Some basic sedimentological problems and research prospects of deep-water gravity-flow sedimentary in oil and gas exploration
YU Jixing, YANG Tian, TIAN Jingchun, CAI Laixing, REN Qiqiang, GUO Weixue
State Key Laboratory of Oil and Gas Reservior Geology and Exploitation(Chengdu University of Technology), Institute of Sedimentary Geology,Chengdu 610059,China
Abstract The oil and gas resources stored in deep-water gravity-flow sediments are extremely abundant,but there are still many problems in understanding the distribution of deep-water gravity-flow sedimentary sand bodies and high-quality reservoirs at present. These problems restrict the exploration and development of oil and gas. The transition from supercritical to subcritical turbidity current under the control of hydraulic jumping and the transformation of turbidity current to muddy debris flow under the control of turbulence damping are two key issues that form the new understanding of the distribution of gravity flow deposits. Deep-water gravity flow deposits have numerous architectural elements,including channel and levee,channel-lobe transition zone,and lobe. The detailed analysis of identification marks of different architectural elements is critical to understanding of the distribution of gravity flow deposits. The strong erosion of substrate by hydraulic jump during the transition from supercritical to subcritical turbidity current is the new understanding for the formation of gravity flow channels. Tectonic activity,sediment supply, and the interaction between climate and sea(lake)level are external factors of sedimentary basins that control the distribution of gravity flow deposits. Water density of sedimentary basin,topographic slope, and basin bottom topography are internal factors that determine the distribution of gravity flow deposits. The synergistic diagenesis of sand and mud during the burial and diagenetic evolution of deep-water gravity flow deposits plays an important role in the development of high-quality reservoirs with relatively high porosity and permeability. Research on the depositional process that emphasizes both ancient outcrops and modern-day monitoring,deep-water gravity flow sedimentary architectural elements and inner structure,deep-water gravity flow-caused fine-grained sedimentation and shale oil and gas research,deep-water gravity flow sedimentary sand body diagenesis are expected to be the next step of sedimentological research prospects of deep-water gravity flow sedimentary oil and gas exploration.
Fund:National Natural Science Foundation of China(No.42072126)and the Natural Science Foundation of Sichuan Province(No.2022NSFSC0990)
Corresponding Authors:
YANG Tian,born in 1989,is a researcher. He is engaged in researches on sedimentology and oil & gas reservoir geology. E-mail: yangtian19@cdut.edu.cn.
About author: YU Jixing,born in 1997,is a master's degree candidate and majors in geology. He is engaged in research on sedimentology. E-mail: yujixing1997@163.com.
Cite this article:
YU Jixing,YANG Tian,TIAN Jingchun et al. Some basic sedimentological problems and research prospects of deep-water gravity-flow sedimentary in oil and gas exploration[J]. JOPC, 2023, 25(6): 1299-1314.
YU Jixing,YANG Tian,TIAN Jingchun et al. Some basic sedimentological problems and research prospects of deep-water gravity-flow sedimentary in oil and gas exploration[J]. JOPC, 2023, 25(6): 1299-1314.
[1] 操应长,杨田,王艳忠,李文强. 2017a. 超临界沉积物重力流形成演化及特征. 石油学报, 38(6): 607-621. [Cao Y C,Yang T,Wang Y Z,Li W Q. 2017a. Formation,evolution and sedimentary characteristics of supercritical sediment gravity-flow. Acta Petrolei Sinica, 38(6): 607-621] [2] 操应长,杨田,王艳忠,张少敏,王思佳,张青青,王心怿. 2017b. 深水碎屑流与浊流混合事件层类型及成因机制. 地学前缘, 24(3): 234-248. [Cao Y C,Yang T,Wang Y Z,Zhang S M,Wang S J,Zhang Q Q,Wang X Y. 2017b. Types and genesis of deep-water hybrid event beds comprising debris flow and turbidity current. Earth Science Frontiers, 24(3): 234-248] [3] 董冬. 1999. 断陷湖盆陡坡带碎屑流沉积单元的沉积序列和储集特征: 以东营凹陷永安地区为例. 沉积学报, 17(4): 69-74. [Dong D. 1999. On vertical sequence and reservior characteristics of alluvial debris flow sedimentary unit in fault basins,eastern China-based on a case study of Yongan alluvial fan,Dongying Basin. Acta Sedimentologica Sinica, 17(4): 69-74] [4] 付锁堂,邓秀芹,庞锦莲. 2010. 晚三叠世鄂尔多斯盆地湖盆沉积中心厚层砂体特征及形成机制分析. 沉积学报, 28(6): 1081-1089. [Fu S T,Deng X Q,Pang J L. 2010. Characteristics and mechanism of thick sandbody of Yanchang Formation at the centre of Ordos Basin. Acta Sedimentologica Sinica, 28(6): 1081-1089] [5] 郭佳,邓宏文,王红亮. 2011. 松南西斜坡三角洲前缘—滑塌浊积岩沉积相及展布规律. 地球科学, 36(6): 1095-1104. [Guo J,Deng H W,Wang H L. 2011. Sedimentary facies and distribution of delta front-fluxoturbidite in the western slope of Songliao Basin. Earth Science, 36(6): 1095-1104] [6] 金鑫,时志强,王艳艳,段雄,程明. 2015. 晚三叠世中卡尼期极端气候事件研究进展及存在问题. 沉积学报, 33(1): 106-115. [Jin X,Shi Z Q,Wang Y Y,Duan X,Cheng M. 2015. Mid-Carnian(Late Triassic)extreme climate event: advances and unsolved problems. Acta Sedimentologica Sinica, 33(1): 106-115] [7] 李忠,韩登林,寿建峰. 2006. 沉积盆地成岩作用系统及其时空属性. 岩石学报, 22(8): 2151-2164. [Li Z,Han D L,Shou J F. 2006. Diageenesis systems and their spatio-temporal attributes in sedimentary basins. Acta Petrologica Sinica, 22(8): 2151-2164] [8] 林春明,张霞,赵雪培,李鑫,黄舒雅,江凯禧. 2021. 沉积岩石学的室内研究方法综述. 古地理学报, 23(2): 223-244. [Lin C M,Zhang X,Zhao X P,Li X,Huang S Y,Jiang K X. 2021. Review of laboratory research methods for sedimentary petrology. Journal of Palaeogeography(Chinese Edition), 23(2): 223-244] [9] 潘树新,刘化清,Zavala Carlos,刘彩燕,梁苏娟,张庆石,白忠峰. 2017. 大型坳陷湖盆异重流成因的水道—湖底扇系统: 以松辽盆地白垩系嫩江组一段为例. 石油勘探与开发, 44(6): 860-870. [Pan S X,Liu H Q,Zavala C,Liu C Y,Liang S J,Zhang Q S,Bai Z F. 2017. Sublacustrine hyperpycnal channel-fan system in a large depression basin: A case study of Nen 1 Member,Cretaceous Nenjiang Formation in the Songliao Basin,NE China. Petroleum Exploration and Development, 44(6): 860-870] [10] 蒲秀刚,周立宏,韩文中,陈长伟,袁选俊,林常梅,柳飒,韩国猛,张伟,姜文亚. 2014. 歧口凹陷沙一下亚段斜坡区重力流沉积与致密油勘探. 石油勘探与开发, 41(2): 138-149. [Pu X G,Zhou L H,Han W Z,Chen C W,Yuan X J,Lin C M,Liu S,Han G M,Zhang W,Jiang W Y. 2014. Gravity flow sedimentation and tight oil exploration in lower first member of Shahejie Formation in slope area of Qikou Sag,Bohai Bay Basin. Petroleum Exploration and Development, 41(2): 138-149] [11] 孙枢,李继亮. 1984. 我国浊流与其他重力流沉积研究进展概况和发展方向问题刍议. 沉积学报, 2(4): 1-7. [Sun S,Li J L. 1984. Researches on turbidity and other gravity flow sedimentation in China. Acta Sedimentologica Sinica, 2(4): 1-7] [12] 谈明轩,朱筱敏,耿名扬,刘常妮. 2016. 沉积物重力流流体转化沉积: 混合事件层. 