Symbiotic characteristics of wrinkle structure and trace fossils in the Second Member of Miaolingian Mantou Formation in western Henan
LI Da1,2,3, HE Xitong1, XING Zhifeng1,2,3, QI Yong'an1,2,3, ZHENG Wei1,2,3, FU Jian1
1 School of Resources and Environment,Henan Polytechnic University,Henan Jiaozuo 454003, China; 2 Key Laboratory of Biogenic Traces and Sedimentary Minerals of Henan Province,Henan Jiaozuo 454003, China; 3 Central Plains Economic Zone Coalbed Methane and Shale Gas Collaborative Innovation Center,Henan Jiaozuo 454003, China
Abstract Since the Ediacaran period,the microbes and metazoan were interacted,but microbial induced sedimentary structures(MISS)and metazoan bioturbation structures coexisted temporarily in the Cambrian Miaoling age. In this paper,two types of microbially induced sedimentary structures,including wrinkle structures and microbial mat-crack structures,are identified in the lower part of the Second Member of the Mantou Formation in western Henan Province. The symbiotic relationship between MISS and trace fossils was classified,and three models of the symbiotic relationship between the wrinkle structures and metazoans and ecological evolution model of microbial mat and metazoan were established, including the trackways(Monomorphichnus henanensis)and the grazing trace(Jinningichnus badaowanensis)on the microbial mat, Planolites montanus under microbial mat, and the burrows in mudstone substrate. It showed that some organisms with special environmental tolerance coexisted with microbial mats in the tidal environment with relatively sufficient food sources,revealing the short period of harmonious coexistence relationship between microbial mat and metazoans not only continued the partial symbiotic characteristics during the Ediacaran,but also developed in the mixground-dominated Phanerozoic ecological environment.
Fund:Co-funded by the National Natural Science Foundation of China(No.41902113),Key Research Project of Higher Education Institutions in Henan Province(No.21A170013),and Key Scientific and Technological Projects in Henan Province(No.202102310336)
Corresponding Authors:
XING Zhifeng,born in 1973,is an associate professor. She is mainly engaged in researches of sedimentology,paleontology and ichnology. ORCID: 0000-0003-2603-640X.E-mail: xingzhifeng925@hpu.edu.cn.
About author: LI Da,born in 1984,lecturer,is mainly engaged in researches of sedimentology,paleontology and ichnology. E-mail: lida@hpu.edu.cn.
Cite this article:
LI Da,HE Xitong,XING Zhifeng et al. Symbiotic characteristics of wrinkle structure and trace fossils in the Second Member of Miaolingian Mantou Formation in western Henan[J]. JOPC, 2022, 24(6): 1162-1178.
LI Da,HE Xitong,XING Zhifeng et al. Symbiotic characteristics of wrinkle structure and trace fossils in the Second Member of Miaolingian Mantou Formation in western Henan[J]. JOPC, 2022, 24(6): 1162-1178.
[1] 郭荣涛,郭丽娜,霍荣. 2012. 皱饰构造研究进展综述. 地质科技情报, 31(3): 16-23,30. [Guo R T,Guo L N,Huo R. 2012. Review on the wrinkle structure. Geological Science and Technology Information, 31(3): 16-23,30] [2] 李妲,齐永安,代明月,王敏. 2016. 豫西寒武系第二、三统馒头组固底控制的遗迹化石. 古生物学报, 55(2): 170-180. [Li D,Qi Y A,Dai M Y,Wang M. 2016. Firm-ground trace fossils in the Mantou Formation(Cambrian Series 2 and 3),western Henan,central China. Acta Palaeontologica Sinica, 55(2): 170-180] [3] 梅冥相. 2011. 陆源碎屑岩中微生物诱发的沉积构造的成因类型及其分类体系. 地质论评, 57(3): 419-436. [Mei M X. 2011. Genetic types and their classification for the microbial induced sedimentary structure within terrigenous clastic rocks. Geological Review, 57(3): 419-436] [4] 梅冥相. 2014. 微生物席的特征和属性: 微生席沉积学的理论基础. 古地理学报, 16(3): 285-304. [Mei M X. 2014. Feature and nature of microbial-mat: theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography(Chinese Edition), 16(3): 285-304] [5] 齐永安,王敏,李妲,代明月. 2012. 