Implication of the large-tube settling experiment results on genesis of fine-grained deposition lamination of lacustrine basin
Li Sheng-Li, Li Shun-Li, Fu Chao
School of Energy Resources, Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism,China University of Geosciences(Beijing),Beijing 100083,China
Abstract The study on sedimentary texture and structure is an important aspect in fine-grained sedimentology. At the same time,the genesis of laminar structure of organic mudstone or shale has always been a difficult problem. There are many factors affecting laminar structure of fine-grained deposits in a lacustrine basin,among which salinity and organic matter content are very important factors. Especially,oil shale can be developed in fresh or salt water environment. The relationship between the formation of laminar structure and water salinity needs to be further discussed. In this paper,through large-tube settling experiment,the depositional process and settlementation rate of clay minerals and organic rich argillaceous sediments in fresh water,brackish water and salt water were simulated and observed under hydrostatic conditions. Through experimental observation,the settlement process curve was drawn and the settlement rate was calculated. The research shows that the settlementation rate of organic rich mud in fresh water is significantly higher than that of clay minerals;in brackish water and saline water,the sedimentation rate of clay minerals is significantly higher than that of organic rich mud. At the same time,the sedimentation rates of the two types of fine-grained sediments in the three types of water environment also have different laws. By analyzing the experimental results,it is pointed out that the difference of flocculation type and the influence of buoyancy are the main reasons for the difference of fine particle deposition rate under different water medium conditions. Organic matter,clay minerals and water salinity jointly control the sedimentation rate of fine-grained sediments. Once these conditions change,it is easy to form similar or different laminae. In particular, when the abundance and salinity of organic matter change,it is easier to form laminae with different components. Therefore,in addition to the relatively quiet water environment,the formation of oil shale is also related to the abundance of organic matter,the content of clay minerals,the flocculation process and the comprehensive response to the change of water salinity,rather than the water salinity alone. In addition,in different areas of the lacustrine basin,fine-grained sedimentary structure types are different due to different depositional processes.
Fund:National Natural Science Foundation of China(No.42172112)
About author: Li Sheng-Li,born in 1971,is a professor in School of Energy and Resources,China University of Geosciences(Beijing). E-mail: slli@cugb.edu.cn.
Cite this article:
Li Sheng-Li,Li Shun-Li,Fu Chao. Implication of the large-tube settling experiment results on genesis of fine-grained deposition lamination of lacustrine basin[J]. JOPC, 2022, 24(3): 405-414.
Li Sheng-Li,Li Shun-Li,Fu Chao. Implication of the large-tube settling experiment results on genesis of fine-grained deposition lamination of lacustrine basin[J]. JOPC, 2022, 24(3): 405-414.