沉积学报, 34(6): 1108-1119. [Tan M X,Zhu X M,Geng M Y,Liu C N. 2016. The flow transforming deposits of sedimentary gravity flow-hybrid event bed. Acta Sedimentologica Sinica, 34(6): 1108-1119] [13] 谈明轩,朱筱敏,刘伟,施瑞生. 2017. 旋回阶梯底形的动力地貌及其相关沉积物发育特征. 地质论评, 63(6): 1512-1522. [Tan M X,Zhu X M,Liu W,Shi R S. 2017. The morphodynamics of cyclic steps and sedimentary characteristics of associated deposits. Geological Review, 63(6): 1512-1522] [14] 吴嘉鹏,王英民,王海荣,李华,彭学超,邱燕,李冬. 2012. 深水重力流与底流交互作用研究进展. 地质论评, 58(6): 1110-1120. [Wu J P,Wang Y M,Wang H R,Li H,Peng X C,Qiu Y,Li D. 2012. The interaction between deep-water turbidity and bottom currents: a review. Geological Review, 58(6): 1110-1120] [15] 鲜本忠,万锦峰,姜在兴,张建国,李振鹏,佘源琦. 2012. 断陷湖盆洼陷带重力流沉积特征与模式: 以南堡凹陷东部东营组为例. 地学前缘, 19(1): 121-135. [Xian B Z,Wan J F,Jiang Z X,Zhang J G,Li Z P,She Y Q. 2012. Sedimentary characteristics and model of gravity flow deposition in the depressed belt of rift lacustrine basin: a case study from Dongying Formation in Nanpu Depression. Earth Science Frontiers, 19(1): 121-135] [16] 杨仁超,尹伟,樊爱萍,韩作振,A.J.(Tom)van Loon. 2017. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义. 古地理学报, 19(5): 791-806. [Yang R C,Yi W,Fan A P,Han Z Z,A.J.(Tom)van Loon. 2017. Fine-grained,lacustrine gravity-flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 19(5): 791-806] [17] 杨田,操应长,王艳忠,张少敏,张会娜,王思佳. 2015a. 异重流沉积动力学过程及沉积特征. 地质论评, 61(1): 23-33. [Yang T,Cao Y C,Wang Y Z,Zhang S M,Zhang H N,Wang S J. 2015a. Sediment dynamics process and sedimentary characteristics of hyperpycnal flows. Geological Review, 61(1): 23-33] [18] 杨田,操应长,王艳忠,王健,张会娜. 2015b. 渤南洼陷沙四下亚段扇三角洲前缘优质储层成因. 地球科学(中国地质大学学报), 40(12): 2067-2080. [Yang T,Cao Y C,Wang Y Z,Wang J,Zhang H N. 2015b. Genesis of high-quality reservoirs of fan delta front in lower part of the Fourth Member of Shahejie Formation in Bonan Subsag. Earth Science-Journal China University of Geosciences, 40(12): 2067-2080] [19] 杨田. 2017. 东营凹陷沙三段深水重力流砂岩与泥岩协同成岩演化及优质储层成因. 中国石油大学(华东)博士论文. [Yang T. 2017. Synergistic diagenetic evolution of deep-water gravity flow sandstones-mudstones and genesis of high quality reservoirs in the Third Member of the Shahejie Formation,Dongying Depression Docteral dissertation of China University of Petroleum(East China)] [20] 杨田,操应长,田景春. 2021. 浅谈陆相湖盆深水重力流沉积研究中的几点认识. 沉积学报, 39(1): 88-111. [Yang T,Cao Y C,Tian J C. 2021. Discussion on research of deep-water gravity flow deposition in lacustrine basin. Acta Sedimentologica Sinica, 39(1): 88-111] [21] 邹才能,赵政璋,杨华,付金华,朱如凯,袁选俊,王岚. 2009. 陆相湖盆深水砂质碎屑流成因机制与分布特征: 以鄂尔多斯盆地为例. 沉积学报, 27(6): 1065-1075. [Zou C N,Zhao Z Z,Yang H,Fu J H,Zhu R K,Yuan X J,Wang L. 2009. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin. Acta Sedimentologica Sinica, 27(6): 1065-1075] [22] 邹才能,何东博,贾成业,熊波,赵群,潘松圻. 2021. 世界能源转型内涵、路径及其对碳中和的意义. 石油学报, 42(2): 233-247. [Zou C N,He D B,Jia C Y,Xiong B,Zhao Q,Pan S Q. 2021. Connotation and pathway of world energy transition and its significance for neutral. Acta Petrolei Sinica, 42(2): 233-247] [23] 张功成,屈红军,张凤廉,陈硕,杨海长,赵钊,赵冲. 2019. 全球深水油气重大新发现及启示. 石油学报, 40(1): 1-34,55. [Zhang G C,Qu H J,Zhang F L,Chen S,Yang H C,Zhao Z,Zhao C. 2019. Major new discoveries of oil and gas in global deepwaters and enlightenment. Acta Petrolei Sinica, 40(1): 1-34,55] [24] 张佳佳,吴胜和,王瑞峰,王敏,陈梅,王晓丰,徐庆岩,熊绮聪,余季陶,王黎. 2023. 