I/(Ca+Mg)as an important redox proxy for carbonate sedimentary environments: Progress and problems
Shang Mo-Han1,2, Tang Dong-Jie1,3, Shi Xiao-Ying1,2, Wei Hao-Ming2, Liu An-Qi3
1 State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences(Beijing),Beijing 100083; 2 School of Earth Sciences and Resources,China University of Geosciences(Beijing),Beijing 100083; 3 Institute of Earth Sciences,China University of Geosciences(Beijing),Beijing 100083
Abstract The redox conditions of seawater play a pivotal role in influencing the origin and early evolution of eukaryotes. However,previous studies regarding ocean redox conditions mainly focus on fine-grained siliciclastic rocks(e.g.,black shale)deposited in relatively deep seawater,rather than carbonates formed in eukaryote-concentrated shallow seawater,due largely to a lack of valid method,significantly limiting our understanding of the mechanisms concerning the origin and early evolution of eukaryotes. In recent years,I/(Ca+Mg)was proposed as a proxy for redox conditions of seawater,and has been widely employed in carbonates to analysis seawater redox conditions. The proposal of this proxy is mainly based on measurements of iodine speciation in modern oceans and experiments of calcite synthesis in laboratory. The measurements demonstrate that marine iodine composition mainly occur in two states, namely, Oxidized-state iodate(IO3-)and reduced-state iodide(I-). With the decrease of oxygen concentration(such as in an oxygen minimum zone,OMZ),the oxidized-state iodate,which is proportional to the oxygen concentration,would be gradually reduced into reduced-state iodide. The experiments confirm that only IO3- could be incorporated into the lattices of carbonate minerals with a fixed distribution coefficient,but I-would be excluded. Because of the high redox potential of IO3-/I-,which is close to that of O2/H2O,I/(Ca+Mg) is one of the proxies earliest responding to the decrease of ocean oxygen concentration. I/(Ca+Mg) is therefore sensitive to the variation of oxygen concentrations in weakly oxidized surface seawaters in deep time(e.g.,Precambrian). Furthermore,some scholars attempted to establish semiquantitative relationships of I/(Ca+Mg)values to oxygen concentrations,and two threshold values of I/(Ca+Mg)>0 and 2.5μmol/mol have been proposed as the semiquantitative constraints for the oxygen concentrations in ancient ocean waters. In addition,in the light of the study of iodine speciation and dissolved oxygen concentrations in modern anoxic basins and water columns within OMZs,our results suggest that I/(Ca+Mg)=1.5μmol/mol could be used as the threshold between atmosphere and surface seawater. This threshold value may be used to reflect that the oxygen concentration of surface ocean is up to 10 μM,which is the maximum oxygen concentration increased by the primary productivity,and therefore to distinguish the potential variations of oxygen concentration between atmosphere and surface seawaters. In this paper,some of the recent progress and potential problems in redox analysis using I/(Ca+Mg)in ancient carbonates were briefly reviewed,and some tentative suggestions for future study were also put forward.
Fund:Co-funded by the National Natural Science Foundation of China(Nos. 41672336, 41402024), and the Fundamental Research Funds for the Central Universities(Nos. 2652018005, 2652017050, 2652017256)
Corresponding Authors:
Tang Dong-Jie,born in 1985,is an associated professor of China University of Geosciences(Beijing). He is engaged in geobiology and Precambrian geology. E-mail: dongjtang@126.com.
About author: Shang Mo-Han,born in 1993,is a Ph.D. candidate of paleontology and stratigraphy. E-mail: shangmohan126@126.com.
Cite this article:
Shang Mo-Han,Tang Dong-Jie,Shi Xiao-Ying et al. I/(Ca+Mg)as an important redox proxy for carbonate sedimentary environments: Progress and problems[J]. JOPC, 2018, 20(4): 651-664.
Shang Mo-Han,Tang Dong-Jie,Shi Xiao-Ying et al. I/(Ca+Mg)as an important redox proxy for carbonate sedimentary environments: Progress and problems[J]. JOPC, 2018, 20(4): 651-664.
