A review on tidal depositional processes and characteristics
PENG Yang1,2, STEEL J.Ronald3, GONG Chenglin2, WEI Xiaojie4, SHENG Lina2
1 National Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing),Beijing 102249,China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 3 Jackson School of Geosciences,The University of Texas at Austin,Austin,Texas 78712,USA; 4 Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing 100081,China
Abstract Tidal deposits not only play a significant role in reconstruction of palaeogeographic sedimentary environments and palaeoclimate,but also are important reservoirs in oil and gas exploration. Tides,characterized by periodic fluctuations in the water level accompanied by horizontal water flows,arise from the gravitational attractions between the Earth,Moon,and Sun. Tidal currents exhibit distinctive characteristics compared to other currents,as they show systematic changes in flow direction and velocity with intervening slack-water periods within each tidal cycle. The characteristic features of tidal currents have a profound influence on sediment transport and depositional processes. Tidal processes can form a variety of sedimentary structures or features,including tidal rhythmites,flaser-wavy-lenticular bedding,tidal bundles,reactivation surfaces,compound cross bedding,bidirectional cross bedding,double mud drapes,fluid mud deposits,etc. These sedimentary structures or features occur in various tidal depositional environments and are controlled by tidal depositional processes,resulting in complex stratigraphic architectures within the depositional systems. In oil and gas exploration,it is crucial to conduct detailed characterization of the rock record and infer associated sedimentary processes in order to enhance predictions regarding the distribution of corresponding sedimentary facies and main sandbodies. This paper provides a comprehensive review of tide generation with controlling factors,tidal depositional processes,sedimentary structures,and their depositional environments. The aim is to improve understanding of recent research progress in tidal depositional systems and offer scientific guidance for oil and gas exploration and development.
Fund:National Natural Science Foundation of China(No.42202107)and the Science Foundation of China University of Petroleum,Beijing(No.2462021BJRC002)
About author: PENG Yang,born in 1988,is an associate professor in China University of Petroleum(Beijing). She is mainly engaged in sedimentology and stratigraphy. E-mail: ypeng@cup.edu.cn.
Cite this article:
PENG Yang,STEEL J.Ronald,GONG Chenglin et al. A review on tidal depositional processes and characteristics[J]. JOPC, 2023, 25(5): 1069-1089.
PENG Yang,STEEL J.Ronald,GONG Chenglin et al. A review on tidal depositional processes and characteristics[J]. JOPC, 2023, 25(5): 1069-1089.
[1] 丁琳,杜家元,罗明,李小平,颜晖,郑嘉. 2016. 珠江口盆地惠州凹陷新近系珠江组K22陆架砂脊沉积成因分析. 古地理学报, 18(5): 785-798. [Ding L,Du J Y,Luo M,Li X P,Yan H,Zheng J.2016. Analysis of depositional genesis of K22 shelf sand ridges in the Neogene Zhujiang Formation in Huizhou sag,Pearl River Mouth Basin. Journal of Palaeogeography(Chinese Edition), 18(5): 785-798] [2] 侯云东,陈安清,赵伟波,董国栋,杨帅,徐胜林,高志东,李富祥,刘新昕,张晓星. 2018. 鄂尔多斯盆地本溪组潮汐—三角洲复合砂体沉积环境. 成都理工大学学报(自然科学版), 45(4): 393-401. [Hou Y D,Chen A Q,Zhao W B,Dong G D,Yang S,Xu S L,Gao Z D,Li F X,Liu X X,Zhang X X.2018. Analysis on the depositional environment of Carboniferous Benxi Formation tidal-delta sand body complex,Ordos Basin,China. Journal of Chengdu University of Technology(Science & Technology Edition), 45(4): 393-401] [3] 单新,李顺利,石学法,谭程鹏. 2022. 