东非鲁伍马盆地深水X气藏海底扇储层构型研究: 重力流—底流交互作用的指示意义. 古地理学报, 25(1): 163-179. [Zhang J J, Wu S H, Wang R F, Wang M, Chen M, Wang X F, Xu Q Y, Xiong Q C, Yu J T, Wang L. 2023. Submarine-fan reservoir architecture of deepwater gasfield X in Rovuma Basin offshore East Africa: insights for the interaction between sediment gravity flows and bottom currents. Journal of Palaeogeoraphy(Chinese Edition), 25(1): 163-179] [25] 朱伟林,崔旱云,吴培康,孙和风. 2017. 被动大陆边缘盆地油气勘探新进展与展望. 石油学报, 38(10): 1099-1109. [Zhu W L,Cui Z Y,Wu P K,Sun H F. 2017. New development and outlook for oil and gas exploration in passive continental margin basins. Acta Petrolei Sinica, 38(10): 1099-1109] [26] Baas J H,Best J L,Peakall J,Wang M. 2009. A phase diagram for turbulent,transitional,and laminar clay suspension flows. Journal of Sedimentary Research, 79(4): 162-183. [27] Brooks H L,Hodgson D M,Brunt R L,Peakall J,Hofstra M,Flint S S. 2018. Deep-water channel-lobe transition zone dynamics: Processes and depositional architecture,an example from the Karoo Basin,South Africa. GSA Bulletin, 130(9-10): 1723-1746. [28] Bjørkum P A,Gjelsvik N. 1988. An isochemical model for the formation of authigenic kaolinite,K-feldspar and illite in sediments. Journal of Sedimentary Research, 58(3): 506-511. [29] Bjørlykke K,Jahren J. 2012. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs. AAPG Bulletin, 96(12): 2193-2214. [30] Bjørlykke K. 2014. Relationships between depositional environments,burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sedimentary Geology, 301: 1-14. [31] Boles J R,Franks S G. 1979. Clay diagenesis in Wilcox Sandstones of SW Texas: implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 49(1): 55-70. [32] Cartigny M J B,Ventra D,Postma G,Wagonerdenberg J H. 2014. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments. Sedimentology, 61(3): 712-748. [33] Carvajal C,Paull C K,Caress D W,Fildani A,Lundsten E,Anderson K,Maier K L,McGann M,Gwiazda R,Carlos Herguera J. 2017. Unraveling the channel-lobe transition zone with high-resolution auv bathymetry: Navy Fan,offshore Baja California,Mexico. Journal of Sedimentary Research, 87(10): 1049-1059. [34] Covault J A,Kostic S,Paull C K,Ryan H F,Fildani A,Talling P. 2014. Submarine channel initiation,filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps. Sedimentology, 61(4): 1031-1054. [35] Cullis S,Patacci M,Colombera L,Bührig L,McCaffrey W D. 2019. A database solution for the quantitative characterisation and comparison of deep-marine siliciclastic depositional systems. Marine and Petroleum Geology, 102: 321-339. [36] Curtis C D. 1978. Possible links between sandstone diagenesis and depth-related geochemical reactions occurring in enclosing mudstones. Journal of the Geological Society, 135(1): 107-117. [37] Day-Stirrat R J,Milliken K L,Dutton S P,Loucks R G,Hillier S,Aplin A C,Schleicher A M. 2010. Open-system chemical behavior in deep Wilcox Group mudstones,Texas Gulf Coast,USA. Marine and Petroleum Geology, 27(9): 1804-1818. [38] Fildani A,Normark W R,Kostic S,Parker G. 2006. Channel formation by flow stripping: large-scale scour features along the Monterey East Channel and their relation to sediment