[1] An W., Hu X., Garzanti E.,2017. Sandstone provenance and tectonic evolution of the Xiukang Mélange from Neotethyan subduction to India-Asia collision (Yarlung-Zangbo suture, south Tibet). Gondwana Research, 41, 222-234. https://doi.org/10.1016/j.gr.2015.08.010.
[2] An W., Hu X., Garzanti E., BouDagher-Fadel M.K., Wang J., Sun G., 2014. Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite. Geological Society of America Bulletin, 126, 1595-1613. https://doi.org/10.1130/b31020.1.
[3] Boggs J.S.,2014. Principles of Sedimentology and Stratigraphy. Pearson Education.
[4] Cai F., Ding L., Leary R.J., Wang H., Xu Q., Zhang L., Yue Y.,2012. Tectonostratigraphy and provenance of an accretionary complex within the Yarlung-Zangpo suture zone, southern Tibet: Insights into subduction-accretion processes in the Neo-Tethys. Tectonophysics, 574-575, 181-192. https://doi.org/10.1016/j.tecto.2012.08.016.
[5] Caracciolo L.,2020. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development. Earth-Science Reviews, 209, 103226. https://doi.org/10.1016/j.earscirev.2020.103226.
[6] Carosi R., Montomoli C., Iaccarino S.,2018. 20 years of geological mapping of the metamorphic core across Central and Eastern Himalayas. Earth-Science Reviews, 177, 124-138. https://doi.org/10.1016/j.earscirev.2017.11.006.
[7] Chu M.F., Chung S.L., Song B.A., Liu D.Y., O'Reilly S.Y., Pearson N.J., Ji J.Q., Wen D.J., 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34, 745-748. https://doi.org/10.1130/G22725.1.
[8] Cuo L., Li N., Liu Z., Ding J., Liang L.Q., Zhang Y.X., Gong T.L.,2019. Warming and human activities induced changes in the Yarlung Tsangpo basin of the Tibetan plateau and their influences on streamflow. Journal of Hydrology: Regional Studies, 25, 100625. https://doi.org/10.1016/j.ejrh.2019.100625.
[9] Dai J.G., Wang C.S., Hebert R., Santosh M., Li Y.L., Xu J.Y.,2011. Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chemical Geology, 288, 133-148. https://doi.org/10.1016/j.chemgeo.2011.07.011.
[10] DeCelles P.G., Kapp P., Quade J., Gehrels G., 2011. Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone. Geological Society of America Bulletin, 123, 1337-1362. https://doi.org/10.1130/B30258.1.
[11] Dickinson W.R., Beard L.S., Brakenridge G.R., Erjavec J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A., Ryberg P.T., 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222-235. https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2.
[12] Dickinson W.R., Seely D.R., 1979. Structure and stratigraphy of forearc regions. AAPG Bulletin, 63, 2-31. https://doi.org/10.1306/C1EA55AD-16C9-11D7-8645000102C1865D.
[13] Dingle E.H., Attal M., Sinclair H.D., 2017. Abrasion-set limits on Himalayan gravel flux. Nature, 544, 471-474. https://doi.org/10.1038/nature22039.
[14] Einsele G.,2000. Sedimentary Basins: Evolution, Facies, and Sediment Budget. Springer Science and Business Media.
[15] Flores R.M., Shideler G.L., 1978. Factors controlling heavy-mineral variations on the South Texas outer continental shelf, Gulf of Mexico. Journal of Sedimentary Research, 48, 269-280. https://doi.org/10.1306/212F744B-2B24-11D7-8648000102C1865D.
[16] Folk R.L.,1951. Stages of textural maturity in sedimentary rocks. Journal of Sedimentary Research, 21, 127-130. https://doi.org/10.2110/jsr.21.127.
[17] Folk R.L.,1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company.
[18] Folk R.L., Ward W.C., 1957. Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27, 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D.
