Sedimentary characteristics and development model of lacustrine fine-grained hybrid sedimentary rocks in the Jurassic Da'anzhai Member,northern Sichuan Basin
CUI Hang1,2, ZHU Shifa1,2, SHI Zhensheng3,4, SUN Shasha3,4, CHANG Yan3,4, SUO Yihu1,2
1 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 3 PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China; 4 Unconventional Oil & Gas Key Lab,PetroChina,Hebei Langfang 065007,China
Abstract Water eutrophication occurred during the depositional period of Jurassic Da'anzhai Member in Sichuan Basin,forming lacustrine hybrid sedimentary strata of fossiliferous carbonate and shale. It provides a “natural laboratory”for the study of depositional mechanism of mixed sedimentary strata. In this paper,the lithologic classification and sedimentary facies distribution of Da'anzhai Member in Yilong-Yingshan area located at the northern Sichuan Basin are studied based on core and well logging data,and the depositional process and controlling factors of the mixed sedimentary strata are also discussed. The results show that the lacustrine mixed sedimentary strata was composed of intermixing and alternation of bivalves,ostracods components and fine-grained siliceous debris(including clay minerals). The shell beach was widely distributed in the depositional stage of Da1 and Da3 sub-member,while Da2 sub-member was dominated by semi-deep and deep lacustrine subfacies,which forms a complete lacustrine transgressive-regressive sedimentary cycle. Additionally,shallow-water coquina can be transported and re-deposited in deep-water environment driven by gravity flow. The lacustrine mixed depositional process was mainly facies mixing model and punctuated mixing model. The mixing depositional process was controlled by lake level fluctuation,provenance,geological agent, etc. The fluctuation of lake level controls the distribution of different sedimentary microfacies. Gravity flow caused by triggering mechanisms such as earthquakes,storms and waves,prompted the mixing of sediments from different material source and microfacies(terrigenous detrital transportation,bio-chemical carbonate deposition,suspended deposition of fine particles,etc.),increasing the internal disorder degree and expanding the spatial distribution scope of hybrid sedimentary rocks. Finally,the depositional mechanism model of lacustrine hybrid sedimentary rocks in Da'anzhai Member of Yilong-Yingshan area was established,which can provide theoretical support for the exploration of continental shale oil and gas and can provide reference for the study of hybrid sedimentary rocks under similar geological setting.
Fund:Finacially supported by the National Natural Science Foundation of China(Nos. 41872102;41202107)
Corresponding Authors:
ZHU Shifa,born in 1982,is a Ph.D. supervisor and professor. He is mainly engaged in reservoir geology and sedimentology. E-mail: zhushifa_zsf@163.com.
About author: CUI Hang,born in 1995,is a Ph.D. candidate. He is mainly engaged in reservoir geology and sedimentology. E-mail: 2018211056@student.cup.edu.cn.
Cite this article:
CUI Hang,ZHU Shifa,SHI Zhensheng et al. Sedimentary characteristics and development model of lacustrine fine-grained hybrid sedimentary rocks in the Jurassic Da'anzhai Member,northern Sichuan Basin[J]. JOPC, 2022, 24(6): 1099-1113.
CUI Hang,ZHU Shifa,SHI Zhensheng et al. Sedimentary characteristics and development model of lacustrine fine-grained hybrid sedimentary rocks in the Jurassic Da'anzhai Member,northern Sichuan Basin[J]. JOPC, 2022, 24(6): 1099-1113.