[1] Adam Z R.2014. Microfossil paleontology and biostratigraphy of the early Mesoproterozoic belt Supergroup,Montana. Montana State University: ProQuest LLC,1-163. [2] Ader M,Sansjofre P,Halverson G P,Busigny V,Trindade R I F,Kunzmann M,Nogueira A C R.2014. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: A nitrogen isotope perspective. Earth and Planetary Science Letters, 396(1): 1-13. [3] Anbar A D,Knoll A H.2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297: 1137-1142. [4] Arnold G L,Anbar A D,Barling J,Lyons T W.2004. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304: 87-90. [5] Baker A R,Tunnicliffe C,Jickells T D.2001. Iodine speciation and deposition fluxes from the marine atmosphere. Journal of Geophysical Research: Atmospheres,106(D22): 28743-28749. [6] Bekker A,Holland H.2012. Oxygen overshoot and recovery during the Early Paleoproterozoic. Earth and Planetary Science Letters,317-318(2): 295-304. [7] Bluhm K,Croot P L,Huhn O,Rohardt G,Lochte K.2011. Distribution of iodide and iodate in the Atlantic sector of the southern ocean during austral summer. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 58(25): 2733-2748. [8] Broecker W S,Peng H T.1982. Tracers in the Sea. USA: Lamont-Doherty Geological Observatory,1-690. [9] Campos M L A M,Farrenkopf A M,Jickells T D,Luther Ⅲ G W.1996. A comparison of dissolved iodine cycling at the Bermuda Atlantic Time-series Station and Hawaii Ocean Time-series Station. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 43(2-3): 455-466. [10] Campos M L A M,Sanders R,Jickells T.1999. The dissolved iodate and iodide distribution in the South Atlantic from the Weddell Sea to Brazil. Marine Chemistry, 65(3-4): 167-175. [11] Canfield D E,Poulton S W,Narbonne G M.2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315: 92-95. [12] Canfield D E,Poulton S W,Knoll A H,Narbonne G M,Ross G,Goldberg T,Strauss H.2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321: 949-952. [13] Canfield D E,Ngombi-Pemba L,Hammarlund E U,Bengtson S,Chaussidon M,Gauthier-Lafaye F,Meunier A,Riboulleau A,Rollion-Bard C,Rouxel O,Asael D,Pierson-Wickmann A C,El Albani A.2013. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere. Proceedings of the National Academy of Sciences, 110(42): 16736-16741. [14] Chance R,Weston K,Baker A R,Hughes C,Malin G,Carpenter L,Meredith M P,Clarke A,Jickells T D,Mann P,Rossetti H.2010. Seasonal and interannual variation of dissolved iodine speciation at a coastal Antarctic site. Marine Chemistry, 118(3-4): 171-181. [15] Chance R,Baker A R,Carpenter L,Jickells T D.2014. The distribution of iodide at the sea surface. Environmental Science: Processes & Impacts, 16(8): 1841-1859. [16] Cole D B,Reinhard C T,Wang X,Gueguen B,Halverson G P,Gibson T,Hodgskiss M S W,McKenzie N R,Lyons T W,Planavsky N J.2016. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology, 44(7): 555-558. [17] Derry L A.2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 294(1-2): 152-162. [18] Edwards C T,Fike D A,Saltzman M R,Lu W,Lu Z.2018. Evidence for local and global redox conditions at an Early Ordovician(Tremadocian)mass extinction. Earth and Planetary Science Letters, 481(1): 125-135. [19] Elderfield H,Truesdale V W.1980. On the biophilic nature of iodine in seawater. Earth and Planetary Science Letters, 50(1): 105-114. [20] Emerson S,Cranston R E,Liss P S.1979. Redox species in a reducing fjord: Equilibrium and kinetic considerations. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 26(8): 859-878. [21] Fairchild I J.1991. Origins of carbonate in Neoproterozoic stromatolites and the identification of modern analogues. Precambrian Research, 53: 281-299. [22] Farrenkopf A M,Luther Ⅲ G W,Truesdale V W,Wagoner Der Weijden C H.1997. Sub-surface iodide maxima: Evidence for biologically catalyzed redox cycling in Arabian Sea OMZ during the SW intermonsoon. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 44(6-7): 1391-1409. [23] Farrenkopf A M,Luther Ⅲ G W.2002. Iodine chemistry reflects productivity and denitrification in the Arabian Sea: Evidence for flux of dissolved species from sediments of western India into the OMZ. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 49(12): 2303-2318. [24] Field C B,Behrenfeld M J,Randerson J T,Falkowski P.1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281: 237-240. [25] Fike D A,Grotzinger J P,Pratt L M,Summons R E.2006. Oxidation of the Ediacaran ocean. Nature, 444(7120): 744-747. [26] Frei R,Gaucher C,Poulton S W,Canfield D E.2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461: 250-253. [27] Gilleaudeau G J,Frei R,Kaufman A J,Kah L C,Azmy K,Bartley J K,Chernyavskiy P,Knoll A H.2016. Oxygenation of the mid-Proterozoic atmosphere: Clues from chromium isotopes in carbonates. Geochemical Perspectives Letters, 2: 178-187. [28] Glass J B,Wolfe-Simon F,Anbar A D.2009. Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology, 7(2): 100-123. [29] Glock N,Liebetrau V,Eisenhauer A.2014. I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone: Analytical methodology and evaluation as proxy for redox conditions. Biogeosciences Discuss, 11: 11635-11670. [30] Guan C,Zhou C,Wang W,Wan B,Yuan X,Chen Z.2014. Fluctuation of shelf basin redox conditions in the early Ediacaran: Evidence from Lantian Formation black shales in South China. Precambrian Research, 245: 1-12. [31] Hardisty D S,Lu Z,Planavsky N J,Bekker A,Philippot P,Zhou X,Lyons T W.2014. An iodine record of Paleoproterozoic surface ocean oxygenation. Geology, 42(7): 619-622. [32] Hardisty D S,Lu Z,Bekker A,Diamond C W,Gill B C,Jiang G,Kah L C,Knoll A H,Loyd S J,Osburn M R,Planavsky N J,Wang C,Zhou X,Lyons T W.2017. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth and Planetary Science Letters, 463(1): 159-170. [33] Hood A V S,Wallace M W.2011. Synsedimentary diagenesis in a Cryogenian reef complex: Ubiquitous marine dolomite precipitation. Sedimentary Geology,255-256: 56-71. [34] Jickells T D,Boyd S S,Knap A H.1988. Iodine cycling in the Sargasso Sea and the Bermuda inshore waters. Marine Chemistry, 24(1): 61-82. [35] Johnston D T,Poulton S W,Dehler C,Porter S,Husson J,Canfield D E,Knoll A H.2010. An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group,Grand Canyon,USA. Earth and Planetary Science Letters, 290(1-2): 64-73. [36] Kah L C.2000. Depositional δ18O signatures in Proterozoic dolostones: Constraints on seawater chemistry and early diagenesis. Society for Sedimentary Geology,Special Publication 67: 345-360. [37] Kasting J F.1991. Box models for the evolution of atmospheric oxygen: An update. Palaeogeography,Palaeoclimatology,Palaeoecology(Global and Planetary Change Section), 97(1-2): 125-131. [38] Kendall B,Komiya T,Lyons T W,Bates S M,Gordon G W,Romaniello S J,Jiang G,Creaser R A,Xiao S,McFadden K,Sawaki Y,Tahata M,Shu D,Han J,Li Y,Chu X,Anbar A D.2015. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochimica et Cosmochimica Acta, 156(1): 173-193. [39] Kennedy H A,Elderfield H.1987a. Iodine diagenesis in pelagic deep-sea sediments. Geochimica et Cosmochimica Acta, 51(9): 2489-2504. [40] Kennedy H A,Elderfield H.1987b. Iodine diagenesis in nonpelagic deep-sea sediments. Geochimica et Cosmochimica Acta, 51(9): 2505-2514. [41] Knoll A H.2014. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspectives in Biology, 6(1): a016121. [42] Knoll A H,Carroll S B.1999. Early animal evolution: Emerging views from comparative biology and geology. Science, 284(5423): 2129-2137. [43] Koehler M C,Stüeken E E,Kipp M A,Buick R,Knoll A H.2017. Spatial and temporal trends in Precambrian nitrogen cycling: A Mesoproterozoic offshore nitrate minimum. Geochimica et Cosmochimica Acta, 198(1): 315-337. [44] Küpper F C,Feiters M C,Olofsson B,Kaiho T,Yanagida S,Zimmermann M B,Carpenter L J,Luther Ⅲ G W,Lu Z,Jonsson M,Kloo L.2011. Commemorating two centuries of iodine research: An interdisciplinary overview of current research. Angewandte Chemie International Edition, 50(49): 11598-11620. [45] Kurzweil F,Wille M,Schoenberg R,Taubald H,Wagoner Kranendonk M J.2015. Continuously increasing δ98Mo values in Neoarchean black shales and iron formations from the Hamersley Basin. Geochimica et Cosmochimica Acta, 164(1): 523-542. [46] Li C,Love G D,Lyons T W,Fike D A,Sessions A L,Chu X.2010. A stratified redox model for the Ediacaran ocean. Science, 328: 80-83. [47] Ling H F,Chen X,Li D A,Wang D,Shields-Zhou G A,Zhu M.2013. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area,South China: Implications for oxygenation of coeval shallow seawater. Precambrian Research, 225: 110-127. [48] Loope G R,Kump L R,Arthur M A.2013. Shallow water redox conditions from the Permian-Triassic boundary microbialite: The rare earth element and iodine geochemistry of carbonates from Turkey and South China. Chemical Geology, 351: 195-208. [49] Lu Z,Jenkyns H C,Rickaby R E.2010. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology, 38(12): 1107-1110. [50] Lu Z,Hoogakker B A,Hillenbrand C D,Zhou X,Thomas E,Gutchess K M,Lu W,Jones L,Rickaby R E M.2016. Oxygen depletion recorded in upper waters of the glacial Southern Ocean. Nature Communications, 7: 11146. [51] Ludwig W,Probst J L.1998. River sediment discharge to the oceans: Present-day controls and global budgets. American Journal of Science, 298: 265-295. [52] Luther Ⅲ G W,Campbell T.1991. Iodine speciation in the water column of the Black Sea. Deep Sea Research Part Ⅰ: Oceanographic Research Papers,38(S2): S875-S882. [53] Luther Ⅲ G W,Wu J,Cullen J B.1995. Redox chemistry of iodine in seawater: Frontier molecular-orbital theory considerations,in Aquatic Chemistry: Interfacial and Interspecies Processes. Advances in Chemistry Series, 224: 135-155. [54] Lyons T W,Reinhard C T,Planavsky N J.2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506: 307-315. [55] Milliman J D.1993. Production and accumulation of calcium-carbonate in the ocean-budget of a non-steady State. Global Biogeochemical Cycles, 7: 927-957. [56] Milliman J D,Rutkowski C,Meybeck M.1995. River discharge to the sea. A global river index(GLORI),Land-ocean interactions in the coastal zone(LOICZ): Reports & Studies 2, 1-114. [57] Moran J E,Oktay S D,Santschi P H.2002. Sources of iodine and iodine 129 in rivers. Water Resources Research, 38(8): 24-1-24-10. [58] Mukherjee I,Large R R.2016. Pyrite trace element chemistry of the Velkerri formation,Roper group,McArthur basin: Evidence for atmospheric oxygenation during the boring billion. Precambrian Research, 28: 13-26. [59] Muramatsu Y,Wedepohl K H.1998. The distribution of iodine in the earth's crust. Chemical Geology, 147: 201-216. [60] Nakayama E,Kimoto T,Isshiki K,Sohrin Y,Okazaki S.1989. Determination and distribution of iodide-and total-iodine in the North Pacific Ocean: By using a new automated electrochemical method. Marine Chemistry, 27(1-2): 105-116. [61] O'Dowd C D,Jimenez J L,Bahreini R,Flagan R C,Seinfeld J H,Hämeri K,Pirjola L,Kulmala M,Jennings S G,Hoffmann T.2002. Marine aerosol formation from biogenic iodine emissions. Nature, 417: 632-636. [62] Olson S L,Kump L R,Kasting J F.2013. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chemical Geology, 362: 35-43. [63] Partin C A,Bekker A,Planavsky N J,Scott C T,Gill B C,Li C,Podkovyrov V,Maslov A,Konhauser K O,Lalonde S V,Love G D,Poulton S W,Lyons T W.2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth and Planetary Science Letters, 369(3): 284-293. [64] Planavsky N J,McGoldrick P,Scott C T,Li C,Reinhard C T,Kelly A E,Chu X,Bekker A,Love G D,Lyons T W.2011. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature, 477: 448-451. [65] Planavsky N J,Reinhard C T,Wang X,Thomson D,McGoldrick P,Rainhard R H,Johnson T,Fischer W W,Lyons T W.2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346: 635-638. [66] Poulton S W,Canfield D E.2011. Ferruginous conditions: A dominant feature of the ocean through Earth's history. Elements, 7(2): 107-112. [67] Poulton S W,Fralick P W,Canfield D E.2004. The transition to a sulphidic ocean~1.84 billion years ago. Nature Geoscience, 3(7): 486-490. [68] Poulton S W,Fralick P W,Canfield D E.2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience, 3(7): 486-490. [69] Reinhard C T,Lalonde S V,Lyons T W.2013. Oxidative sulfide dissolution on the early Earth. Chemical Geology, 362: 44-55. [70] Reinhard C T,Planavsky N J,Olson S L,Lyons T W,Erwin D H.2016. Earth's oxygen cycle and the evolution of animal life. Proceedings of the National Academy of Sciences, 113(32): 8933-8938. [71] Rue E L,Smith G J,Cutter G A,Bruland K W.1997. The response of trace element redox couples to suboxic conditions in the water column. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 44(1): 113-134. [72] Sahoo S K,Planavsky N J,Kendall B,Wang X,Shi X,Scott C,Anbar A D,Lyons T W,Jiang G.2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546-549. [73] Sahoo S K,Planavsky N J,Jiang G,Kendall B,Owens J D,Wang X,Shi X,Anbar A D,Lyons T W.2016. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology, 14(5): 457-468. [74] Schnetger B,Muramatsu Y.1996. Determination of halogens,with special reference to iodine,in geological and biological samples using pyrohydrolysis for preparation and inductively coupled plasma mass spectrometry and ion chromatography for measurement. Analyst, 121(11): 1627-1631. [75] Scott C,Lyons T W.2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology, 324: 19-27. [76] Scott C,Lyons T W,Bekker A,Shen Y,Poulton S W,Chu X,Anbar A D.2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456-459. [77] Smith J D,Butler E C V,Airey D,Sandars G.1990. Chemical-properties of a low-oxygen water column in port-hacking(Australia): Arsenic,iodine and nutrients. Marine Chemistry, 28(4): 353-364. [78] Snyder G T,Fehn U.2002. Origin of iodine in volcanic fluids: I-129 results from the Central American Volcanic Are. Geochimica et Cosmochimica Acta, 66(21): 3827-3838. [79] Sperling E A,Wolock C J,Morgan A S,Gill B C,Kunzmann M,Halverson G P,Macdonald F A,Knoll A,Johnston D.2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523: 451-454. [80] Staudt W J,Schoonen M A A.1995. Sulfate incorporation into sedimentary carbonates,in Geochemical Transformations of Sedimentary Sulfur. American Chemical Society Symposium Series, 612: 332-345. [81] Stüeken E E.2013. A test of the nitrogen-limitation hypothesis for retarded eukaryote radiation: Nitrogen isotopes across a Mesoproterozoic basinal profile. Geochimica et Cosmochimica Acta, 120(1): 121-139. [82] Stüeken E E.2016. Nitrogen in ancient mud: A biosignature? Astrobiology, 16(9): 730-735. [83] Tang D,Shi X,Wang X,Jiang G.2016. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambrian Research, 276: 145-157. [84] Thamdrup B,Dalsgaard T,Revsbech N P.2012. Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 65(4): 36-45. [85] Tian R C,Marty J C,Nicolas E.1996. Iodine speciation: A potential indicator to evaluate new production versus regenerated production. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 43(5): 723-738. [86] Truesdale V W,Bailey G W.2000. Dissolved iodate and total iodine during an extreme hypoxic event in the Southern Benguela system. Estuarine Coastal Shelf Science, 50(6): 751-760. [87] Truesdale V W,Bale A J,Woodward E M S.2000. The meridional distribution of dissolved iodine in near-surface waters of the Atlantic Ocean. Progress in Oceanography, 45: 387-400. [88] Truesdale V W,Bailey G W.2002. Iodine distribution in the Southern Benguela system during an upwelling episode. Continental Shelf Research, 22(1): 39-49. [89] Tucker M E.1982. Precambrian dolomites: Petrographic and isotopic evidence that they differ from Phanerozoic dolomites. Geology, 10(1): 7-12. [90] van Cappellen P,Ingall E D.1994. Benthic phosphorus regeneration,net primary production,and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 9: 677-692. [91] Waite T J,Truesdale V W,Olafsson J.2006. The distribution of dissolved inorganic iodine in the seas around Iceland. Marine Chemistry, 101(1-2): 54-67. [92] Wang D,Struck U,Ling H,Guo Q,Shields-Zhou G A,Zhu M,Yao S.2015a. Marine redox variations and nitrogen cycle of the early Cambrian southern margin of the Yangtze Platform,South China: Evidence from nitrogen and organic carbon isotopes. Precambrian Research, 267: 209-226. [93] Wang Z,Fu X,Feng X,Song C,Wang D,Chen W,Zeng S.2015b. Geochemical features of the black shales from the Wuyu Basin,southern Tibet: Implications for palaeoenvironment and palaeoclimate. Geological Journal, 52(2): 282-297. [94] Witt M L I,Mather T A,Pyle D M,Aiuppa A,Bagnato E,Tsanev V I.2008. Mercury and halogen emissions from Masaya and Telica volcanoes,Nicaragua. Journal of Geophysical Research: Solid Earth,113(B6): 3043-3061. [95] Wong G T F.1985. Dissolved iodine across the Gulf Stream Front and in the South Atlantic Bight. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 42(11-12): 2005-2023. [96] Wong G T F,Brewer P G.1977. The marine chemistry of iodine in anoxic basins. Geochimica et Cosmochimica Acta, 41(1): 151-159. [97] Wong G T F,Takayanagi K,Todd J F.1985. Dissolved iodine in waters overlying and in the Orca Basin Gulf of Mexico. Marine Chemistry, 17(2): 177-183. [98] Zhang S,Wang X,Wang H,Bjerrum C J,Hammarlund E U,Costa M M,Connelly J N,Zhang B,Su J,Canfield D E.2016. Sufficient oxygen for animal respiration 1,400million years ago. Proceedings of the National Academy of Sciences, 113(7): 1731-1736. [99] Zhang S,Wang X,Wang H,Hammarlund E U,Su J,Wang Y,Canfield D E.2017. The oxic degradation of sedimentary organic matter 1400Ma constrains atmospheric oxygen levels. Biogeosciences, 14: 2133-2149. [100] Zhou X,Thomas E,Rickaby R E M,Winguth A M,Lu Z.2014. I/Ca evidence for upper ocean deoxygenation during the PETM. Paleoceanography, 29: 964-975. [101] Zhou X,Jenkyns H C,Owens J D,Junium C K,Zheng X,Sageman B B,Hardisty D S,Lyons T W,Ridgwell A,Lu Z.2015. Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian-Turonian OAE 2. Paleoceanography, 30: 510-526. [102] Zhou X,Jenkyns H C,Lu W,Hardisty D S,Owens J D,Lyons T W,Lu Z.2017. Organically bound iodine as a bottom-water redox proxy: Preliminary validation and application. Chemical Geology, 457: 95-106.