[19] Friedman G.M.,1979. Address of the retiring president of the international association of sedimentologists Differences in size distributions of populations of particles among sands of various origins. Sedimentology, 26, 3-32. https://doi.org/10.1111/j.1365-3091.1979.tb00336.x.
[20] Frihy O.E., Lotfy M.F., Komar P.D., 1995. Spatial variations in heavy minerals and patterns of sediment sorting along the Nile Delta, Egypt. Sedimentary Geology, 97, 33-41. https://doi.org/10.1016/0037-0738(94)00135-H.
[21] Frings R.M.,2011. Sedimentary characteristics of the gravel-sand transition in the River Rhine. Journal of Sedimentary Research, 81, 52-63. https://doi.org/10.2110/jsr.2011.2.
[22] Gabriel K.R.,1971. The biplot graphic display of matrices with application to principal component analysis.Biometrika, 58, 453-467.
[23] Galehouse J.S.,1969. Counting grain mounts: number percentage vs. number frequency. Journal of Sedimentary Research, 39, 812. https://doi.org/10.1306/74d71d3e-2b21-11d7-8648000102c1865d.
[24] Gansser A.,1964. Geology of the Himalayas. Cosmo Publications.
[25] Garzanti E.,2016. From static to dynamic provenance analysis — Sedimentary petrology upgraded. Sedimentary Geology, 336, 3-13. https://doi.org/10.1016/j.sedgeo.2015.07.010.
[26] Garzanti E.,2019. Petrographic classification of sand and sandstone. Earth-Science Reviews, 192, 545-563. https://doi.org/10.1016/j.earscirev.2018.12.014.
[27] Garzanti E., Andò S., 2007a. Chapter 20 Heavy Mineral Concentration in Modern Sands: Implications for Provenance Interpretation. In: Maria, A.M., David, T.W., (Eds.). Developments in Sedimentology. Elsevier, pp. 517-545. https://doi.org/10.1016/S0070-4571(07)58020-9.
[28] Garzanti E., Andò S., 2007b. Chapter 29 Plate Tectonics and Heavy Mineral Suites of Modern Sands. In: Maria, A.M., David, T.W., (Eds.). Developments in Sedimentology. Elsevier, pp. 741-763. https://doi.org/10.1016/S0070-4571(07)58029-5.
[29] Garzanti E., Ando S., Vezzoli G.,2008. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters, 273, 138-151. https://doi.org/10.1016/j.epsl.2008.06.020.
[30] Garzanti E., Ando S., Vezzoli G.,2009. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters, 277, 422-432. https://doi.org/10.1016/j.epsl.2008.11.007.
[31] Garzanti E., Andò S., Padoan M., Vezzoli G.,El Kammar, A., 2015. The modern Nile sediment system: Processes and products. Quaternary Science Reviews, 130, 9-56. https://doi.org/10.1016/j.quascirev.2015.07.011.
[32] Garzanti E., Limonta M., Vezzoli G., An W., Wang J., Hu X., 2017. Petrology and multimineral fingerprinting of modern sand generated from a dissected magmatic arc (Lhasa River, Tibet). In: Tectonics, Sedimentary Basins, and Provenance: A Celebration of William R. Dickinson’s Career. Geological Society of America Special Papers, 540, 197-221. https://doi.org/10.1130/2018.2540(09).
[33] Garzanti E., Vezzoli G., 2003. A classification of metamorphic grains in sands based on their composition and grade. Journal of Sedimentary Research, 73, 830-837. https://doi.org/10.1306/012203730830.
[34] Girardeau J., Mercier J.C.C., Zao Y.O., 1985. Structure of the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, southern Tibet, China: Genetic Implications. Tectonics, 4 (3), 267-288. https://doi.org/10.1029/TC004i003p00267.
[35] Guan Z., Chen C., Qu Y., 1984. Rivers and Lakes in Tibet. Science and Technology Press, Beijing.
[36] Guo R., Hu X., Garzanti E., Lai W., Yan B., Mark C.,2020. How faithfully do the geochronological and geochemical signatures of detrital zircon,titanite, rutile and monazite record magmatic andmetamorphic events? A case study from the Himalaya and Tibet. Earth-Science Reviews, 201, 103082. https://doi.org/10.1016/j.earscirev.2020.103082.
[37] Hu X.M., Jansa L., Wang C.S., Sarti M., Bak K., Wagreich M., Michalik J., Sotak J.,2005. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: Occurrences, lithofacies, age, and environments. Cretaceous Research, 26, 3-20. https://doi.org/10.1016/j.cretres.2004.11.011.
[38] Hu X.M., Jansa L., Chen L., Griffin W.L.,O'Reilly, S.Y., Wang, J.G., 2010. Provenance of Lower Cretaceous Wolong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of Eastern Gondwana. Sedimentary Geology, 223, 193-205. https://doi.org/10.1016/j.sedgeo.2009.11.008.
[39] Hubert J.F.,1962. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Research, 32, 440-450. https://doi.org/10.1306/74D70CE5-2B21-11D7-8648000102C1865D.
[40] Ingersoll R.V.,1990. Actualistic sandstone petrofacies Discriminating modern and ancient source rocks. Geology, 18, 733-736. https://doi.org/10.1130/0091-7613(1990)018<0733:Aspdma>2.3.Co;2.
[41] Ingersoll R.V., Bullard T.F., Ford R.L., Grimm J.P., Pickle J.D., Sares S.W., 1984. The effect of grain-size on detrital modes A test of the Gazzi-Dickinson Point-Counting Method. Journal of Sedimentary Petrology, 54, 103-116. https://doi.org/10.1306/212f83b9-2b24-11d7-8648000102c1865d.
[42] Jadoul F., Berra F., Garzanti E., 1998. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet). Journal of Asian Earth Sciences, 16, 173-194. https://doi.org/10.1016/S0743-9547(98)00013-0.
[43] Ji W.Q., Wu F.Y., Chung S.L., Li J.X., Liu C.Z.,2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262, 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020.
[44] Johnsson M.J., Basu A., 1993. The system controlling the composition of clastic sediments. The Geological Society of America, Inc., Boulder, Colorado.
[45] Kapp P., DeCelles P.G., Gehrels G.E., Heizier M., Ding L., 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119, 917-932. https://doi.org/10.1130/B26033.1.
[46] Knighton A.D.,1999. The gravel-sand transition in a disturbed catchment. Geomorphology, 27, 325-341. https://doi.org/10.1016/S0169-555X(98)00078-6.
[47] Lai W., Hu X.M., Garzanti E., Sun G.Y., Garzione C.N., Fadel M.B., Ma A.L., 2019a. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma). Geological Society of America Bulletin, 131, 1823-1836. https://doi.org/10.1130/B35124.1.
[48] Lai W., Hu X.M., Garzanti E., Xu Y.W., Ma A.L., Li W.,2019b. Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision. Gondwana Research, 73, 136-152. https://doi.org/10.1016/j.gr.2019.03.016.
[49] Lee J., Hacker B.R., Dinklage W.S., Wang Y., Gans P., Calvert A., Wan J.L., Chen W.J., Blythe A.E., McClelland W., 2000. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics, 19, 872-895. https://doi.org/10.1029/1999tc001147.
[50] Leier A.L., Decelles P.G., Kapp P., Gehrels G.E.,2007. Lower cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan plateau. Journal of Sedimentary Research, 77, 809-825. https://doi.org/10.2110/jsr.2007.078.
[51] Li S., Dong G.R., Shen J.Y., Yang P., Liu X.W., Wang Y., Jin H.L., Wang Q., 1999. Formation mechanism and development pattern of aeolian sand landform in Yarlung Zangbo River valley. Science in China Series D: Earth Sciences, 42, 272-284. https://doi.org/10.1007/Bf02878964.
[52] Liang W., Garzanti E., Hu X., Resentini A., Vezzoli G., Yao W., 2022. Tracing erosion patterns in South Tibet: Balancing sediment supply to the Yarlung Tsangpo from the Himalaya versus Lhasa Block. Basin Research, 34, 411-439. https://doi.org/10.1111/bre.12625.