[1] 陈超,杨雪飞,王兴志,李博,黄梓桑,唐锐峰,杜垚. 2020. 四川盆地东北部下侏罗统自流井组大安寨段湖相碳酸盐岩沉积相分析. 地质论评, 66(4): 836-851. [Chen C,Yang X F,Wang X Z,Li B,Huang Z S,Tang R F,Du Y. 2020. Sedimentary facies analysis of lacustrine carbonate in the Da'anzhai Member,Ziliujing Formation,Lower Jurassic,in northeastern Sichuan Basin. Geological Review, 66(4): 836-851] [2] 陈世加,张焕旭,路俊刚,杨跃明,刘超威,王力,邹贤利,杨家静,唐海评,姚宜同,黄囿霖,倪帅,陈莹莹. 2015. 四川盆地中部侏罗系大安寨段致密油富集高产控制因素. 石油勘探与开发, 42(2): 186-193. [Chen S J,Zhang H X,Lu J G,Yang Y M,Liu C W,Wang L,Zou X L,Yang J J,Tang H P,Yao Y T,Huang Y L,Ni S,Chen Y Y. 2015. Controlling factors of Jurassic Da'anzhai Member tight oil accumulation and high production in central Sichuan Basin,SW China. Petroleum Exploration and Development, 42(2): 186-193] [3] 陈世悦,张顺,刘惠民,鄢继华. 2017. 湖相深水细粒物质的混合沉积作用探讨. 古地理学报, 19(2): 271-284. [Chen S Y,Zhang S,Liu H M,Yan J H. 2017. Discussion on mixing of fine-grained sediments in lacustrine deep water. Journal of Palaeogeography(Chinese Edition), 19(2): 271-284] [4] 丁一,李智武,冯逢,翟中华,孙玮,汤聪,张葳,张长俊,刘树根. 2013. 川中龙岗地区下侏罗自流井组大安寨段湖相混合沉积及其致密油勘探意义. 地质论评, 59(2): 389-400. [Ding Y,Li Z W,Feng F,Zhai Z H,Sun W,Tang C,Zhang W,Zhang C J,Liu S G. 2013. Mixing of lacustrine siliciclastic-carbonate sediments and its significance for tight oil exploration in the Da'anzhai Member,Ziliujing Formation,Lower Jurassic,in Longgang Area,Central Sichuan Basin. Geological Review, 59(2): 389-400] [5] 杜江民,张小莉,张帆,王兴志,冯明友,罗川又,聂万才. 2015. 川中龙岗地区下侏罗统大安寨段沉积相分析及有利储集层预测. 古地理学报, 17(4): 493-502. [Du J M,Zhang X L,Zhang F,Wang X Z,Feng M Y,Luo C Y,Nie W C. 2015. Sedimentary facies and reservoir prediction of the Lower Jurassic Da'anzhai Member,Longgang area,central Sichuan Basin. Journal of Palaeogeography(Chinese Edition), 17(4): 493-502] [6] 杜晓峰,徐长贵,朱红涛,解习农,朱筱敏,刘可禹,姜在兴,曾洪流. 2020. 陆相断陷盆地陆源碎屑与碳酸盐混合沉积研究进展. 地球科学, 45(10): 3509-3526. [Du X F,Xu C G,Zhu H T,Xie X N,Zhu X M,Liu K Y,Jiang Z X,Zeng H L. 2020. Research advances of mixed siliciclastic and carbonate sediments in continental rift basins. Earth Science, 45(10): 3509-3526] [7] 冯荣昌,吴因业,陶士振,张天舒,岳婷,杨家静,刘敏. 2015a. 四川盆地下侏罗统大安寨段沉积微相特征及对储层的控制. 石油实验地质, 37(3): 320-327. [Feng R C,Wu Y Y,Tao S Z,Zhang T S,Yue T,Yang J J,Liu M. 2015a. Sedimentary microfacies characteristics and their control on reservoirs in Da'anzhai Member,Lower Jurassic,Sichuan Basin. Petroleum Geology & Experiment, 37(3): 320-327] [8] 冯荣昌,吴因业,杨光,杨家静,刘敏,张天舒,岳婷. 2015b. 川中大安寨段风暴沉积特征及分布模式. 沉积学报, 33(5): 909-918. [Feng R C,Wu Y Y,Yang G,Yang J J,Liu M,Zhang T S,Yue T. 2015b. Storm deposition of the Da'anzhai Member(Jurassic)in central Sichuan Basin. Acta Sedimentologica Sinica, 33(5): 909-918] [9] 高振中,何幼斌,李罗照,卿崇文,肖明国,程四洪,张文成,刘伟伟. 2008. 中国南方上奥陶统五峰组观音桥段成因讨论: 是“浅水介壳相”,还是深水异地沉积?古地理学报, 10(5): 487-494. [Gao Z Z,He Y B,Li L Z,Qing C W,Xiao M G,Cheng S H,Zhang W C,Liu W W. 2008. Genesis of the Guanyinqiao Member of Upper Ordovician Wufeng Formation in southern China: “Shallow water shelly facies”or deep-water allogenic deposition. Journal of Palaeogeography(Chinese Edition), 10(5): 487-494] [10] 厚刚福,倪超,陈薇,谷明峰,郝毅. 2017. 川中地区大安寨段介壳滩沉积特征及控制因素. 西南石油大学学报(自然科学版), 39(1): 25-34. [Hou G F,Ni C,Chen W,Gu M F,Hao Y. 2017. Sedimentary characteristics and factors controlling the shell beach in the Da'anzhai Member of the central Sichuan Basin. Journal of Southwest Petroleum University(Science & Technology Edition), 39(1): 25-34] [11] 黄东,段勇,李育聪,陈洪斌,闫伟鹏,戴鸿鸣. 2018. 淡水湖相页岩油气有机碳含量下限研究: 以四川盆地侏罗系大安寨段为例. 中国石油勘探, 23(6): 38-45. [Huang D,Duan Y,Li Y C,Chen H B,Yan W P,Dai H M. 2018. Study on the TOC lower limit of shale oil and gas of freshwater lake facies: a case study on the Jurassic Da'anzhai member in the Sichuan Basin. China Petroleum Exploration, 23(6): 38-45] [12] 姜在兴,王雯雯,王俊辉,李庆,张元福. 2017. 风动力场对沉积体系的作用. 沉积学报, 35(5): 863-876. [Jiang Z X,Wang W W,Wang J H,Li Q,Zhang Y F. 2017. The influence of wind field on depositional systems. Acta Sedimentologica Sinica, 35(5): 863-876] [13] 李军,陶士振,汪泽成,邹才能,高晓辉,王世谦. 2010. 川东北地区侏罗系油气地质特征与成藏主控因素. 天然气地球科学, 21(5): 732-741. [Li J,Tao S Z,Wang Z C,Zou C N,Gao X H,Wang S Q. 2010. Characteristics of Jurassic petroleum geology and main factors of hydrocarbon accumulation in NE Sichuan Basin. Natural Gas Geoscience, 21(5): 732-741] [14] 李英强,何登发. 2014. 四川盆地及邻区早侏罗世构造-沉积环境与原型盆地演化. 石油学报, 35(2): 219-232. [Li Y Q,He D F. 2014. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan Basin and adjacent areas. Acta Petrolei Sinica, 35(2): 219-232] [15] 李泉泉,鲍志东,肖毓祥,陈建阳,李忠诚,王振军,刘敏昭,李卓伦,许西挺,操凡. 2021. 混合沉积研究进展与展望. 沉积学报, 39(1): 153-167. [Li Q Q,Bao Z D,Xiao Y X,Chen J Y,Li Z C,Wang Z J,Liu M Z,Li Z L,Xu X T,Cao F. 2021. Research advances and prospect of mixed deposition. Acta Sedimentologica Sinica, 39(1): 153-167] [16] 刘树根,李智武,刘顺,罗玉宏,徐国强,戴国汗,龚昌明,雍自权. 2006. 大巴山前陆盆地—冲断带的形成演化. 北京: 地质出版社. [Liu S G,Li Z W,Liu S,Luo Y H,Xu G Q,Dai G H,Gong C M,Yong Z Q.2006. Formation and Evolution of Dabashan Foreland Basin-thrust Belt. Beijing: Geological Publishing House] [17] 邱振,邹才能. 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29. [Qiu Z,Zou C N. 2020. Unconventional petroleum sedimentology: connotation and prospect. Acta Sedimentologica Sinica, 38(1): 1-29] [18] 谭梦琪,刘自亮,沈芳,谢润成,刘成川,邓昆,徐浩. 2016. 四川盆地回龙地区下侏罗统自流井组大安寨段混积岩特征及模式. 沉积学报, 34(3): 571-581. [Tan M Q,Liu Z L,Shen F,Xie R C,Liu C C,Deng K,Xu H. 2016. Features and model of mixed sediments of Da'anzhai Member in Lower Jurassic Ziliujing Formation,Huilong Area,Sichuan Basin. Acta Sedimentologica Sinica, 34(3): 571-581] [19] 王启明,杜晓峰,宛良伟,付鑫,李晓辉. 2020. 渤海海域莱南斜坡带沙三下亚段混合沉积发育特征及主控因素. 地球科学, 45(10): 3645-3662. [Wang Q M,Du X F,Wan L W,Fu X,Li X H. 2020. Characteristics of mixed sedimentary development and main control factors in lower third member of shahejie formation of southern slope belt of Laizhouwan Sag,Bohai Sea. Earth Science, 45(10): 3645-3662] [20] 赵贤正,周立宏,蒲秀刚,金凤鸣,时战楠,韩文中,姜文亚,韩国猛,张伟,汪虎,马建英. 2020a. 湖相页岩滞留烃形成条件与富集模式: 以渤海湾盆地黄骅坳陷古近系为例. 石油勘探与开发, 47(5): 856-869. [Zhao X Z,Zhou L H,Pu X G,Jin F M,Shi Z N,Han W Z,Jiang W Y,Han G M,Zhang W,Wang H,Ma J Y. 2020a. Formation conditions and enrichment model of retained petroleum in lacustrine shale: a case study of the Paleogene in Huanghua depression,Bohai Bay Basin,China. Petroleum Exploration and Development, 47(5): 856-869] [21] 赵贤正,周立宏,蒲秀刚,时战楠,韩国猛,吴佳朋,韩文中,张伟,高欢欢,马建英,汪虎. 2020b. 歧口凹陷歧北次凹沙河街组三段页岩油地质特征与勘探突破. 石油学报, 41(6): 643-657. [Zhao X Z,Zhou L H,Pu X G,Shi Z N,Han G M,Wu J P,Han W Z,Zhang W,Gao H H,Ma J Y,Wang H. 2020b. Geological characteristics and exploration breakthrough of shale oil in Member 3 of Shahejie Formation of Qibei subsag,Qikou sag. Acta Petrolei Sinica, 41(6): 643-657] [22] 郑荣才,郭春利,梁西文,常海亮,卢炳雄. 2016. 四川盆地大安寨段非常规储层的储集空间类型与评价. 岩性油气藏, 28(1): 16-29. [Zheng R C,Guo C L,Liang X W,Chang H L,Lu B X. 2016. Characteristics and evaluation of reservoir spaces of shale gas(oil)in Da'anzhai Member of Ziliujing Formation in Sichuan Basin. Lithologic Reservoirs, 28(1): 16-29] [23] 周广照,许思勇,冉晓军,成战刚. 2018. 川中地区大安寨段页岩储层孔隙结构特征与主控因素分析. 西北大学学报(自然科学版), 48(5): 718-728. [Zhou G Z,Xu S Y,Ran X J,Cheng Z G. 2018. Pore structure characteristics and control factors of shale in the Da'anzhai Formation of central Sichuan Basin. Journal of Northwest University(Natural Science Edition), 48(5): 718-728] [24] 周小梅,金鑫,吴强旺,葛禹,时志强. 2021. 鱼粪化石特征对早侏罗世托阿尔期湖泊生态系统的启示: 以川东大安寨段为例. 古地理学报, 23(3): 600-609. [Zhou X M,Jin X,Wu Q W,Ge Y,Shi Z Q. 2021. Enlightment of fish coprolites characteristics on lake ecosystem in Early Jurassic Toarcian: taking the Da'anzhai Member in northeast Sichuan Basin as an example. Journal of Palaeogeography(Chinese Edition), 23(3): 600-609] [25] 邹才能,杨智,王红岩,董大忠,刘洪林,施振生,张斌,孙莎莎,刘德勋,李贵中,吴松涛,庞正炼,潘松圻,袁懿琳. 2019. “进源找油”: 论四川盆地非常规陆相大型页岩油气田. 地质学报, 93(7): 1551-1562. [Zou C N,Yang Z,Wang H Y,Dong D Z,Liu H L,Shi Z S,Zhang B,Sun S S,Liu D X,Li G Z,Wu S T,Pang Z L,Pan S Q,Yuan Y L. 2019. “Exploring petroleum inside source kitchen”: Jurassic unconventional continental giant shale oil & gas field in Sichuan Basin,China. Acta Geologica Sinica, 93(7): 1551-1562] [26] Amer A S,Ahmed A K,Hannah L B,Valentin Z,Ahmed E R. 2021. Facies analysis and sequence-stratigraphic control on reservoir architecture: example from mixed carbonate/siliciclastic