waves. Sedimentology, 53(6): 1265-1287. [39] Fonnesu M,Patacci M,Haughton P D W,Felletti F,McCaffrey W D. 2016. Hybrid event beds generated by local substrate delamination on a confined-basin floor. Journal of Sedimentary Research, 86(8): 929-943. [40] Gales J,Talling P J,Cartigny M J B,Hughes Clarke J,Lintern G,Stacey C,Clare M A. 2019. What controls submarine channel development and the morphology of deltas entering deep-water fjords?. Earth Surface Processes and Landforms, 44(2): 535-551. [41] Gong C L,Wang Y M,Peng X C,Li W G,Qiu Y,Xu S. 2012. Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South China Sea. Marine and Petroleum Geology, 32: 95-109. [42] Götte T. 2016. Trace element composition of authigenic quartz in sandstones and its correlation with fluid-rock interaction during diagenesis. Geological Society,London,Special Publication, 435(2): 373-387. [43] Hand B M. 1974. Supercritical flow in density currents. Journal of Sedimentary Research, 44(3): 637-648. [44] Hamilton P,Gaillot G,Strom K,Fedele J, & Hoyal D. 2017. Linking hydraulic properties in supercritical submarine distributary channels to depositional-lobe geometry. Journal of Sedimentary Research, 87(9): 935-950. [45] Haughton P D W,Barker S M,Mccaffrey W D. 2003. ‘Linked’ debrites in sand-rich turbidite systems: origin and significance. Sedimentology, 50(3): 459-482. [46] Haughton P,Davis C,Mccaffrey W D,Barker S. 2009. Hybrid sediment gravity flow deposits: classification,origin and significance. Marine and Petroleum Geology, 26: 1900-1918. [47] Henstra G A,Grundvag S,Johannessen E P,Kristensen T B,Midtkandal I,Nystuen J P,Rotevatn A,Surlyk F,Sæther T,Windelstad J. 2016. Depositional processes and stratigraphic architecture within a coarse-grained rift-margin turbidite system: the Wollaston Forland Group,east Greenland. Marine and Petroleum Geology, 76: 187-209. [48] Hernández-Molina F J,Stow D A V,Llave E. 2008. Continental slope contourites. In: Rebesco M,Camerlenghi A(eds). Contourites developments in sedimentology. Amsterdam: Elsevier, 60: 379-408. [49] Hovikoski J,Therkelsen J,Nielsen L H,Bojesen-Koefoed J A,Nytoft H P,Petersen H I,Abatzis I,Tuan H A,Phuong B T N,Dao C V,Fyhn M B W. 2016. Density-flow deposition in a fresh-water lacustrine rift basin,Paleogene Bach Long Vi Graben,Vietnam. Journal of Sedimentary Research, 86(9): 982-1007. [50] Kneller B. 2003. The influence of flow parameters on turbidite slope channel architecture. Marine and Petroleum Geology, 20: 901-910. [51] Kostic S. 2011. Modeling of submarine cyclic steps: controls on their formation,migration,and architecture. Geosphere, 7(2): 294-304. [52] Lang J,Winsemann J. 2013. Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: from cyclic steps to humpback dunes. Sedimentary Geology, 296: 36-54. [53] Lang J,Brandes C,Winsemann J. 2017. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: field examples from coarse-grained deepwater channel-levée complexes(Sandino Forearc Basin,southern Central America). Sedimentary Geology, 349: 79-102. [54] Lehmann K,Pettke T,Ramseyer K. 2011. Significance of trace elements in syntaxial quartz cement,Haushi Group sandstones,Sultanate of Oman. Chemical Geology, 280(1-2): 47-57. [55] Li Q,Parrish R R,Horstwood M S A,McArthur J M. 2014. U-Pb Dating of Cements in Mesozoic Ammonites. Chemical Geology, 376: 76-83. [56] Lowe D R,Guy M. 2000. Slurry-flow deposits in the Britannia Formation(Lower Cretaceous),North Sea: a new perspective on the turbidity current and debris flow problem. Sedimentology, 47(1): 31-70. [57] Macquaker J H S,Bentley S J,Bohacs K M. 2010. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions. Geology, 38(10): 947-950. [58] Macquaker J H S,Taylor K G,Keller M,Polya D. 2014. Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: implications for predicting unconventional reservoir attributes of mudstones. AAPG Bulletin, 98(3): 587-603. [59] Mansurbeg H,De Ros L F,Morad S,Ketzer J M,El-Ghali M A K,Caja M A,Othman R. 2012. Meteoric-water diagenesis in late Cretaceous canyon-fill turbidite reservoirs from the Espírito Santo Basin,eastern Brazil. Marine and Petroleum Geology, 37(1): 7-26. [60] Massari F. 2017. Supercritical-flow structures(backset-bedded sets and sediment waves)on high-gradient clinoform systems influenced by shallow-marine hydrodynamics. Sedimentary Geology, 360: 73-95. [61] McHargue T,Pyrcz M J,Sullivan M D,Clark J D,Fildani A,Romans B W,Covault J A,Levy M,Posamentier H W,Drinkwater N J. 2011 Architecture of turbidite channel systems on the continental slope: patterns and predictions. Marine and Petroleum Geology, 28: 728-743. [62] Mueller P,Patacci M,Di Giulio A. 2017. Hybrid event beds in the proximal to distal extensive lobe domain of the coarsegrained and sand-rich Bordighera turbidite system(NW Italy). Marine and Petroleum Geology, 86: 908-931. [63] Mulder T,Syvitski J P M,Migeon S,Faugères J-C,Savoye B. 2003. Marine hyperpycnal flows: initiation,behavior and related deposits: a review. Marine and Petroleum Geology, 20(6-8): 861-882. [64] Mutti E. 1992. Turbidite Sandstones. Agip Spec. Publ.,Istituto de geologia,Universita di Parma,Agip S.p.A. [65] Mutti E. 2019. Thin-bedded plumites: an overlooked deep-water deposit. Journal of Mediterranean Earth Sciences, 11: 1-20. [66] Nelson C H,Escutia C,Goldfinger C,Karabanov E,Pastor J G,Batist M D. 2009. External controls on modern clastic turbidite systems: three case studies. SEPM Special Publication, 92: 57-76. [67] Ono K,Plink-björklund P. 2018. Froude supercritical flow bedforms in deepwater slope channels?Field examples in conglomerates,sandstones and fine-grained deposits. Sedimentology, 65(3): 639-669. [68] Patacci M,Haughton P D W,Mccaffrey W D. 2014. Rheological complexity in sediment gravity flows forced to decelerate against a confining slope,Braux,SE France. Journal of Sedimentary Research, 84(4): 270-277. [69] Pattison S J,Ainsworth R B,Hoffman T A. 2007. Evidence of across-shelf transport of fine-grained sediments: turbidite-filled shelf channels in the Campanian Aberdeen Member,Book Cliffs,Utah,USA. Sedimentology, 54(5): 1033-1063. [70] Pickering K T,Hiscott R N. 2016. Deep Marine Systems: Processes,Deposits,Environments,Tectonics and Sedimentation. American Geophysical Union and Wiley. [71] Pierce C S,Haughton P D W,Shannon P M. 2018. Variable character and diverse origin of hybrid event beds in a sandy submarine fan system,Pennsylvanian Ross Sandstone Formation,western Ireland. Sedimentology. 