[1] 冯烁,田继军,孙铭赫,程甘露,刘强. 2015. 准噶尔盆地南缘芦草沟组沉积演化及其对油页岩分布的控制. 西安科技大学学报, 35(4): 436-443. [Feng S,Tian J J,Sun M H,Cheng G L,Liu Q.2015. Distribution of the oil shale by sedimentary evolution in the Lucaogou Formation in southern margin of Junggar Basin. Journal of Xi'an University of Science and Technology, 35(4): 436-443] [2] 郭超. 2018. 粘性泥沙絮凝沉降过程与控制机制研究. 华东师范大学博士论文. [Guo C.2018. Cohesive sediment flocculation and settling processes and the controlling mechanisms. Doctoral dissertation of East China Normal University] [3] 何良彪. 1984. 渤海表层沉积物中的粘土矿物. 海洋学报, 6(2): 272-276. [He L B.1984. Clay minerals in surface sediments of Bohai Sea. Acta Oceanologica Sinica, 6(2): 272-276] [4] 贾承造,郑民,张永峰. 2014. 非常规油气地质学重要理论问题. 石油学报, 35(1): 1-10. [Jia C Z,Zheng M,Zhang Y F.2014. Four important theoretical issues of unconventional petroleum geology. Acta Petrolei Sinica, 35(1): 1-10] [5] 姜在兴. 2010. 沉积学(第二版). 北京: 石油工业出版社. [Jiang Z X.2010. Sedimentology(2nd Edition). Beijing: Petroleum Industry Press] [6] 姜在兴,梁超,吴靖,张建国,张文昭,王永诗,刘惠民,陈祥. 2013. 含油气细粒沉积岩研究的几个问题. 石油学报, 34(6): 1031-1039. [Jiang Z X,Liang C,Wu J,Zhang J G,Zhang W Z,Wang Y S,Liu H M,Chen X.2013. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks. Acta Petrolei Sinica, 34(6): 1031-1039] [7] 罗佳强,沈忠民. 2005. 油页岩在渤海湾盆地济阳坳陷下第三系石油资源评价中的意义. 石油实验地质, 27(2): 164-168. [Luo J Q,Shen Z M.2005. Significance of oil shale in the Eogene petroleum resource evaluation of the Jiyang Depression,the Bohaiwan Basin. Petroleum Geology & Experiment, 27(2): 164-168] [8] 李向东,郇雅棋. 2017. 鄂尔多斯盆地西缘桌子山地区奥陶系深水条纹条带状泥岩等深流成因分析. 古地理学报, 19(6): 987-997. [Li X D,Huan Y Q.2017. Origin of deep-water stripped-and-banded mudstones related to contour currents in the Ordovician,Zhuozishan area,western margin of Ordos Basin. Journal of Palaeogeography(Chinese Edition), 19(6): 987-997] [9] 王伟,汤世凯,胡艳萍,王红艳,石洪源,战超. 2022. 山东半岛南部丁字湾口外海底沉积物粒度时空变化及影响因素. 海洋地质与第四纪地质, 42(2): 70-80. [Wang W,Tang S K,Hu Y P,Wang H Y,Shi H Y,Zhan C.2022. Spatio-temporal variation and influencing factors of seafloor sediment grain size off the mouth of Dingzi Bay of Southern Shandong Peninsula. Marine Geology & Quaternary Geology, 42(2): 70-80] [10] 吴时国,董冬冬,杨胜雄,张光学,王志君,李清平,梁金强,龚跃华,孙运宝. 2009. 南海北部陆坡细粒沉积物天然气水合物系统的形成模式初探. 地球物理学报, 52(7): 1849-1857. [Wu S G,Dong D D,Yang S X,Zhang G X,Wang Z J,Li Q P,Liang J Q,Gong Y H,Sun Y B.2009. Genetic model of the hydrate system in the fine grain sediments in the northern continental slope of South China Sea. Chinese Journal of Geophysics, 52(7): 1849-1857] [11] 熊鹰,伍坤宇,谭秀成,张永庶,杨勃,任灵,刘灵,刘耘,乔艳萍,王小芳. 2018. 湖平面升降对混积咸化湖盆碳酸盐岩储集层的控制: 以柴达木盆地英西地区古近系下干柴沟组上段为例. 古地理学报, 20(5): 855-868. [Xiong Y,Wu K Y,Tan X C,Zhang Y S,Yang B,Ren L,Liu L,Liu Y,Qiao Y P,Wang X F.2018. Influence of lake-level fluctuation on the mixed saline lacustrine carbonate reservoir: a case study from the Upper Member of Paleogene Lower Ganchaigou Formation in the Yingxi area of Qaidam Basin. Journal of Palaeogeography(Chinese Edition), 20(5): 855-868] [12] 徐新德,张迎朝,黄义文,熊小峰,李旭红. 2013. 北部湾盆地乌石凹陷流沙港组油页岩发育的主控因素. 石油学报,34(增2): 66-73. [Xu X D,Zhang Y Z,Huang Y W,Xiong X F,Li X H.2013. Major controlling factors for development of oil shale in Liushagang Formation of Wushi sag,Beibuwan Basin. Acta Petrolei Sinica,34(A2): 66-73] [13] 徐长贵,于水,林畅松,王昕,王粤川,李慧勇. 2008. 渤海海域古近系湖盆边缘构造样式及其对沉积层序的控制作用. 古地理学报, 10(6): 627-635. [Xu C G,Yu S,Lin C S,Wang X,Wang Y C,Li H Y.2008. Structural styles of the Paleogene lacustrine basin margin and their control on sedimentary sequences in Bohai Sea area. Journal of Palaeogeography(Chinese Edition), 10(6): 627-635] [14] 杨仁超,尹伟,樊爱萍,韩作振,(Tom)van Loon A J.2017. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义. 古地理学报, 19(5): 791-806. [Yang R C,Yin W,Fan A P Han Z Z,(Tom)van Loon A J.2017. Fine-grained,lacustrine gravity-flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 19(5): 791-806] [15] 杨田,操应长,王艳忠,张少敏,张会娜,王思佳. 2015. 异重流沉积动力学过程及沉积特征. 地质论评, 61(1): 23-33. [Yang T,Cao Y C,Wang Y Z,Zhang S M,Zhang H N,Wang S J.2015. Sediment dynamics process and sedimentary characteristics of hyperpycnal flows. Geological Review, 61(1): 23-33] [16] 赵贤正,蒲秀刚,韩文中,周立宏,时战楠,陈世悦,肖敦清. 2017. 细粒沉积岩性识别新方法与储集层甜点分析: 以渤海湾盆地沧东凹陷孔店组二段为例. 石油勘探与开发,44(4):492-502. [Zhao X Z,Pu X G,Han W Z,Zhou L H,Shi Z N,Chen S Y,Xiao D Q.2017. A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: a case study of Kong 2 Member in Cangdong sag,Bohai Bay Basin,China. Petroleum Exploration and Development,44(4):492-502] [17] 朱筱敏. 2020. 