[53] Liang W.D., Resentini A., Guo R.H., Garzanti E.,2020. Multimineral fingerprinting of modern sand generated from the Tethys Himalaya (Nianchu River, Tibet). Sedimentary Geology, 399, 105604. https://doi.org/10.1016/j.sedgeo.2020.105604.
[54] Liu T.,1999. Hydrological characteristics of Yarlung Zangbo river. Acta Geographica Sinica, 54, 157-164 (in Chinese with English Abstract).
[55] Liu Y., Wang Y.S., Shen T., 2019. Spatial distribution and formation mechanism of aeolian sand in the middle reaches of the Yarlung Zangbo River. Journal of Mountain Science, 16, 1987-2000. https://doi.org/10.1007/s11629-019-5509-5.
[56] Lu H.Y., Miao X.D., Sun Y.B., 2002. Pretreatment methods and their influences on grain-size measurement of aelian “Red Clay” in north China.Marine Geology and Quaternary Geology, 22, 129-135 (in Chinese with English Abstract).
[57] Miall A.D.,1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer Publishing, New York.
[58] Orme D.A., Laskowski A.K.,2016. Basin analysis of the Albian-Santonian Xigaze Forearc, Lazi Region, South-Central Tibet. Journal of Sedimentary Research, 86, 894-913. https://doi.org/10.1016/j.gsf.2017.11.011.
[59] Pan G.T., Ding J., Yao D.S., Wang L.Q., 2004. Geological map of the Qinghai-Xizang (Tibet) Plateau and adjacent areas. Chengdu Cartographic Publishing House, Chengdu.
[60] Paterson G.A., Heslop D., 2015. New methods for unmixing sediment grain size data. Geochemistry Geophysics Geosystems, 16, 4494-4506. https://doi.org/10.1002/2015gc006070.
[61] Rubey W.W.,1933. The size distribution of heavy minerals within a water-laid sandstone. Journal of Sedimentary Research, 3, 3-29. https://doi.org/10.1306/D4268E37-2B26-11D7-8648000102C1865D.
[62] Russell R.D.,1937. Mineral composition of Mississippi River sands. GSA Bulletin, 48, 1307-1348. https://doi.org/10.1130/GSAB-48-1307.
[63] Russell R.D., Taylor R.E., 1937. Roundness and shape of Mississippi River sands. The Journal of Geology, 45, 225-267. https://doi.org/10.1086/624526.
[64] Sambrook Smith G.H., Ferguson R.I., 1995. The gravel-sand transition along river channels. SEPM Journal of Sedimentary Research, 65A, 423-430. https://doi.org/10.1306/D42680E0-2B26-11D7-8648000102C1865D.
[65] Shen W., Li H., Sun M., Jiang J.,2012. Dynamics of aeolian sandy land in the Yarlung Zangbo River basin of Tibet, China from 1975 to 2008. Global and Planetary Change, 86-87, 37-44. https://doi.org/10.1016/j.gloplacha.2012.01.012.
[66] Sun H., Su F.G.,2020. Precipitation correction and reconstruction for streamflow simulation based on 262 rain gauges in the upper Brahmaputra of southern Tibetan Plateau. Journal of Hydrology, 590, 125484. https://doi.org/10.1016/j.jhydrol.2020.125484.
[67] Tsoar H., Pye K., 1987. Dust transport and the question of Desert Loess Formation. Sedimentology, 34, 139-153. https://doi.org/10.1111/j.1365-3091.1987.tb00566.x.
[68] Vermeesch P., Resentini A., Garzanti E.,2016. An R package for statistical provenance analysis. Sedimentary Geology, 336, 14-25. https://doi.org/10.1016/j.sedgeo.2016.01.009.
[69] von Eynatten, H., Dunkl, I., 2012. Assessing the sediment factory: The role of single grain analysis. Earth-Science Reviews, 115, 97-120. https://doi.org/10.1016/j.earscirev.2012.08.001.
