|
|
Lower-order transgressive-regressive cycles within a higher-order transgression at the basin margin: an aberrant intercalation of palaeosol and biostromal ichnofabrics from the early Miocene Kutch Basin, India |
Ayush Srivastavaa, Sudipta Dasguptaa,*, Seema Singhb |
a Bombay Ichnos Research Group, Department of Earth Sciences, Indian Institute of Technology Bombay (IIT Bombay), Powai, Mumbai, Maharashtra 400076, India;
b Department of Geology, Panjab University, Chandigarh 160014, India |
|
|
Abstract The Chhasra Formation (CF) of Kutch Basin exemplifies a typical mixed siliciclastic-carbonate system with alternations of biostromal carbonate and fine-grained siliciclastic beds. The CF is subdivided into two members: the lower Claystone (CM) and the upper Siltstone (SM) member. Three CM outcrops (P1-P3) comprising buried palaeosols that formed under a specific environmental set-up involving imperfectly to poorly drained conditions, are exposed along the Berwali River. The biostromal carbonate beds, alternating with the palaeosols, contain invertebrate bioclasts (bivalves, gastropods, echinoids, etc.) and are characterized by a paucispecific firmground Thalassinoides ichnofabric. At section P1, below the contact between the underlying palaeosol and overlying carbonate, Thalassinoides transforms into firmground Gyrolithes inside the palaeosol forming a compound ichnotaxon. The palaeosol intervals of sections P1 and P2 consist of a Vondrichnus?Termitichnus?root trace ichnofabric defining the Termitichnus ichnofacies. At section P3, lenses of fully bioturbated siltstones with a monospecific firmground Thalassinoides ichnofabric can be observed within an overall silty palaeosol horizon, thereby, locally cross-cutting the pedogenic features. The ichnofabrics of section P3 indicate polyphase pedogenesis with three stages: (1) initial stage: pedogenesis in siltstone of undefined depositional affinity which was obscured by pedogenic processes, (2) transient stage: recurring marine incursions and colonization by crustaceans within the lens-shaped palaeotopographic depressions overprinting the palaeosol, and (3) final stage: subaerial exposure and another preserved phase of pedogenesis. The CM shows an apparent low-order T-R (transgressive-regressive) cyclicity within a 3rd-order TST (transgressive systems tract) that is supported by pedogenic intensity, ichnofabrics, and reciprocal sedimentation near the Miocene basin margin, though the cyclicity can be the result of both autogenic and/or lower-order allogenic changes.
|
Received: 13 March 2024
|
Corresponding Authors:
* E-mail addresses: 194063007@iitb.ac.in, srivastavaayush59@gmail.com (A. Srivastava), sdasgupta@iitb.ac.in (S. Dasgupta), geoseema05@yahoo.co.in (S. Singh).
|
|
|
|
D. Agnihotri, J.F. Genise, A. Saxena, A.K. Srivastava, 2021. Palliedaphichnium gondwanicum new ichnogenus new ichnospecies, a millipede trace fossil from paleosols of the upper Permian Gondwana sequence of India. Journal of Paleontology, 95, pp. 906-912.
S. Banerjee, S.L. Chattoraj, P.K. Saraswati, S. Dasgupta, U. Sarkar, 2012a. Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India. Marine and Petroleum Geology, 30, pp. 144-160.
S. Banerjee, S.L. Chattoraj, P.K. Saraswati, S. Dasgupta, U. Sarkar, A. Bumby, 2012b. The origin and maturation of lagoonal glauconites: a case study from the Oligocene Maniyara Fort Formation, western Kutch, India. Geological Journal, 47, pp. 357-371.
S. Banerjee, S. Khanolkar, P.K. Saraswati, 2018. Facies and depositional settings of the Middle Eocene-Oligocene carbonates in Kutch. Geodinamica Acta, 30, pp. 119-136.
A.D. Barnosky, E.A. Hadly, P. Gonzalez, J. Head, P.D. Polly, A.M. Lawing, J.T. Eronen, D.D. Ackerly, K. Alex, E. Biber, J. Blois, 2017. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science, 355, p. 4787.
H. Beraldi-Campesi, G.J. Retallack, 2016. Terrestrial ecosystems in the Precambrian. B. Weber, B. Büdel, J. Belnap (Eds.), Biological Soil Crusts: An Organizing Principle in Drylands, Springer, Switzerland, pp. 37-54.
M. Bertling, S.J. Braddy, R.G. Bromley, G.R. Demathieu, J. Genise, R. Mikuláš, J.K. Nielsen, K.S. Nielsen, A.K. Rindsberg, M. Schlirf, A. Uchman, 2006. Names for trace fossils: a uniform approach. Lethaia, 39, pp. 265-286.
S.K. Biswas, D.S.N. Raju, 1973. The rock stratigraphic classification of the Tertiary sediments of Kutch. Bulletin of the Oil and Natural Gas Commission, 10, pp. 37-46.
S.K. Biswas, 1982. Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin. American Association of Petroleum Geologists Bulletin, 66, pp. 1497-1513.
S.K. Biswas, 1992. Tertiary stratigraphy of Kutch. Journal of the Palaeontological Society of India, 37, pp. 1-29.
S.K. Biswas, 2005. A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes. Current Science, 88, pp. 1592-1600.
L.A. Buatois, M.G. Mángano, 2007. Invertebrate ichnology of continental freshwater environments. W. Miller III (Ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, Trace Fossils, pp. 285-323.
L.A. Buatois, M.G. Mángano, 2011. Ichnology: Organism-Substrate Interactions in Space and Time. Cambridge University Press (2011).
N.B. Carmona, L.A. Buatois, J.J. Ponce, M.G. Mángano, 2009. Ichnology and sedimentology of a tide-influenced delta, Lower Miocene Chenque Formation, Patagonia, Argentina: trace-fossil distribution and response to environmental stresses. Palaeogeography, Palaeoclimatology, Palaeoecology, 273, pp. 75-86.
O. Catuneanu, A. Dave, 2017. Cenozoic sequence stratigraphy of the Kachchh Basin, India. Marine and Petroleum Geology, 86, pp. 1106-1132.
O. Catuneanu, W.E. Galloway, C.G.S.C. Kendall, A.D. Miall, H.W. Posamentier, A. Strasser, M.E. Tucker, 2011. Sequence stratigraphy: methodology and nomenclature. Newsletters on Stratigraphy, 44, pp. 173-245.
M.S.C. Charts, 1994. Munsell color. Macbeth Division of Kollmorgen Instruments Corporation, 12553, pp. 41-71.
S.L. Chattoraj, S. Banerjee, P.K. