpet deposits in deep-water channel sandstones,Cretaceous,British Columbia,Canada. Journal of Sedimentary Research,64(1a): 34-41.