海峡沉积研究进展. 古地理学报, 24(6): 1058-1071. [Shan X,Li S L,Shi X F,Tan C P.2022. Research progress of strait sediments. Journal of Palaeogeography(Chinese Edition), 24(6): 1058-1071] [4] 吴洛菲. 2018. 基于砂体构型精细刻画潮汐水道优质砂体: 以鄂尔多斯盆地东缘某气田康宁气区太原组太2段为例. 石化技术, 25(7): 181-184. [Wu L F.2018. The meticulous depiction of the high quality sand body of tidal channel based on sand body configuration:take T2 group in Taiyuan formation of Kangning gas area in the eastern edge of Ordos Basin as an example. Petrochemical Industry Technology, 25(7): 181-184] [5] 吴静,张晓钊,白海军,郑小波,蔡国富,李志垚. 2021. 珠江口盆地阳江凹陷中新统潮控体系及其岩性圈闭勘探意义. 地球科学, 46(10): 3673-3689. [Wu J,Zhang X Z,Bai H J,Zheng X B,Cai G F,Li Z Y.2021. Miocene tidal control system and its exploration significance of lithologic trap in Yangjiang sag,Pearl River mouth basin. Earth Science, 46(10): 3673-3689] [6] 彭旸,龚承林,李顺利. 2022. 河流—波浪—潮汐混合作用过程研究进展. 沉积学报, 40(4): 957-978. [Peng Y,Gong C L,Li S L.2022. Recent advances in river-wave-tide mixed processes. Acta Sedimentologica Sinica, 40(4): 957-978] [7] 李阳,金振奎,朱小二,史书婷,袁坤,黎瑞,王金艺. 2020. 潮控河口湾岩相类型及沉积模式: 以厄瓜多尔Oriente盆地北部区块上白垩统Napo组LU段为例. 沉积学报, 38(4): 826-837. [Li Y,Jin Z K,Zhu X E,Shi S T,Yuan K,Li R,Wang J Y.2020. Lithofacies and Sedimentary Model of Tidal-dominated Estuary: A case study of LU interval from Upper Cretaceous Napo Formation,northern Oriente Basin,Ecuador. Acta Sedimentologica Sinica, 38(4): 826-837] [8] 李顺利,许磊,于兴河,侯国伟,胡勇,高照普. 2018. 东海陆架盆地西湖凹陷渐新世海侵作用与潮控体系沉积特征. 古地理学报, 20(6): 1023-1032. [Li S L,Xu L,Yu X H,Hou G W,Hu Y,Gao Z P.2018. Marine transgressions and characteristics of tide-dominated sedimentary systems in the Oligocene,Xihu sag,East China Sea Shelf Basin. Journal of Palaeogeography(Chinese Edition), 20(6): 1023-1032] [9] 郭芪恒,史书婷,金振奎,李阳,王金艺,任奕霖,王凌. 2022. 河口湾潮坪潮汐水道发育特征及地质意义: 以钱塘江为例. 沉积学报, 40(1): 182-191. [Guo Q H, Shi S T,Jin Z K,Li Y,Wang J Y,Ren Y L,Wang L.2022. Characteristics and geological significance of tidal channels in an estuarine tidal flat: a case study from the Qiantang River Estuary. Acta Sedimentologica Sinica, 40(1): 182-191] [10] 黄胜兵,叶加仁,朱红涛,陆俊泽,顾惠荣,王继立. 2009. 西湖凹陷平北地区平湖组基于地震多属性的储层预测. 海洋地质与第四纪地质, 29(3): 99-105. [Huang S B,Ye J R,Zhu H T,Lu J Z,Gu H R,Wang J L.2009. Prediction of reservoirs in Pinghu formation of pingbei area based on seismic multi-attribute analysis. Marine Geology & Quaternary Geology, 29(3): 99-105] [11] Allen J R L.1980. Sand waves: a model of origin and internal structure. Sedimentary Geology, 26: 281-328. [12] Allison M A,Khan S R,Goodbred S L,Kuehl S A.2003. Stratigraphic evolution of the late Holocene Ganges-Brahmaputra lower delta plain. Sedimentary Geology, 155: 317-342. [13] Archer A W.1995. Modeling of cyclic tidal rhythmites based on a range of diurnal to semidiurnal tidal-station data. Marine Geology, 123: 1-10. [14] Archer A W,Johnson T W,1997. Modelling of cyclic tidal rhythmites(Carboniferous of Indiana and Kansas,Precambrian of Utah,USA)as a basis for reconstruction of intertidal positioning and palaeotidal regimes. Sedimentology, 44:991-1010. [15] Basilici G,De Luca P H V,Oliveira E P.2012. A depositional model for a wave-dominated open-coast tidal flat,based on analyses of the Cambrian-Ordovician Lagarto and Palmares Formations,north-eastern Brazil. Sedimentology, 59: 1613-1639. [16] Belderson R H,Johnson M A,Kenyon N H.1982. Bedforms. In: Stride A H(ed). Offshore Tidal Sands: Processes and Deposits. Chapman and Hall London,New York: 27-57. [17] Berelson W M,Heron S D.1985. Correlations between