sediments of Raha Formation,Gulf of Suez,Egypt.Marine and Petroleum Geology,105160. [27] Betzler C,Braga J C,Jaramillo-Vogel D,Römer M,Hübscher C,Schmiedl G,Lindhorst S. 2011. Late Pleistocene and holocene cool-water carbonates of the Western Mediterranean Sea.Sedimentology, 58(3): 643-669. [28] Chiarella D,Longhitano S G. 2012. Distinguishing depositional environments in shallow-water mixed,bio-siliciclastic deposits on the basis of the degree of heterolithic segregation(Gelasian,Southern Italy). Journal of Sedimentary Research, 82(12): 969-990. [29] Chiarella D,Longhitano S G,Tropeano M. 2017. Types of mixing and heterogeneities in siliciclastic-carbonate sediments.Marine and Petroleum Geology, 88: 617-627. [30] Holmes C W. 1983. Carbonate and siliciclastic deposits on slope and abyssal floor adjacent to southwestern Florida platform.AAPG Bulletin, 67(3): 484-485. [31] LaGesse J,Read J F. 2006. Updip sequence development on a wave-and current-dominated,mixed carbonate-siliciclastic continental shelf: Paleogene,North Carolina,eastern U.S.A. Sedimentary Geology, 184(1-2): 155-182. [32] Mcneill D F,Klaus J S,Budd A F,Lutz B P,Ishman S E. 2012. Late Neogene chronology and sequence stratigraphy of mixed carbonate-siliciclastic deposits of the Cibao Basin,Dominican Republic.Geological Society of America Bulletin, 124(1-2): 35-58. [33] Mount J F. 1984. Mixing of siliciclastic and carbonate sediments in shallow shelf environments.Geology, 12(7): 432-435. [34] Petzet A. 2006. Billions of barrels in Bakken recovery seen in Williston.Oil and Gas Journal, 104(46): 42. [35] Price I. 1977. Deposition and derivation of clastic carbonates on a Mesozoic continental margin,Othris,Greece.Sedimentology, 24(4): 529-546. [36] Rossi V M,Longhitano S G,Mellere D,Dalrymple R W,Steel R J,Chiarella D,Olariu C. 2017. Interplay of tidal and fluvial processes in an early Pleistocene,delta-fed,strait margin(Calabria,Southern Italy).Marine and Petroleum Geology, 87: 14-30. [37] Stow D,Johansson M. 2000. Deep-water massive sands: nature,origin and hydrocarbon implications. Marine and Petroleum Geology, 17(2): 145-174. [38] Tirsgaard H. 1996. Cyclic sedimentation of carbonate and siliciclastic deposits on a late Precambrian ramp;the Elisabeth Bjerg Formation(Eleonore Bay Supergroup),East Greenland. Journal of Sedimentary Research, 66(4): 699-712. [39] Webster R L. 1984. Petroleum source rocks and stratigraphy of Bakken Formation in North Dakota.AAPG Bulletin, 68(7): 593-595. [40] Xu W M,Micha R,Hugh C J,Stephen P H,James B R,David S B, David A N,Johan W H W,Richard D P,Erik W T,Erdem F I. 2017. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event.Nature Geoscience, 10(2): 129-134.