Lacustrine sequence patterns under different accommodation space settings and the responding delta morphology: a comparison of Poyang Lake and Daihai Lake
FU Chao1,2, YU Xinghe2, LI Shengli2, LI Shunli2, GAO Mingxuan2, PENG Zixiao2, ZHAO Haiquan3
1 CNOOC Research Institute Co. Ltd.,Beijing 100028,China; 2 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083,China; 3 Qian'an Oil Production Plant,PetroChina Jilin Oilfield,Jilin Songyuan 138000,China
Abstract Nowadays,stratigraphic stratigraphy has gradually moved toward quantification,and its standardization has become a consensus in the sedimentological community. As one of the essential parameters in stratigraphic standardization,it has received more and more attention in recent research. In this study,two typical lacustrine deltas in China were selected for comparative study,including the Ganjiang River delta of Poyang Lake with a relatively slope(dip angle<1°),and the deltas around Daihai lake with a relatively slope slope(dip angle 3°~10°). Based on the interpretation of satellite photographys of different water levels in the past 30 years and the interpretation of modern outcrop/trench profiles,this study examines their sedimentary evolution and points out their facies distribution pattern: (1)In the high accommodation space area,the changes of lake shoreline are relatively stable in a setting of rapid increase of accommodable space,but the planar influence range is limited. The responding delta mainly developed a broom-shaped or fan-shaped geometry during the low lake-level systems tract(LST),and lobate shape(high sedimentary supply rate)or bird-foot shape(low sedimentary supply rate)during the transgression systems tract(TST)and high lake level systems tract(HST). (2)The lake shoreline changes drastically in a low accommodation space area,and the influence range is more extensive. The responding deltas are observed to show a bird-foot shape in the low lake-level regression systems tract(RST),and are dominated by finger-sharped bars. In contrast,in the transgression systems tract(TST)period,the deltas are bird-foot-shaped and are dominated by offshore bars. Based on the above observations,the results of forward simulation,as well as insights from the classical stratigraphic sequence and shoreline migration process,this study establishes corresponding stratigraphic stacking pattern-deltaic development modes for high and low accommodation space settings,respectively. Furthermore,the controlling factors of sequence-sedimentary evolution in different accommodation settings are analyzed from the persepctive of long-term and short-term scales.
Fund:Financially supported by the National Natural Science Foundation of China(No.42172112)
Corresponding Authors:
YU Xinghe,born in 1958,is a professor and director of Ph.D. candidate. He is mainly engaged in reservoir sedimentology and analysis of petroliferous basins,hydrocarbon reservoir characterization and modeling technology,analysis of marine hydrocarbon accumulation conditions,and resources evaluation. E-mail: billyu@cugb.edu.cn.
About author: FU Chao,born in 1992,obtained his Ph.D. degree from China University of Geosciences(Beijing). Now he is a postdoctoral fellow of CNOOC Research Institute Co. Ltd., and is currently engaged in applied sedimentology research. E-mail: fuchao5@cnooc.com.cn.
Cite this article:
FU Chao,YU Xinghe,LI Shengli et al. Lacustrine sequence patterns under different accommodation space settings and the responding delta morphology: a comparison of Poyang Lake and Daihai Lake[J]. JOPC, 2022, 24(6): 1084-1098.
FU Chao,YU Xinghe,LI Shengli et al. Lacustrine sequence patterns under different accommodation space settings and the responding delta morphology: a comparison of Poyang Lake and Daihai Lake[J]. JOPC, 2022, 24(6): 1084-1098.