Holocene flood tidal delta and barrier island inlet fill sequences: Back Sound-Shackleford Banks,North Carolina. Sedimentology, 32: 215-222. [18] Boersma J R,Terwindt J H J.1981. Neap-spring tide sequences of intertidal shoal deposits in a mesotidal estuary. Sedimentology, 28: 151-170. [19] Bridge J,Demicco R.2008. Earth surface processes,landforms and sediment deposits. In: Earth Surface Processes. Cambridge,UK: Cambridge University Press, 830. [20] Brown J,Colling A,Park D,Phillips J,Rothery D,Wright J.1999. Waves,tides and shallow-water processes. The Open University,Milton Keynes,England. [21] Canfield R W,Bonilla G,Robbins R K.1982. Sacha oil field of Ecuadorian Oriente. AAPG Bulletin, 66: 1076-1090. [22] Chen S,Steel R J,Dixon J F,Osman A.2014. Facies and architecture of a tide-dominated segment of the Late Pliocene Orinoco Delta(Morne L'Enfer Formation)SW Trinidad. Marine and Petroleum Geology, 57: 208-232. [23] Choi K.2014. Morphology,sedimentology and stratigraphy of Korean tidal flats-Implications for future coastal managements. Ocean & Coastal Management, 102: 437-448. [24] Choi K,Jo J.2015. Morphodynamics and stratigraphic architecture of compound dunes on the open-coast macrotidal flat in the northern Gyeonggi Bay,west coast of Korea. Marine Geology, 366: 34-48. [25] Choi K,Kim D H.2016. Morphologic and hydrodynamic controls on the occurrence of tidal bundles in an open-coast macrotidal environment,northern Gyeonggi Bay,west coast of Korea. Sedimentary Geology, 339: 68-82. [26] Connell B,Dorsey R J,Humphreys E D.2017. Tidal rhythmites in the southern Bouse Formation as evidence for post-Miocene uplift of the lower Colorado River corridor. Geology, 45: 99-102. [27] Dalrymple R W.2010. Tidal depositional systems.In: James N P,Dalrymple R W(eds). Facies Models 4. Geological Association of Canada: 201-231. [28] Dalrymple R W.2023. A review of the morphology,physical processes and deposits of modern straits. Geol. Soc. London,Spec. Publ., 523: SP523-2021. [29] Dalrymple R W,Zaitlin B A.1994. High-resolution sequence stratigraphy of a complex,incised valley succession,Cobequid Bay-Salmon River Estuary,Bay of Fundy,Canada. Sedimentology, 41: 1069-1091. [30] Dalrymple R W,Rhodes R N.1995. Estuarine Dunes and Bars. In: Developments in Sedimentology. Amsterdam: Elsevier, 359-422. [31] Dalrymple R W,Choi K.2007. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews, 81: 135-174. [32] Dalrymple R W,Knight R J,Zaitlin B A,Middleton G V.1990. Dynamics and facies model of a macrotidal sand-bar complex,Cobequid Bay-Salmon River Estuary(Bay of Fundy). Sedimentology, 37: 577-612. [33] Dalrymple R W,Baker E K,Harris P T,Hughes M G.2003. Sedimentology and stratigraphy of a tide-dominated,foreland-basin delta(Fly River,Papua New Guinea). SEPM Spec. Publ., 76: 147-173. [34] Dalrymple R W,MacKay D A, Ichaso A A, Choi K S. 2012. Processes,morphodynamics,and facies of tide-dominated estuaries. In: Davis R A,Dalrymple B W(eds). Principles of Tidal Sedimentology. Dordrecht: Springer: 79-107. [35] Dashwood M F,Abbotts I L.1990. Aspects of the petroleum geology of the Oriente Basin,Ecuador. Geological Society,London,Special Publications, 50: 89-117. [36] Davis R A.2012. Tidal signatures and their preservation potential in stratigraphic sequences. In: Davis R A,Dalrymple B W(eds). Principles of Tidal Sedimentology. Dordrecht: Springer, 35-55. [37] Defant A.1961. Physical oceanography. Pergamon,New York. [38] Escalona A,Mann P.2006. Sequence-stratigraphic analysis of Eocene clastic foreland basin deposits in central Lake Maracaibo using high-resolution well correlation and 3D seismic data. AAPG Bulletin, 90: 581-623. [39] Ernstsen V B,Noormets R,Winter C,Hebbeln D,Bartholomä A,Flemming B W, Bartholdy J.2006. Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo-Marine Letters, 26: 151-163. [40] Fan D D,Tu J B,Shang S,Cai G F.2014. Characteristics of tidal-bore deposits and facies associations in the Qiantang Estuary,China. Marine Geology, 348: 1-14. [41] Fan D D,Wang Y,Liu M.2013. Classifications,sedimentary features and facies associations of tidal flats. Journal of Palaeogeography, 2: 66-80. [42] Fenies H,Tastet J P.1998. Facies and architecture of an estuarine tidal bar(the Trompeloup bar,Gironde Estuary,SW France). Marine Geology, 150: 149-169. [43] FitzGerald D, Buynevich I, Hein C. 2012. Morphodynamics and facies architecture of tidal inlets and tidal deltas.In: Davis Jr R,Dalrymple R(eds). Principles of Tidal Sedimentology. Dordrecht: Springer, 301-333. [44] FitzGerald D M.1984. Interactions between the ebb-tidal delta and landward shoreline: price inlet,south Carolina. SEPM Journal of Sedimentary Research, 54: 1303-1318. [45] Goodbred S L Jr, Saito Y. 2012. Tide-dominated deltas. In: Davis R A Jr,Dalrymple B W(eds). Principles of Tidal Sedimentology.Dordrecht: Springer, 129-149. [46] Gugliotta M,Saito Y.2019. Matching trends in channel width,sinuosity,and depth along the fluvial to marine transition zone of tide-dominated river deltas: the need for a revision of depositional and hydraulic models. Earth-Science Reviews, 191: 93-113. [47] Gugliotta M,Saito Y,Nguyen V L,Ta T K O,Tamura T.2019. Sediment distribution and depositional processes along the fluvial to marine transition zone of the Mekong River delta,Vietnam. Sedimentology, 66: 146-164. [48] Harris P T,Baker E K,Cole A R,Short S A.1993. A preliminary study of sedimentation in the tidally dominated Fly River Delta,Gulf of Papua. Continental Shelf Research, 13: 441-472. [49] Harris P T,Collins M B.1991. Sand transport in the Bristol Channel: bedload parting zone or mutually evasive transport pathways?Marine Geology, 101: 209-216. [50] Hassan S M,Steel R J,El Barkooky A,Hamdan M,Olariu C,Helper M A.2012. Stacked,Lower Miocene tide-dominated estuary deposits in a transgressive succession,Western Desert,Egypt. Sedimentary Geology, 282: 241-255. [51] Hori K,Saito Y,Zhao Q H,Wang P X.2002. Architecture and evolution of the tide-dominated Changjiang(Yangtze)River delta,China. Sedimentary Geology, 146: 249-264. [52] Hovikoski J,Räsänen M,Gingras M,Roddaz M,Brusset S,Hermoza W,Pittman L R,Lertola K.2005. Miocene semidiurnal tidal rhythmites in madre de Dios,Peru. Geology, 33: 177-180. [53] Huggins G.2019. Significant techno-stratigraphic development of the Caroni Basin,recorded in outcrops of the late Neogene Manzanilla and Springvale Formations,NE Trinidad. Journal of South American Earth Sciences, 93: 510-530. [54] Ichaso A A,Dalrymple R W.2009. Tide-and wave-generated fluid mud deposits in the Tilje Formation(Jurassic),offshore Norway. Geology, 37: 539-542. [55] Jo J, Choi K.2016. Morphodynamic and hydrodynamic controls on the stratigraphic architecture of intertidal compound dunes on the open-coast macrotidal flat in the Northern Gyeonggi Bay,West Coast of Korea. Journal of Sedimentary Research, 86: 1103-1122. [56] Klein G D.1970. Depositional and dispersal dynamics of intertidal sand bars. Journal of Sedimentary Research, 40: 1095-1127. [57] Kleinhans M G,Wagoner Rosmalen T M,Roosendaal C,Wagoner Der Vegt M.2014. Turning the tide: mutually evasive ebb-and flood-dominant channels and bars in an experimental estuary. Advance Geoscience, 39: 21-26. [58] Kuehl S A,Allison M A,Goodbred S L,Kudrass H.2005. The ganges-brahmaputra delta. In: Giosan L, Bhattacharya J(eds). River deltas-concepts,models,and examples. SEPM. Special Publication, 83: 413-434. [59] Kurcinka C,Dalrymple R W,Gugliotta M.2018. Facies and architecture of river-dominated to tide-influenced mouth bars in the lower Lajas Formation(Jurassic),Argentina. AAPG Bulletin, 102: 885-912. [60] Kvale E P.2012. Tidal constituents of modern and ancient tidal rhythmites: criteria for recognition and analyses,In: Davis Jr R A,Dalrymple R W(eds).Principles of Tidal Sedimentology. Springer Science,Netherlands: 1-17. [61] Kvale E P.2006. The origin of neap-spring tidal cycles. Marine Geology, 235: 5-18. [62] Kvale E P,Cutright D,Archer A W,Johnson H R,Pickett B.1995. Analysis of modern and implications for ancient tidalites. Continental Shelf Research,15: 1921-1943. [63] Kvale E P,Fraser G S,Archer A W,Zawistoski A,Kemp N,McGough P.1994. Evidence of seasonal precipitation in Pennsylvanian sediments of the Illinois Basin. Geology, 22: 331-334. [64] La Croix A D,Dashtgard S E.2015. A synthesis of depositional trends in intertidal and upper subtidal sediments across the tidal-fluvial transition in the Fraser River,Canada. Journal of Sedimentary Research, 85: 683-698. [65] Lambiase J J,Damit A R,Simmons M D,Abdoerrias R,Hussin A.2003. A depositional model and the stratigraphic development of modern and ancient tide-dominated deltas in NW Borneo. In: Sidi F H,Nummedal D,Imbert P H D,Posamentier H W(eds). Tropical Deltas of Southeast Asia: Sedimentology,Stratigraphy,and Petroleum Geology. SEPM Special Publication, 76: 109-123. [66] Legler B,Hampson G J,Jackson C A L,Johnson H D,Massart B Y G,Sarginson M,Ravnas R.2014. Facies relationships and stratigraphic architecture of distal,mixed tide-and wave-influenced deltaic deposits: Lower sego sandstone,western Colorado,USA. Journal of Sedimentary Research, 84: 605-625. [67] Legler B,Johnson H D,Hampson G J,Massart B Y G,Jackson C A L,Jackson M D,El-Barkooky A,Ravnas R.2013. Facies model of a fine-grained,tide-dominated delta: Lower Dir Abu Lifa Member(Eocene),Western Desert,Egypt. Sedimentology, 60: 1313-1356. [68] Li S L,Yu X H,Steel R,Zhu X M,Li S L,Cao B,Hou G W.2018. Change from tide-influenced deltas in a regression-dominated set of sequences to tide-dominated estuaries in a transgression-dominated sequence set,East China Sea Shelf Basin. Sedimentology, 65: 2312-2338. [69] Longhitano S G,Mellere D,Steel R J,Ainsworth R B.2012. Tidal depositional systems in the rock record: a review and new insights. Sedimentary Geology, 279: 2-22. [70] Longhitano S G,Sabato L,Tropeano M,Gallicchio S.2010. A mixed bioclastic-siliciclastic flood-tidal delta in a micro tidal setting: depositional architectures and hierarchical internal organization(pliocene,southern Apennine,Italy). Journal of Sedimentary Research, 80: 36-53. [71] Longhitano S G,Steel R J.2017. Deflection of the progradational axis and asymmetry in tidal seaway and strait deltas: insights from two outcrop case studies. Geological Society,London,Special Publication,444: 141-172. [72] Masselink G,Cointre L,Williams J,Gehrels R,Blake W.2009. Tide-driven dune migration and sediment transport on an intertidal shoal in a shallow estuary in Devon,UK. Marine Geology, 262: 82-95. [73] Mazumder R,Arima M.2005. Tidal rhythmites and their implications. Earth-Science Reviews, 69: 79-95. [74] Miller