沉积岩石学(第五版·富媒体). 北京: 石油工业出版社. [Zhu X M.2020. Sedimentary Petrology(5th Edition). Beijing: Petroleum Industry Press] [18] 邹才能,朱如凯,白斌,杨智,侯连华,查明,付金华,邵雨,刘可禹,曹宏,袁选俊,陶士振,唐晓明,王岚,李婷婷. 2015. 致密油与页岩油内涵、特征、潜力及挑战. 矿物岩石地球化学通报, 34(1): 3-17. [Zou C N,Zhu R K,Bai B,Yang Z,Hou L L,Zha M,Fu J H,Shao Y,Liu K Y,Cao H,Yuan X J,Tao S Z,Tang X M,Wang L,Li T T.2015. Significance,geologic characteristics,resource potential and future challenges of tight oil and shale oil. Bulletin of Mineralogy,Petrology and Geochemistry, 34(1): 3-17] [19] Berlamont J,Ockenden M,Toorman E,Winterwerp J.1993. The characterisation of cohesive sediment properties. Coastal Engineering, 21(1-3): 105-128. [20] Dimberline A J,Bell A,Woodcock N H.1990. A laminated hemipelagic facies from the Wenlock and Ludlow of the Welsh Basin. Journal of the Geological Society, 147: 693-701. [21] Fu C,Li S L,Li S L,Xu J Y,Huang Y Y.2022. Genetic types of mudstone in a closed-lacustrine to open-marine transition and their organic matter accumulation patterns: a case study of the paleocene source rocks in the East China Sea Basin. Journal of Petroleum Science and Engineering, 208: 109343. [22] George D A,Hill P S,Milligan T G.2007. Flocculation,heavy metals(Cu,Pb,Zn)and the sand-mud transition on the Adriatic continental shelf,Italy. Continental Shelf Research, 27: 475-488. [23] Gonçalves F T T.2002. Organic and isotope geochemistry of the Early Cretaceous rift sequence in the Camamu Basin,Brazil: paleolimnological inferences and source rock models. Organic Geochemistry, 33: 67-80. [24] He J H,Ding W L,Jiang Z X,Jiu K,Li A,Sun Y X.2017. Mineralogical and chemical distribution of the Es3L oil shale in the Jiyang Depression,Bohai Bay Basin(E China): implications for paleoenvironmental reconstruction and organic matter accumulation. Marine and Petroleum Geology, 81: 196-219. [25] Kumar S,Kumar D,Abbasbandy S,Rashidi M M.2014. Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method. Ain Shams Engineering Journal, 5(2): 569-574. [26] Li S L,Zhu X M,Li S L,Gong C L,Pan R.2020. Trigger mechanisms of gravity flow deposits in the Lower Cretaceous lacustrine rift basin of Lingshan Island,Eastern China. Cretaceous Research, 107: 104269. [27] Liu Q H,Zhu H T,Shu Y,Zhu X M,Yang X H,Tan M,Chen H H,Yang S F.2016. Effects of low- to high-angle normal faults on sedimentary architectures in the Eocene Wenchang Formation,Enping sag,Pearl River Mouth Basin,South China Sea. Australian Journal of Earth Sciences, 63(7): 903-922. [28] Picard M D.1971. Classification of fine-grained sedimentary rocks. Journal of Sedimentary Research, 41: 179-195. [29] Potter P E,Maynard J B,Pryor W A.1980. Sedimentology of Shale: Study Guide and Reference Source. Berlin Heidelberg New York, Springer: 303. [30] Potter P E,Maynard J B,Depetris P J.2005. Mud and Mudstones: Introduction and Overview. Berlin Heidelberg, Springer-Verlag. [31] Roberts S M,Spencer R J,Lowenstein T K.1994. Late Pleistocene saline lacustrine sediments,Badwater Basin,Death Valley,California. Core Workshop Notes, 19: 61-103. [32] Schieber J.2011. Reverse engineering mother nature: shale sedimentology from an experimental perspective. Sedimentary Geology, 238: 1-22. [33] Schieber J,Southard J,Thaisen K.2007. Accretion of mudstone beds from migrating floccule ripples. Science, 318(5857): 1760-1763. [34] Wen L J,Lu H J,Qiang X K.2005. Changes in grain-size and sedimentation rate of the Neogene Red Clay deposits along the Chinese Loess Plateau and implications for the palaeowind system. Science in China Series D-Earth Sciences, 48: 1452-1462. [35] Wilson R D,Schieber J.2017. Association between wave- and current-aided hyperpycnites and flooding surfaces in shelfal mudstones: an integrated sedimentologic,sequence stratigraphic,and geochemical approach. Journal of Sedimentary Research, 87: 1143-1155.