[1] 白洁,陈曦,李均力,杨辽. 2011.1975—2007年中亚干旱区内陆湖泊面积变化遥感分析. 湖泊科学, 23(1): 80-88. [Bai J,Chen X,Li J L,Yang L. 2011. Change of inland lake area in arid Central Asia during 1975-2007: a remote sensing analysis. Journal of Lake Sciences, 23(1): 80-88] [2] 陈彬滔,于兴河,王天奇,杨丽莎,潘树新,李顺利. 2014. 岱海湖盆沿坡流与顺坡流相互作用的沉积响应. 地球科学: 中国地质大学学报, 39(4): 399-410. [Chen B T,Yu X H,Wang T Q,Yang L S,Pan S X,Li S L. 2014. Sedimentary response to interaction between a longslope and downslope currents in Daihai lake,North China. Earth Science-Journal of China University Geosciences, 39(4): 399-410] [3] 段冬平,侯加根,刘钰铭,王成刚,高建. 2014. 河控三角洲前缘沉积体系定量研究: 以鄱阳湖三角洲为例. 沉积学报, 32(2): 270-277. [Duan D P,Hou J G,Liu Y M,Wang C G,Gao J. 2014. Quantitative research of fluvial-dominated delta front sedimentary system: a case study of Poyang Lake delta. Acta Sedimentologica Sinica, 32(2): 270-277] [4] 范军侠,李宏伟,袁世义,朱怡翔,田昌炳. 2006. 陆相盆地中残留可容纳空间的识别与应用. 中国石油勘探, 11(2): 30-32. [Fan J X,Li H W,Yuan S Y,Zhu Y X,Tian C B. 2006. Recognition and application of remained accommodation in continental basin. China Petroleum Exploration, 11(2): 30-32] [5] 付超,于兴河,李顺利,彭子霄,刘春. 2019. 气候变化与粗砾冲积扇的改造过程的响应与其影响因素分析: 以岱海湖园子沟—半滩子冲积扇为例. 第四纪研究, 39(6): 1393-1403. [Fu C,Yu X H,Li S L,Peng Z X,Liu C. 2019. Reworking process of climatic change in the coarse-grained alluvial fan and its impact factors analysis: a case study of Yuanzigou and Bantanzi,Daihai lake,north China. Quaternary Sciences, 39(6): 1393-1403] [6] 高志勇,周川闽,董文彤,白斌,李雯. 2016. 浅水三角洲动态生长过程模型与有利砂体分布: 以鄱阳湖赣江三角洲为例. 现代地质, 30(2): 341-352. [Gao Z Y,Zhou C M,Dong W T,Bai B,Li W. 2016. Sedimentary processes,depositional model and sandbody prediction of lacustrine shallow water delta: a case study of Ganjiang river delta in Poyang Lake. Geosciences, 30(2): 341-352] [7] 韩志勇,李徐生,张兆干,陈英勇,杨达源,弋双文,鹿化煜. 2010. 鄱阳湖湖滨沙山垄状地形的成因. 地理学报, 65(3): 331-338. [Han Z Y,Li X S,Zhang Z G,Chen Y Y,Yang D Y,Yi S W,Lu H Y. 2010. Genesis of ridgelike landform on sand hill on the shore of the Poyang Lake. Acta Geographica Sinica, 65(3): 331-338] [8] 黄秀,刘可禹,邹才能,桂丽黎,袁选俊,秦雁群. 2013. 鄱阳湖浅水三角洲沉积体系三维定量正演模拟. 地球科学: 中国地质大学学报, 38(5): 589-598. [Huang X,Liu K Y,Zou C N,Gui L L,Yuan X J,Qin Y Q. 2013. Forward stratigraphic modelling of the depositional process and evolution of shallow water deltas in the Poyang Lake,Southern China. Earth Science-Journal of China University Geosciences, 38(5): 589-598] [9] 姜在兴,刘晖. 2010. 古湖岸线的识别及其对砂体和油气的控制. 古地理学报, 12(5): 589-598. [Jiang Z X,Liu H. 2010. Lacustrine palaeoshoreline and its controls on sandbodies and hydrocarbon. Journal of Palaeogeography(Chinese Edition), 12(5): 589-598] [10] 金振奎,李燕,高白水,宋宝全,何宇航,石良,李桂仔. 2014. 现代缓坡三角洲沉积模式: 以鄱阳湖赣江三角洲为例. 沉积学报, 32(4): 710-723. [Jin Z K,Li Y,Gao B S,Song B Q,He Y H,Shi L,Li G Z. 2014. Depositional model of modern gentle-slope delta: a case study from Ganjiang delta in Poyang Lake. Acta Sedimentologica Sinica, 32(4): 710-723] [11] 李燕,金振奎,李桂仔,高白水,石良. 2014. 江西省鄱阳湖信江决口三角洲沉积特征及模式. 古地理学报, 16(2): 136-146. [Li Y,Jin Z K,Li G Z,Gao B S,Shi L. 2014. Depositional characteristics and model for crevasse delta of Xinjiang River in Poyang Lake area,Jiangxi Province. Journal of Palaeogeography(Chinese Edition), 16(2): 136-146] [12] 李燕,金振奎,高白水,石良,李桂仔. 2016. 分流河道内砂体沉积特征及定量参数: 以鄱阳湖赣江三角洲为例. 