D J,Eriksson K A.1997. Late Mississippian prodeltaic rhythmites in the Appalachian Basin;a hierarchical record of tidal and climatic periodicities. Journal of Sedimentary Research, 67: 653-660. [75] Nio S,Yang C S.1991. Diagnostic attributes of clastic tidal deposits: a review. In: Smith D G,Reinson G E,Zaitlin B A,Rahmani R A(eds). Clastic Tidal Sedimentology. Canadian Society of Petroleum Geology,Memories, 16: 3-28. [76] Olariu C,Steel R J,Dalrymple R W,Gingras M K.2012. Tidal dunes versus tidal bars: the sedimentological and architectural characteristics of compound dunes in a tidal seaway,the lower Baronia Sandstone(Lower Eocene),Ager Basin,Spain. Sedimentary Geology, 279: 134-155. [77] Peng Y,Steel R J,Rossi V M,Olariu C.2018a. Mixed-energy process interactions read from a compound-clinoform delta(paleo-orinoco delta,Trinidad): preservation of river and tide signals by mud-induced wave damping. Journal of Sedimentary Research, 88: 75-90. [78] Peng Y,Steel R J,Olariu C.2018b. Amazon fluid mud impact on tide-and wave-dominated Pliocene lobes of the Orinoco Delta. Marine Geology, 406: 57-71. [79] Peng Y,Hagstrom C A,Horner S C,Hodgson C A,Martin H K,Leckie D A,Pedersen P K,Hubbard S M.2022. Low-accommodation foreland basin response to long-term transgression: a record of change from continental-fluvial and marginal-marine to open-marine sequences over 60,000 km2 in the western Canada foreland basin. Marine and Petroleum Geology, 139: 105583. [80] Reineck H E,Singh I B.1980. Tidal flats. In: Depositional Sedimentary Environments. Berlin,Heidelberg: Springer, 430-456. [81] Reineck H E,Wunderlich F.1968. Classification and origin of flaser and lenticular bedding. Sedimentology, 11: 99-104. [82] Reynolds A D.1999. Dimensions of paralic sandstone bodies. AAPG Bulletin, 83: 211-229. [83] Rossi V M,Kim W,Leva López J,Edmonds D,Geleynse N,Olariu C,Steel R J,Hiatt M,Passalacqua P.2016. Impact of tidal currents on delta-channel deepening,stratigraphic architecture,and sediment bypass beyond the shoreline. Geology, 44: 927-930. [84] Rossi V M,Perillo M M,Steel R J,Olariu C.2017. Quantifying mixed-process variability in shallow-marine depositional systems: what are sedimentary structures really telling us?Journal of Sedimentary Research, 87: 1060-1074. [85] Rossi V M,Steel R J.2016. The role of tidal,wave and river currents in the evolution of mixed-energy deltas: example from the Lajas Formation(Argentina). Sedimentology, 63: 824-864. [86] Schwartz T M,Graham S A.2015. Stratigraphic architecture of a tide-influenced shelf-edge delta,Upper Cretaceous Dorotea Formation,Magallanes-Austral Basin,Patagonia. Sedimentology, 62: 1039-1077. [87] Shanmugam G,Poffenberger M,Álava,J T.2000. Tide-dominated estuarine facies in the hollin and Napo(T “and”U “)formations(cretaceous),Sacha field,oriente basin,Ecuador”. AAPG Bulletin, 84: 652-682. [88] Shaw J,Todd B J,Li M Z,Wu Y S.2012. Anatomy of the tidal scour system at Minas Passage,Bay of Fundy,Canada. Marine Geology,323-325: 123-134. [89] Suter J R.2006. Facies models revisited: clastic shelves. [90] Svenson C,Ernstsen V B,Winter C,Bartholomä A, Hebbeln D.2009. Tide-driven sediment variations on a large compound dune in the Jade tidal inlet channel,Southeastern North Sea. Journal of Coastal Research, 56: 361-365. [91] Swift D J P,McMullen R M.1968. Preliminary studies of intertidal sand bodies in the Minas Basin,Bay of Fundy,Nova Scotia. Canadian Journal of Earth Sciences, 5: 175-183. [92] Ta T K O,Nguyen V L,Tateishi M,Kobayashi I,Saito Y,Nakamura