65(3): 952-992. [72] Piper D J W,Normark W R. 2009. Processes That Initiate Turbidity Currents and Their Influence on Turbidites: A Marine Geology Perspective. Journal of Sedimentary Research, 79(6): 347-362. [73] Plint A G,Macquaker J H S. 2013. Bedload transport of mud across a wide,storm-influenced ramp: cenomanian-turonian kaskapau formation,western canada foreland basin—reply. Journal of Sedimentary Research, 83(12): 1200-1201. [74] Pohl F,Eggenhuisen J T,Tilston M,Cartigny M J B. 2019. New flow relaxation mechanism explains scour fields at the end of submarine channels. Nature Communications, 10: 4425. [75] Postma G,Cartigny M J B. 2014. Supercritical and subcritical turbidity currents and their deposits: a synthesis. Geology, 42(11): 987-990. [76] Postma G,Hoyal D C,Abreu V,Cartigny M,Demko T,Fedele J J,Kleverlaan K,Pederson K H. 2016. Morphodynamics of supercritical turbidity currents in the channel-lobe transition zone,Submarine Mass Movements and their Consequences. Cham: Springer, 41: 469-478. [77] Postma G,Kleverlaan K. 2018. Supercritical flows and their control on the architecture and facies of small-radius sand-rich fan lobes. Sedimentary Geology, 364: 53-70. [78] Schieber J,Bennett R. 2013. Bedload Transport of Mud Across A Wide,Storm-Influenced Ramp: Cenomanian-Turonian Kaskapau Formation,Western Canada Foreland Basin: discussion. Journal of Sedimentary Research, 83(12): 1198-1199. [79] Schieber J. 2016. Mud re-distribution in epicontinental basins: exploring likely processes. Marine and Petroleum Geology, 71: 119-133. [80] Schwenk T,Spieß V,Breitzke M,Hu¨bscher C. 2005. The architecture and evolution of the Middle Bengal Fan in vicinity of the active channel-levee system imaged by high-resolution seismic data. Marine and Petroleum Geology, 22(5): 637-656. [81] Southern S J,Kane I A,Warchol M J,Porten K W,McCaffrey W D. 2017. Hybrid event beds dominated by transitional-flow facies: character,distribution and significance in the Maastrichtian Springar Formation,north-west Vøring Basin,Norwegian Sea. Sedimentology, 64(3): 747-776. [82] Stow D A V,Shanmugam G. 1980. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments. Sedimentary Geology, 25(1): 23-42. [83] Stow D A V,Mayall M. 2000. Deep-water sedimentary systems: New models for the 21st century. Marine and Petroleum Geology, 17(2): 125-135. [84] Sumner E J,Talling P J,Amy L A. 2009. Deposits of Flows Transitional between Turbidity Current and Debris Flow. Geology, 37(11): 991-994. [85] Surdam R C,Crossey L J,Hagen E S,Heasler H P. 1989. Organic-inorganic interactions and sandstone diagenesis. AAPG Bulletin, 73(1): 1-23. [86] Symons W O,Sumner E J,Talling P J,Cartigny M J B,Clare M A. 2016. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows. Marine Geology, 371: 130-148. [87] Talling P J,Masson D G,Sumner E J,Malgesini G. 2012. Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology, 59(7): 1937-2003. [88] Talling P J. 2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow: deposits,theoretical and experimental analyses,and generalized models. Geosphere, 9(3): 460-488. [89] Talling P J,Allin J,Armitage D A,Arnott R W C,Cartigny M J B,Clare M A,Felletti F,Covault J A,Girardclos S,Hansen E,Hill P R,Hiscott R N,Hogg A J,Clarke J H,Jobe Z R,Malgesini G,Mozzato A,Naruse H,Parkinson S,Peel F J,Piper D J W,Pope E,Postma G,Rowley P,Sguazzini A,Stevenson C J,Sumner E J,Sylvester Z,Watts C,Xu J. 2015. Key future directions for research on turbidity currents and their deposits. Journal of Sedimentary Research, 85(2): 153-169. [90] Ungerer P,Burrus J,Doligze B,Chenet P Y. 1993. Basin evaluation by integrated two-dimensional modeling of heat transfer,fluid flow,hydrocarbon generation,and migration. AAPG Bulletin, 74(3): 309-335. [91] Waltham D. 2004. Flow transformations in particulate gravity currents. Journal of Sedimentary Research, 74(1): 129-134. [92] Weimer P,Pettingill H S. 2007. A global overview of fields and discoveries in deep water deposits. AAPG Studies in Geology 56,Shell Exploration and Production and American Association of Petroleum Geologists: 12-16. [93] Wilson R D,Schieber J. 2014. Muddy prodeltaic hyperpycnites in the Lower Genesee Group of Central New York,USA: implications for mud transport in epicontinental seas. Journal of Sedimentary Research, 84(10): 866-874. [94] Wintsch R P,Kvale C M. 1994 Differential mobility of elements in burial diagenesis of siliciclastic rocks. Journal of Sedimentary Research,64(2a): 349-36. [95] Worden R H,Burley S D. 2003. Sandstone diagenesis: the evolution of sand to stone. International Association of Sedimentologists: 1-44. [96] Wynn R B,Kenyon N H,Masson D G,Stow D A V,Weaver P P E. 2002. Characterization and recognition of deep-water channel-lobe transition zones. AAPG Bulletin, 86(8): 1441-1462. [97] Yang R C,Jin Z J,Han Z Z,Fan A P. 2017. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin,central China: implications for unconventional petroleum development. AAPG Bulletin, 101(1): 95-117. [98] Yang T,Cao Y C,Wang Y Z,Friis H,Haile B G,Xi K L,Zhang H N. 2016. The coupling of dynamics and permeability in the hydrocarbon accumulation period controls the oil-bearing potential of low permeability reservoirs: a case study of the low permeability turbidite reservoirs in the middle part of the third member of Shahejie Formation in Dongying Sag. Petroleum Science, 13(2): 204-224. [99] Yang T,Cao Y C,Liu K Y,Wang Y,Z,Zavala C,Friis H,Song M H,Yuan G H,Liang C,Xi K L,Wang J,2019. Genesis and depositional model of subaqueous sediment gravity-flow deposits in a lacustrine rift basin as exemplified by the Eocene Shahejie Formation in the Jiyang Depression,Eastern China. Marine and Petroleum Geology, 102(3): 231-257. [100] Yang T,Cao Y C,Liu K Y,Tian J C,Zavala C,Wang Y Z. 2020. Gravity flow deposits caused by different initiation processes in a deep-lake system. AAPG Bulletin, 104(7): 1643-1499. [101] Zavala C,Arcuri M. 2016. Intrabasinal and extrabasinal turbidites: origin and distinctive characteristics. Sedimentary Geology, 337: 36-54. [102] Zhong G F,Cartigny M J B.,Kuang Z G,Wang L L. 2015. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea. Geological Society of America Bulletin, 127(5-6): 804-824.