地球科学与环境学报, 38(2): 206-216. [Li Y,Jin Z K,Gao B S,Shi L,Li G Z. 2016. Sedimentary characteristics and quantitative parameters of sand bodies in distributary channel. Journal of Earth Sciences and Environment, 38(2): 206-216] [13] 李燕,金振奎,高白水,石良,李桂仔. 2021. 汊口滩沉积特征及沉积模式: 以鄱阳湖赣江三角洲汊口滩为例. 吉林大学学报(地球科学版), 51(6): 1678-1688. [Li Y,Jin Z K,Gao B S,Shi L,Li G Z. 2021. Sedimentary characteristics and model of branch mouth bar: a case study of branch mouth bar in Ganjiang delta of Poyang Lake. Journal of Jilin University(Earth Science Edition), 51(6): 1678-1688] [14] 梁文军,春喜,刘继遥,雪梅,斯琴毕力格,吴智文,宋洁. 2017. 近40 a岱海湖面动态变化研究. 干旱区资源与环境, 31(4): 93-98. [Liang W J,Chun X,Liu J Y,Xue M,Siqin Biligee,Wu Z W,Song J. 2017. Research on the area change processes in the past 40 a of Daihai Lake. Journal of Arid Land Resources and Environment, 31(4): 93-98] [15] 凌超豪,龙进,贾玉连,洪君,徐传奇,王鹏岭. 2015. 赣北鄱阳湖地区土塘剖面第四纪红土地球化学特征及古气候意义. 古地理学报, 17(5): 699-708. [Ling C H,Long J,Jia Y L,Hong J,Xu C Q,Wang P L. 2015. Geochemical characteristics and palaeoclimate significance of the Quaternary laterite of Tutan section in Poyang Lake region,northern Jiangxi Province. Journal of Palaeogeography(Chinese Edition), 17(5): 699-708] [16] 覃建雄,陈洪德,田景春. 2001. 层序地层作为沉积盆地识别标志的研究. 古地理学报, 3(2): 72-81. [Qin J H,Chen H D,Tian J C. 2011. Sequence stratigraphy applied to the identification of sedimentary basin. Journal of Palaeogeography(Chinese Edition), 3(2): 72-81] [17] 覃建雄,陈洪德,田景春. 2003. 层序成因动力学中的构造因素研究. 古地理学报, 5(1): 77-86. [Qin J H,Chen H D,Tian J C. 2003. Study on tectonic controls in sequence genetic dynamics. Journal of Palaeogeography(Chinese Edition), 5(1): 77-86] [18] 孙廷彬,国殿斌,李中超,王玲,尹楠鑫,李胜玉. 2015. 鄱阳湖浅水三角洲分支河道分布特征. 岩性油气藏, 27(5): 144-148. [Sun T B,Guo D B,Li Z C,Wang L,Yi N X,Li S Y. 2015. Distribution characteristics of branch channel of shallow delta in Poyang Lake. Lithologic Reservoirs, 27(5): 144-148] [19] 谭程鹏,于兴河,刘蓓蓓,许磊,李顺利,冯双奇,唐雨生. 2018. 季节性河流体系高流态沉积构造特征: 以内蒙古岱海湖半滩子河为例. 古地理学报, 20(6): 927-940. [Tan C P,Yu X H,Liu B B,Xu L,Li S L,Feng S Q,Tang Y S. 2018. Sedimentary structures formed under upper-flow-regime in seasonal river system: a case study of Bantanzi River,Daihai Lake,Inner Mongolia. Journal of Palaeogeography(Chinese Edition), 20(6): 927-940] [20] 王夏斌,姜在兴,胡光义,范廷恩,范洪军,何明薇,陈飞. 2020. 浅水三角洲分流河道沉积模式分类. 地球科学与环境学报, 42(5): 654-667. [Wang X B,Jiang Z X,Hu G Y,Fan T N,Fan H J, He M W,Chen F. 2020. Classification of sedimentary models of distributary channels in shallow-water deltas. Journal of Earch Sciences and Environment, 42(5): 654-667] [21] 于兴河,王德发. 1995. 湖泊辫状河三角洲岩相,层序特征及储层地质模型: 内蒙古贷岱海湖现代三角洲沉积考察. 沉积学报, 13(1): 48-58. [Yu X H,Wang D F. 1995. Lithofacies types,vertical profile features and reservoir geological models of braided deltaic sandbodies in faulted lake Basin. Acta Sedimentologica Sinica, 13(1): 48-58] [22] 于兴河,王德发,郑浚茂,孙志华. 1994. 辫状河三角洲砂体特征及砂体展布模型: 内蒙古岱海湖现代三角洲沉积考察. 石油学报, 15(1): 26-37. [Yu X H,Wang D F,Zheng J M,Sun Z H. 1994.3-D Extension models of braided deltaic sandbody in terrestrial facies: an observation on deposition of modern deltas in Daihai lake,Inner Mongolia. Acta Petrolei Sinica, 15(1): 26-37] [23] 于兴河,李胜利,乔亚蓉,高阳. 2016. 南海北部新生代海陆变迁与不同盆地的沉积充填响应. 