Hematized microbial mats thrived in terminal Paleoproterozoic shallow seawaters: identification and implications
ZHAO Shike1,2, SHI Xiaoying1,2, SUN Longfei2, XIE Baozeng1,3, TANG Dongjie1,3
1 State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences(Beijing),Beijing 100083,China; 2 School of Earth Sciences and Resources,China University of Geosciences(Beijing),Beijing 100083,China; 3 Institute of Earth Sciences,China University of Geosciences(Beijing),Beijing 100083,China
Abstract Microbially mediated iron oxidation has been considered as one of the most important mechanisms for the formation of Precambrian iron formation and marine red bed. However,the evidence of microbial mediation is rarely recorded through Earth history. To reveal the potential roles of microbes in the Precambrian iron cycling,we chose microbially induced sedimentary structure(MISS)from the late Paleoproterozoic Dahongyu Formation,North China,as target,and conducted a comprehensive investigation in sedimentology and mineralogy. In this formation,sand cracks are the dominated type of MISS,indicating the existence of abundant microbial mats on the intertidal to supratidal zones previously. Microscopic observations show that the non-microbial mat layer contains abundant in situ to shortly transported glauconite,indicating suboxic and iron-rich shallow seawater and porewater chemistry. In contrast,the microbial mats show significant hematization,indicative of more oxygenated conditions. Considering the differences in microbial activity and mineralogy between the microbial mat and adjacent non-microbial mat layers,we propose that microbial mediation is an important mechanism leading to the oxidation of Fe(Ⅱ)in the weakly oxygenated ferruginous shallow seawater. This study provides important evidence for microbial mediation in Fe(Ⅱ)oxidation and may shed light on the formation of Precambrian marine red bed and iron formation.
Fund:Co-funded by the National Natural Science Foundation of China(Nos. 41930320,41972028),the Fundamental Research Funds for the Central Universities(No.2652019093),and the Innovation and Entrepreneurship Training Program of China University of Geosciences(Beijing)(No.202111415097)
Corresponding Authors:
TANG Dongjie,born in 1985,is an associate professor and Ph.D. tutor in China University of Geosciences(Beijing). He is engaged in geobiology and Precambrian geology. E-mail: dongjtang@126.com.
About author: ZHAO Shike,born in 1999,is an undergraduate of geology in China University of Geosciences(Beijing). E-mail: zhaoshike08@126.com.
Cite this article:
ZHAO Shike,SHI Xiaoying,SUN Longfei et al. Hematized microbial mats thrived in terminal Paleoproterozoic shallow seawaters: identification and implications[J]. JOPC, 2022, 24(6): 1114-1129.
ZHAO Shike,SHI Xiaoying,SUN Longfei et al. Hematized microbial mats thrived in terminal Paleoproterozoic shallow seawaters: identification and implications[J]. JOPC, 2022, 24(6): 1114-1129.
[1] 段超,李延河,魏明辉,杨云,侯可军,陈小丹,邹斌. 2014. 河北宣化姜家寨铁矿床串岭沟组底部碎屑锆石LA-MC-ICP-MS U-Pb年龄及其地质意义. 岩石学报, 30(1): 35-48. [Duan C,Li Y H,Wei M H,Yang Y,Hou K J,Chen X D,Zou B. 2014. U-Pb dating study of detrital zircons from the Chuanlinggou Formation in Jiangjiazhai iron deposit,North China Craton and its geological significances. Acta Petrologica Sinica, 30(1): 35-48] [2] 高林志,张传恒,尹崇玉,史晓颖,王自强,刘耀明,刘鹏举,唐烽,宋彪. 2008. 华北古陆中、新元古代年代地层框架SHRIMP锆石年龄新依据. 地球学报, 29(3): 366-376. [Gao L Z,Zhang C H,Shi X Y,Wang Z Q,Liu Y M,Liu P J,Tang F,Song B. 2008. SHRIMP zircon ages: basis for refining the chronostratigraphic classification of the Meso-and Neoproterozoic strata in North China Old Land. Acta Geoscientica Sinica, 29(3): 366-376] [3] 李怀坤,朱士兴,相振群,苏文博,陆松年,周红英,耿建珍,李生,杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140. [Li H K,Zhu S X,Xiang Z Q,Su W B,Lu S N,Zhou H Y,Geng J Z, Li S, Yang F J. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: further constrains on the new subdivision of the Mesoproterozoic stratigraphy in the norther North China Craton. Acta Petrologica Sinica, 26(7): 2131-2140] [4] 河北省地质矿产局. 1968. 高邑幅1︰200000 区域地质图: J-50-19. [Hebei-Bureau of Geology and Mineral Resources. 1968. Geological Map of Gaoyi: J-50-19, scale-1︰200,000] [5] 河北省地质矿产局. 1989. 河北省,北京市,天津市区域地质志. 北京: 地质出版社, 1-741. [Hebei Bureau of Geology and Mineral Resources. 1989. Regional Geology of Hebei Province,Beijing Municipality and Tianjin Municipality. Beijing: Geological Publishing House,1-741] [6] 刘典波,王小琳,张恒,石成龙. 2019. 华北串岭沟组凝灰岩锆石SHRIMP年龄及其地层学意义. 地学前缘, 26(3): 183-189. [Liu D B,Wang X L,Zhang H,Shi C L. 2019. Zircon SHRIMP U-Pb age of the Chuanlinggou Formation of the Changcheng Group,North China and the stratigraphic implications. Earth Science Frontiers, 26(3): 183-189] [7] 陆松年,李惠民. 1991. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年. 中国地质科学院院报, 22(1): 137-146. [Lu S N,Li H M. 1991. A precise U-Pb single zircon age determination for the volcanics of Dahongyu Formation Changcheng System in Jixian. Bulletin of the Chinese Academy of Geological Sciences, 22(1): 137-146] [8] 史晓颖,王新强,蒋干清,刘典波,高林志. 2008. 贺兰山地区中元古代微生物席成因构造: 远古时期微生物群活动的沉积标识. 地质论评, 54(5): 577-586. [Shi X Y,Wang X Q,Jiang G Q,Liu D B,Gao L Z. 2008. Pervassive microbial mat colonization on Mesoproterozoic peritidal siliciclastic substrates: an example form the Huangqikou Formation(ca 1.6 Ga)in Helan Mountains,NW China. Geological Review, 54(5): 577-586] [9] 田辉,张健,李怀坤,苏文博,周红英,杨立公,相振群,耿建珍,刘欢,朱士兴,许振清. 2015. 蓟县中元古代高于庄组凝灰岩锆石LA-MC-ICPMS U-Pb定年及其地质意义. 地球学报, 36(5): 647-658. [Tian H,Zhang J,Li H K,Su B W,Zhou H Y,Yang L G,Xiang Z Q,Geng J Z,Liu H,Zhu S X,Xu Z Q. 2015. Zircon LA-MC-ICPMS U-Pb dating of tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and its geological significance. Acta Geoscientica Sinica, 36(5): 647-658] [10] 章敬若. 2016. 河北东焦群岩石学特征与大地构造意义. 中国地质大学(北京)硕士论文: 1-62. [Zhang J. 2016. The petrology and tectonic implication of the Dongjiao Group in Hebei. Masteral dissertation of China University of Geosciences(Beijing): 1-62] [11] 张拴宏,赵越,叶浩,胡健民,吴飞. 2013. 燕辽地区长城系串岭沟组及团山子组沉积时代的新制约. 岩石学报, 29(7): 2481-2490. [Zhang S H,Zhao Y,Ye H,Hu J M,Wu F. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi formations of the Changcheng System in the Yan-Liao area in the northern North China Craton. Acta Petrologica Sinica, 29(7): 2481-2490] [12] Bekker A,Planavsky N J,Krapež B,Rasmussen B,Hofmann A,Slack J F,Rouxel O J,Konhauser K O. 2014. Iron formations: their origins and implications for ancient seawater chemistry. Treatise on Geochemistry. Elsevier, 12: 561-628. [13] Bose S,Chafetz H S. 2009. Topographic control on distribution of modern microbially induced sedimentary structures(MISS): a case study from Texas coast. Sedimentary Geology, 213(3-4): 136-149. [14] Cairns-Smith A G. 1978. Precambrian solution photochemistry,inverse segregation,and banded iron formations. Nature, 276(5690): 807-808. [15] Canfield D E. 2005. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33: 1-36. [16] Canfield D E,Zhang S,Frank A B,Wang X,Wang H,Su J,Frei R. 2018. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nature Communications, 9(1): 1-11. [17] Chan C S,Emerson D,Luther G W. 2016. The role of microaerophilic Fe-oxidizing microorganisms in producing banded iron formations. Geobiology, 14(5): 509-528. [18] Chu X,Zhang T,Zhang Q,Lyons T W. 2007. Sulfur and carbon isotope records from 1700 to 800 Ma carbonates of the Jixian section,northern China: implications for secular isotope variations in Proterozoic seawater and relationships to global supercontinental events. Geochimica et Cosmochimica Acta, 71(19): 4668-4692. [19] Emerson D,Fleming E J,Mcbeth J M. 2010. Iron-oxidizing bacteria: an environmental and genomic perspective. Annual review of microbiology, 64: 561-583. [20] Eren M,Kadir S. 1999. Colour origin of upper Cretaceous pelagic red sediments within the Eastern Pontides,northeast Turkey. International Journal of Earth Sciences, 88: 593-595. [21] Gao L Z,Zhang C H,Liu P J,Ding X Z,Wang Z Q,Zhang Y J. 2009. Recognition of Meso- and Neoproterozoic stratigraphic framework in North and South China. Acta Geoscientica Sinica, 30(4): 433-446. [22] Hagadorn J W,Bottjer D J. 1999. Restriction of a late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Palaios, 14(1): 73-85. [23] Kappler A,Pasquero C,Konhauser K O,Newman D K. 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(Ⅱ)-oxidizing bacteria. Geology, 33(11): 865-868. [24] Köhler I,Konhauser K O,Papineau D,Bekker A,Kappler A. 2013. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nature Communications, 4(1): 1-7. [25] Krapež B,Barley M E,Pickard A L. 2003. Hydrothermal and resedimented origins of the precursor sediments to banded iron formations: sedimentological evidence from the early Paleoproterozoic Brockman Super sequence of Western Australia. Sedimentology, 50(5): 979-1011. [26] Lepp H,Goldich S S. 1964. Origin of Precambrian iron formations. Economic Geology, 59(6): 1025-1060. [27] Li C,Sheng G,Fu J,Yan Y. 2003. A molecular and isotopic geochemical study of Meso- to Neoproterozoic(1.73-0.85 Ga)sediments from the Jixian section,Yanshan Basin,North China. Precambrian Research, 125(3-4): 337-356. [28] Li H,Lu S,Su W,Xiang Z,Zhou H,Zhang Y. 2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227. [29] Li X H,Li W X,Li Z X,Liu Y. 2008. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang,South China: a major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102(1-2): 341-357. [30] Lin Y T,Tang D J,Shi X Y,Zhou X Q,Huang K. 2019. Shallow-marine ironstones formed by microaerophilic iron-oxidizing bacteria in terminal Paleoproterozoic. Gondwana Research, 76: 1-18. [31] Little C,Johannessen K C,Bengtson S,Chan C S,Bekker A. 2021. A late Paleoproterozoic(1.74 Ga)deep-sea,low-temperature,iron-oxidizing microbial hydrothermal vent community from Arizona,USA. Geobiology, 19(3): 228-249. [32] Lu S N,Yang C L,Li H K,Li H M. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131. [33] Lu S,Zhao G,Wang H,Hao G. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review. Precambrian Research, 160(1-2): 77-93. [34] Noffke N. 1998. Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits(MellumIsland,southern North Sea). Geology, 26(10): 879-882. [35] Noffke N,Gerdes G,Klenke T,Krumbein W E. 2001. Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71(5): 649-656. [36] Noffke N,Gerdes G,Klenke T. 2003. Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems(siliciclastic,evaporitic salty,and evaporitic carbonate). Earth-Science Reviews, 62(1-2): 163-176. [37] Noffke N,Beukes N,Gutzmer J,Hazen R. 2006. Spatial and temporal distribution of microbially induced sedimentary structures: a case study from siliciclastic storm deposits of the 2.9 Ga Witwatersrand Supergroup,South Africa. Precambrian Research, 146(1-2): 35-44. [38] Noffke N,Beukes N,Bower D,Hazen R M,Swift D J P. 2008. An actualistic perspective into Archean worlds-(cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section,2.9 Ga Pongola Supergroup,South Africa. Geobiology, 6(1): 5-20. [39] Odin G S,Matter A. 1981. De glauconiarum origin. Sedimentology, 28(5): 611-641. [40] Pflüger F,Gresse P G. 1996. Microbial mat chips: a non-actualistic sedimentary structure. Sedimentary Geology, 102(3-4): 263-274. [41] Planavsky N J,Rouxel O,Bekker A,Shapiro R,Fralick P,Knudsen A. 2009. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth and Planetary Science Letters, 286(1-2): 230-242. [42] Planavsky N J,McGoldrick P,Scott C T,Li C,Reinhard C T,Kelly A E,Chu X,Bekker A,Love G D,Lyons T W. 2011. Widespread iron-rich conditions in the mid-Proterozoic Ocean. Nature, 477: 448-451. [43] Planavsky N J,Reinhard C T,Wang X,Thomson D,McGoldrick P,Rainbird R H,Johnson T,Fischer W W,Lyons T W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346(6209): 635-638. [44] Posth N R,Canfield D E,Kappler A. 2014. Biogenic Fe(Ⅲ) minerals: from formation to diagenesis and preservation in the rock record. Earth-Science Reviews, 135: 103-121. [45] Poulton S W,Canfield D E. 2011. Ferruginous conditions: a dominant feature of the ocean through earth's history. Elements, 7: 107-112. [46] Rasmussen B,Krapež B,Meier D B. 2014. Replacement origin for hematite in 2.5 Ga banded iron formation: evidence for post depositional oxidation of iron-bearing minerals. Geological Society of America Bulletin, 126(3-4): 438-446. [47] Rasmussen B,Muhling J R. 2020. Hematite replacement and oxidative overprinting recorded in the 1.88 Ga gunflint iron formation,Ontario,Canada. Geology, 48(7): 688-692. [48] Schieber J. 1998. Possible indicators of microbial mat deposits in shales and sandstones: examples from the Mid-Proterozoic Belt Supergroup,Montana,USA. Sedimentary Geology, 120(1-4): 105-124. [49] Schieber J. 1999. Microbial mats in terrigenous clastic: the challenge of identification in the rock record. Palaios, 14(1): 3-12. [50] Schieber J,Bose P K,Eriksson P G,Banerjee S,Alterman W,Catuneau O. 2007. Atlas of Microbial Mat Features Preserved within the Clastic Rock Record. Amsterdam: Elsevier, 288. [51] Tang D J,Shi X Y,Jiang G Q,Wang X Q. 2012. Morphological association of microbially induced sedimentary structures(MISS)as a paleoenvironmental indicator: an example from the Proterozoic succession of the southern North China Platform. Microbial mats in siliciclastic depositional systems through time. SEPM Special Publication, 101: 163-175. [52] Tang D J,Shi X Y,Ma J B,Jiang G,Zhou X Q,Shi Q. 2017. Formation of shallow-water glaucony in weakly oxygenated Precambrian Ocean: an example from the Mesoproterozoic Tieling formation in north China. Precambrian Research, 294: 214-229. [53] Tang D J,Shi X Y,Jiang G Q,Wu T,Ma J B,Zhou X Q. 2018. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: genesis and environmental implications. Gondwana Research, 58: 1-15. [54] Tang D J,Ma J B,Shi X Y,Lechte M,Zhou X Q. 2020. The formation of marine red beds and iron cycling on the Mesoproterozoic North China Platform. American Mineralogist, 105(9): 1412-1423. [55] Wei B L,Tang D J,Shi X Y,Lechte M,Zhou L,Zhou X Q,Song H Y. 2021. A pulsed oxygenation in terminal Paleoproterozoic Ocean: Evidence from the transition between the Chuanlinggou and Tuanshanzi Formations,North China. Geochemistry Geophysics Geosystems, 22(5): e2020GC009612. [56] Xing L D,Lockley M G,Tang D J,Klein H,Peng G,Ye Y,Hao B. 2019. Early Jurassic basal sauropodomorph dominated tracks from Guizhou,China: morphology,ethology,and paleoenvironment. Geoscience Frontiers, 10(1): 229-240. [57] Zhang S,Li Z X,Evans D A D,Wu H,Li H,Dong J. 2012. Pre-Rodinia supercontinent Nuna shaping up: a global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353: 145-155. [58] Zhao G,Sun M,Wilde S A,Li S. 2003. Assembly,accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent: records in the North China Craton. Gondwana Research, 6(3): 417-434. [59] Zhao G,Li S,Sun M,Wilde S A. 2011. Assembly,accretion,and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: record in the North China Craton revisited. International Geology Review, 53(11-12): 1331-1356.