寒武纪底质革命: 从微生物席底到生物扰动混合底. 河南理工大学学报(自然科学版), 31(2): 159-164. [Qi Y A,Wang M,Li D,Dai M Y. 2012. Cambrian substrate revolution: from matgrounds to bioturbated mixgrounds. Journal of Henan Polytechnic University(Natural Science), 31(2): 159-164] [6] 齐永安,李小燕,陈白兵,庆国帅. 2019. 豫西宜阳地区寒武系第三统馒头组二段鲕粒滩—微生物丘组合及其成因分析. 河南理工大学学报(自然科学版), 38(2): 34-41. [Qi Y A,Li X Y,Chen B B,Qing G S. 2019. Analysis on the oolitic shoal-microbial mound combinations and their geneses in the Second Member of Mantou Formation,Cambrian,Series 3,Yiyang area,western Henan. Journal of Henan Polytechnic University(Natural Science), 38(2): 34-41] [7] 孙大中,陆松年. 1987. 华北地台的元古宙构造演化. 中国地质科学院院报, 16: 55-69. [Sun D N,Lu S N. 1987. Proterozoic tectonic evolution of the North China Platform. Bulletin of the Chinese Academy of Geosciences, 16: 55-69] [8] 邢智峰,刘云龙,付玉鑫,齐永安,郑伟. 2020. 豫西鲁山中元古界云梦山组微生物成因沉积构造发育特征及古环境意义. 沉积学报, 38(1): 46-54. [Xing Z F,Liu Y L,Fu Y X,Qi Y A,Zheng W. 2020. Characteristics of microbially induced sedimentary structures and their paleoenvironmental significance from the Mesoproterozoic Yunmengshan Formation in Lushan area,western Henan. Acta Sedimentologica Sinica, 38(1): 46-54] [9] 杨式溥,张建平,杨美芳. 2004. 中国遗迹化石. 北京: 科学出版社,353. [Yang S P,Zhang J P,Yang M F. 2004. Fossils of Chinese Relics. Beijing: Science Press,353] [10] 赵相宽,史晓颖,王新强,汤冬杰. 2018. 寒武纪早期海洋阶段性氧化驱动早期后生动物多样化进程. 地球科学, 43(11): 3873-3890. [Zhao X K,Shi X Y,Wang X Q,Tang D J. 2018. Stepwise oxygenation of Early Cambrian ocean drove early metazoan diversification. Earth Science, 43(11): 3873-3890] [11] 钟怡江,文华国,陈洪德,刘磊,陈安清,王兴龙,王志伟,白璇. 2022. 胞外聚合物在蓝细菌钙化过程中的作用及其地质意义. 沉积学报, 40(1): 88-105. [Zhong Y J,Wen H G,Chen H D,Liu L,Chen A Q,Wang X L,Wang Z W,Bai X. 2022. The role of extracellular polymeric substances in Cyanobacterial calcification and its geological significance. Acta Sedimentologica Sinica, 40(1): 88-105] [12] 朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕. 2011. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献. 地球科学进展, 26(4): 395-404. [Zhu M X,Shi X N,Yang G P,Li T,Lü R Y. 2011. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: a review. Advances in Earth Science, 26(4): 395-404] [13] 朱茂炎,孙智新,杨爱华,袁金良,李国祥,周志强,张俊明. 2021. 中国寒武纪岩石地层划分和对比. 地层学杂志, 45(3): 223-249. [Zhu M Y,Sun Z X,Yang A H,Yuan J L,Li G X,Zhou Z Q,Zhang J M. 2021 Lithostratigraphic subdivision and correlation of the Cambrian in China. Journal of Stratigraphy, 45(3): 223-249] [14] Bailey J V,Cocrsetti F A,Bottjer D J,Marenco K N. 2006. Microbially-mediated environmental influences on metazoan colonization of matground ecosystems: evidence from the Lower Cambrian Harkless Formation. Palaios, 21(3): 215-226. [15] Bayet-Goll A,Daraei M. 2020. Palaeoecological,sedimentological and stratigraphical insights into microbially induced sedimentary structures of the Lower Cambrian successions of Iran. Sedimentology, 67(6): 3199-3235. [16] Bayet-Goll A,Daraei M,Geyer G,Bahrami N,Bagheri F. 2021. Environmental constraints on the distribution of matground and mixground ecosystems across the Cambrian Series 2-Miaolingian boundary interval in Iran: a case study for the central sector of northern Gondwana. Journal of African Earth Sciences,176: 104120.1-104120.22. [17] Bosak T,Liang B,Wu T D,Templer S P,Evans A,Vali H,Guerquin-Kern J L,Klepac-Ceraj V,Sim M S,Mui J. 2012. Cyanobacterial diversity and activity in modern conical microbialites. Geobiology, 10: 384-401. [18] Buatois L A,Mángano M G. 2003. Early colonization of the deep sea: ichnologic evidence of deep-marine benthic ecology from the Early Cambrian of Northwest Argentina. Palaios, 18: 572-581. [19] Buatois L A,Mángano M G.2011. Ichnology: Organism-substrate Interactions in Space and Time. London:Cambridge University Press,366. [20] Buatois L A,Mángano M G. 2012. An Early Cambrian shallow-marine ichnofauna from the Puncoviscana Formation of Northwest Argentina: the interplay between sophisticated feeding behaviors,matgrounds and sea-level changes. Journal of Paleontology, 86(1): 7-18. [21] Buatois L A,Narbonne G M,Mángano M G,Carmona N B,Myrow P. 2014. Ediacaran matground ecology persisted into the earliest Cambrian. Nature Communications, 5: 3544/1-3544/5. [22] Dornbos S Q,Bottjer D J,Chen J Y. 2004. Evidence for seafloor microbial mats and associated metazoan lifestyles in Lower Cambrian phosphorites of Southwest China. Lethaia, 37: 127-137. [23] Dornbos S Q,Bottjer D J,Chen J Y. 2005. Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: evidence for the Cambrian substrate revolution. Palaeogeography,Palaeoclimatology,Palaeoecology, 220(1-2): 1-67. [24] Droser M L,Jensen S,Gehling J G. 2002. Trace fossils and substrates of the terminal Proterozoic-Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences, 99(20): 12572-12576. [25] Fedonkin M A,Simonetta A,Ivantsov A Y. 2007. New data on Kimberella,the Vendian Mollusc-Like Organism(White Sea Region,Russia): palaeoecological and evolutionary implications. In: Vickers-Rich P,Komarower P(eds). the Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publications, 286: 157-179. [26] Gerdes G,Claes M,Dunajtschik-Piewak K,Riege H,Krumbein W E,Reineck H E. 1993. Contribution of microbial mats to sedimentary surface structures. Facies, 29: 61-74. [27] Gerdes G,Klenke T,Noffke N. 2000. Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology, 47(2): 279-308. [28] Gingras M,Hagadorn J W,Seilacher A,Lalonde S V,Pecoits E,Petrash D,Konhauser K O. 2011. Possible evolution of mobile animals in association with microbial mats. Nature Geoscience, 4: 372-375. [29] Hagadorn J W,Bottjer D J. 1999. Restriction of a Late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian Cambrian Transition. Palaios, 14: 73-85. [30] Hagadorn J W,Dott R H,Damrow D. 2002. Stranded on an Upper Cambrian shoreline: medusae from mentral wisconsin. Geology, 30: 147-150. [31] Kovalchuk O,Owttrim G W,Konhauser K O,Gingras M K. 2017. Desiccation cracks in siliciclastic deposits: microbial mat-related compared to abiotic sedimentary origin. Sedimentary Geology, 347: 67-78. [32] Kuwahara V S,Toda T,Hamasaki K,Kikuchi T,Taguchi S. 2000. Variability in the relative penetration of ultraviolet radiation to photosynthetically available radiation in temperate coastal waters,Japan. Journal of Oceanography, 56: 399-408. [33] Mata S A,Bottjer D J. 2009. The paleoenvironmental distribution of Phanerozoic wrinkle structures. Earth Science Reviews, 96(3): 181-195. [34] Noffke N,Knoll A,Grotzinger J. 2002. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the upper Neoproterozoic Nama Group,Namibia. Palaios, 17(6): 533-544. [35] Noffke N,Eriksson K A,Hazen R M,Simpson E L. 2006. A new window into Early Archean life: microbial mats in Earth's oldest siliciclastic tidal deposits(3.2 Ga Moodies Group,South Africa). Geology, 34: 253-256. [36] Sarkar S,Choudhuri A,Mandal S,Eriksson P G. 2016. Microbial mat-related structures shared by both siliciclastic and carbonate formations. Journal of Palaeogeography, 5(3): 278-291. [37] Seilacher A,Buatois L A,Mangano M G. 2005. Trace fossils in the Ediacaran-Cambrian transition: behavioural diversification,ecological turnover and environmental shift. Palaeogeography,Palaeoclimatology,Palaeoecology, 227: 323-356. [38] Seilacher A. 2008. Biomats,biofifilms,and bioglue as preservational agents for arthropod trackways. Palaeogeography,Palaeoclimatology,Palaeoecology, 270: 252-257. [39] Taylor A M,Goldring R. 1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150(1): 141-148.