古地理学报, 18(3): 349-366. [Yu X H,Li S L,Qiao Y R,Gao Y. 2016. The Cenozoic changes of seas and lands and sedimentary filling responses of different basins in northern South China Sea. Journal of Palaeogeography(Chinese Edition), 18(3): 349-366] [24] 郑海金,方少文,杨洁,谢颂华,陈晓安. 2012. 近40年赣江年径流泥沙变化及影响因素分析. 水土保持学报, 26(1): 28-32. [Zheng H J,Fang S W,Yang J,Xie S H,Chen X A. 2012. Analysis on evolution characteristics and impacting factors of annual runoff and sediment in the Ganjiang river during 1970-2009. Journal of Soil and Water Conservation, 26(1): 28-32] [25] 朱筱敏,李顺利,潘荣,谈明轩,陈贺贺,王星星,陈锋,张梦瑜,侯冰洁,董艳蕾. 2016. 沉积学研究热点与进展: 第 32届国际沉积学会议综述. 古地理学报, 18(5): 699-716. [Zhu X M,Li S L,Pan R,Tan M X,Chen H H,Wang X X,Chen F,Zhang M Y,Hou B J,Dong Y L. 2016. Current hot topics and advances of sedimentology: a summary from 32nd IAS Meeting of Sedimentology. Journal of Palaeogeography(Chinese Edition), 18(5): 699-716] [26] Allen P,Fielding R. 2007. Sequence architecture within a low-accommodation setting: an example from the Permian of the Galilee and Bowen basins,Queensland,Australia. AAPG Bulletin, 91(11): 1503-1539. [27] Are F,Reimnitz E. 2000. An overview of the Lena River Delta setting: geology,tectonics,geomorphology,and hydrology. Journal of Coastal Research, 16(4): 1083-1093. [28] Aschoff L,Steel J. 2011. Anatomy and development of a low-accommodation clastic wedge,upper Cretaceous,Cordilleran Foreland Basin,USA. Sedimentary Geology, 236(1-2): 1-24. [29] Catuneanu O. 2019. Scale in sequence stratigraphy. Marine and Petroleum Geology, 106: 128-159. [30] Catuneanu O,Zecchin M. 2013. High-resolution sequence stratigraphy of clastic shelves Ⅱ: controls on sequence development. Marine and Petroleum Geology, 39(1): 26-38. [31] Catuneanu O,Abreu P,Bhattacharya D,Blum W,Dalrymple G,Eriksson R,Fielding L,Fisher W,Galloway E,and Gibling R. 2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92(1-2): 1-33. [32] Cecil B. 2013. An overview and interpretation of autocyclic and allocyclic processes and the accumulation of strata during the Pennsylvanian-Permian transition in the central Appalachian Basin,USA. International Journal of Coal Geology, 119: 21-31. [33] Coleman M,Roberts H,Stone W. 1998. Mississippi River delta: an overview. Journal of Coastal Research, 14(3): 699-716. [34] Gawthorpe L,Sharp R,Underhill R,Gupta S. 1997. Linked sequence stratigraphic and structural evolution of propagating normal faults. Geology, 25(9): 795-798. [35] Helland-Hansen W,Martinsen J. 1996. Shoreline trajectories and sequences;description of variable depositional-dip scenarios. Journal of Sedimentary Research, 66(4): 670-688. [36] Hu C,Zhang Y,Jiang Z,Wang M,Han C. 2021. Development of large-scale sand bodies in a fault-bounded lake basin: Pleistocene-Holocene Poyang Lake,Southern China. Journal of Paleolimnology, 65(4): 407-428. [37] Huang X,Liu K,Zou C,Yuan X,Gui L. 2014. Forward stratigraphic modelling of the shallow-water delta system in the Poyang Lake,southern China. Journal of Geochemical Exploration, 144: 74-83. [38] Jia H,Ji H, Yu J, Meng X. 2019. Spatial and temporal variations in coastline morphology along Ganjiang-Poyang Lake: sediment supply as a cause of variability. Environmental Earth Sciences,78(23): 660. [39] Jin Z,Gao B,Wang J,Li Y,Shi L,Yu K,Li G. 2017. Two new