[70] Wang C., Ding L., Zhang L.-Y., Kapp P., Pullen A., Yue Y.-H.,2016. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos, 262, 320-333. https://doi.org/10.1016/j.lithos.2016.07.021.
[71] Wang C., Liu Z., Hébert R., 2000. The Yarlung-Zangbo paleo-ophiolite, southern Tibet: Implications for the dynamic evolution of the Yarlung-Zangbo Suture Zone. Journal of Asian Earth Sciences, 18, 651-661. https://doi.org/10.1016/s1367-9120(00)00033-x.
[72] Wang J.,1994. Analyse of hydrological characteristics of central section ralley area of Ya Lu Zangbu River and the tributary of Lhasa River and Nian Chu River.Bulletin of Soil and Water Conservation, 2, 54-58 (in Chinese with English Abstract).
[73] Wang J.G., Hu X., Garzanti E., Wu F.Y., 2013. Upper Oligocene-Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo Initiation. The Journal of Geology, 121, 425-444. https://doi.org/10.1086/670722.
[74] Wang J.G., Hu X.M., Garzanti E., An W., Liu X.C.,2017. The birth of the Xigaze forearc basin in southern Tibet. Earth and Planetary Science Letters, 465, 38-47. https://doi.org/10.1016/j.epsl.2017.02.036.
[75] Wang J.G., Hu X.M., Wu F.Y., Jansa L.,2010. Provenance of the Liuqu Conglomerate in southern Tibet: A Paleogene erosional record of the Himalayan-Tibetan orogen. Sedimentary Geology, 231, 74-84. https://doi.org/10.1016/j.sedgeo.2010.09.004.
[76] Wang Y.W., Wang L., Li X.P., Zhou J., Hu Z.D.,2020. An integration of gauge, satellite, and reanalysis precipitation datasets for the largest river basin of the Tibetan Plateau. Earth System Science Data, 12, 1789-1803. https://doi.org/10.5194/essd-12-1789-2020.
[77] Weltje G.J.,1997. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem. Mathematical Geology, 29, 503-549. https://doi.org/10.1007/Bf02775085.
[78] Weltje G.J.,2006. Ternary sandstone composition and provenance: An evaluation of the 'Dickinson model'. Geological Society, London, Special Publications, 264, 79-99. https://doi.org/10.1144/Gsl.Sp.2006.264.01.07.
[79] Wu F.Y., Ji W.Q., Liu C.Z., Chung S.L.,2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271, 13-25. https://doi.org/10.1016/j.chemgeo.2009.12.007.
[80] Wu F.Y., Liu Z.C., Liu X.C., Ji W.Q., 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift.Acta Petrologica Sinica, 31, 1-36 (in Chinese with English Abstract).
[81] Xu Y., Hu X., Garzanti E., BouDagher-Fadel M., Sun G., Lai W., Zhang S., 2022. Mid-Cretaceous thick carbonate accumulation in Northern Lhasa (Tibet): Eustatic vs. tectonic control? Geological Society of America Bulletin, 134: 389-404. https://doi.org/10.1130/B35930.1.
[82] XZBGM, 1993. Regional Geology of Tibet Autonomous Region. Geological Publishing House, Beijing (in Chinese).
[83] Yatsu E.,1955. On the longitudinal profile of the graded river. EOS, Transactions American Geophysical Union, 36, 655-663. https://doi.org/10.1029/TR036i004p00655.
[84] Yin J.X., Xu J.T., Liu C.J., Li H.,1988. The Tibetan plateau: Regional stratigraphic context and previous work. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 327, 5-52. https://doi.org/10.1098/rsta.1988.0121.
[85] Zhu D.C., Zhao Z.D., Niu Y.L., Mo X.X., Chung S.L., Hou Z.Q., Wang L.Q., Wu F.Y.,2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301, 241-255. https://doi.org/10.1016/j.epsl.2010.11.005. |