T.2002. Sediment facies and Late Holocene progradation of the Mekong River Delta in Bentre Province,southern Vietnam: an example of evolution from a tide-dominated to a tide-and wave-dominated delta. Sedimentary Geology, 152: 313-325. [93] Tamura T,Saito Y,Nguyen V L,Oanh Ta T K,Bateman M D,Matsumoto D,Yamashita S.2012. Origin and evolution of interdistributary delta Plains: insights from Mekong River delta. Geology, 40: 303-306. [94] Tape C H,Cowan C A,Runkel A C.2003. Tidal-bundle sequences in the Jordan sandstone(upper Cambrian),southeastern Minnesota,USA: evidence for tides along inboard shorelines of the Sauk epicontinental sea. Journal of Sedimentary Research, 73: 354-366. [95] Terwindt J H J.1971. Lithofacies of inshore estuarine and tidal inlet deposits. Geologieen Mijnbouw, 50: 515-526. [96] Tessier B.2012. Stratigraphy of tide-dominated estuaries. In: Davis Jr R,Dalrymple R(eds). Principles of Tidal Sedimentology. Dordrecht: Springer, 109-128. [97] Tessier B,Archer A W,Lanier W P,Feldman H R.1995. Comparison of ancient tidal rhythmites(carboniferous of Kansas and Indiana, USA)with modern analogues(the bay of mont-saint-michel,France). Tidal Signatures in Modern and Ancient Sediments. Oxford,UK: Blackwell Publishing Ltd., 259-271. [98] van Cappelle M,Stukins S,Hampson G J,Johnson H D.2016. Fluvial to tidal transition in proximal,mixed tide-influenced and wave-influenced deltaic deposits: Cretaceous lower Sego Sandstone,Utah,USA. Sedimentology, 63: 1333-1361. [99] Visser M J.1980. Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: a preliminary note. Geology, 8: 543-546. [100] Walsh J P,Nittrouer C A,Palinkas C M,Ogston A S,Sternberg R W,Brunskill G J.2004. Clinoform mechanics in the gulf of Papua,new Guinea. Continental Shelf Research, 24: 2487-2510. [101] Wei X J,Steel R J,Ravnås R,Jiang Z X,Olariu C,Li Z Y.2016. Variability of tidal signals in the Brent Delta Front: new observations on the Rannoch Formation,northern North Sea. Sedimentary Geology, 335: 166-179. [102] White H J,Skopec R A,Ramirez F A,Rodas J A,Bonilla G.1995. Reservoir characterization of the Hollin and Napo formations,Western Oriente basin. In: Tankard A J,Suarez R,Welsink H J(eds). Petroleum basins of South America: AAPG Memoir, 62: 573-596. [103] Williams G E.1991. Upper Proterozoic tidal rhythmites,South Australia: sedimentary features,deposition,and implications for the earth's paleorotation. Clastic Tidal Sedimentology, 16: 161-178. [104] Willis B J,Gabel S.2001. Sharp-based,tide-dominated deltas of the sego sandstone,book cliffs,Utah,USA. Sedimentology, 48: 479-506. [105] Yang B,Gingras M K,Pemberton S G,Dalrymple R W.2008. Wave-generated tidal bundles as an indicator of wave-dominated tidal flats. Geology, 36: 39-42. [106] Yang C S, Nio S D.1985. The estimation of palaeohydrodynamic processes from subtidal deposits using time series analysis methods. Sedimentology, 32: 41-57. [107] Yu Q,Wang Y W,Gao S,Flemming B.2012. Modeling the formation of a sand bar within a large funnel-shaped,tide-dominated estuary: Qiantangjiang Estuary,China. Marine Geology,299-302: 63-76. [108] Zhang M,Townend I,Cai H Y,He J W,Mei X F.2018. The influence of seasonal climate on the morphology of the mouth-bar in the Yangtze Estuary,China. Continental Shelf Research, 153: 30-49. [109] Zhang X A,Lin C M,Dalrymple R W,Yang S Y.2021. Source-to-sink analysis for the mud and sand in the late-Quaternary Qiantang River incised-valley fill and its implications for delta-shelf-estuary dispersal systems globally. Sedimentology, 68: 3228-3252.