types of sandbars in channels of the modern Ganjiang Delta,Poyang Lake,China: depositional characteristics and origin. Journal of Palaeogeography, 6(2): 132-143. [40] Karamitopoulos P,Weltje J,Dalman F. 2014. Allogenic controls on autogenic variability in fluvio-deltaic systems: inferences from analysis of synthetic stratigraphy. Basin Research, 26(6): 767-779. [41] Liu B,Tan C,Yu X,Shan X,Li S. 2019. Evolution model of a modern delta fed by a seasonal river in Daihai Lake,North China: determined from ground-penetrating radar and trenches. Frontiers of Earth Science, 13(2): 262-276. [42] Olariu C,Bhattacharya P. 2006. Terminal distributary channels and delta front architecture of river-dominated delta systems. Journal of sedimentary research, 76(2): 212-233. [43] Olariu C,Zhou C,Steel R,Zhang Z,Yuan X,Zhang Z,Chen S,Cheng D,Kim W. 2021. Controls on the stratal architecture of lacustrine delta successions in low-accommodation conditions. Sedimentology, 68(5): 1941-1963. [44] Shaw B,Mohrig D,Whitman K. 2013. The morphology and evolution of channels on the Wax Lake Delta,Louisiana,USA. Journal of Geophysical Research: Earth Surface, 118(3): 1562-1584. [45] Spengler E,Read F. 2010. Sequence development on a sediment-starved,low accommodation epeiric carbonate ramp: Silurian Wabash Platform,USA mid-continent during icehouse to greenhouse transition. Sedimentary Geology, 224(1-4): 84-115. [46] Tan C,Plink-Björklund P. 2021. Morphodynamics of supercritical flow in a linked river and delta system,Daihai Lake,Northern China. Sedimentology, 68: 1606-1639. [47] Tan C,Feng S,Zhao X,Shan X,Feng S. 2021. Longitudinal variations in channel morphology of an ephemeral stream from upland to lowland,Daihai Lake basin,North China. Geomorphology, 372: 107450. [48] Xiao J,Zhang S,Fan J,Wen R,Xu Q, Y Inouchi, T Nakamura. 2019. The 4.2 ka event and its resulting cultural interruption in the Daihai Lake basin at the East Asian summer monsoon margin. Quaternary International, 527: 87-93. [49] Xu Z,Plink-Björklund P,Wu S,Liu Z,Feng W,Zhang K,Yang Z,Zhong Y. 2021. Sinuous bar fingers of digitate shallow-water deltas: insights into their formative processes and deposits from integrating morphological and sedimentological studies with mathematical modelling. Sedimentology, 69: 724-749. [50] Yu X,Li S,Chen B,Tan C,Xie J,Hu X. 2012. Interaction between downslope and alongslope processes on the margins of Daihai lake,north China: implication for deltaic sedimentation models of lacustrine rift basin. Acta Geologica Sinica-English Edition, 86(4): 932-948. [51] Yuan G,Liu C,Chen L,Yang Z. 2011. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China. Journal of Hazardous Materials, 185(1): 336-345. [52] Zecchin M,Catuneanu O. 2013. High-resolution sequence stratigraphy of clastic shelves Ⅰ: units and bounding surfaces. Marine and Petroleum Geology, 39(1): 1-25. [53] Zecchin M,Catuneanu O. 2017. High-resolution sequence stratigraphy of clastic shelves Ⅵ: mixed siliciclastic-carbonate systems. Marine and Petroleum Geology, 88: 712-723. [54] Zecchin M,Catuneanu O. 2020. High-resolution sequence stratigraphy of clastic shelves Ⅶ: 3D variability of stacking patterns. Marine and Petroleum Geology, 121: 104582.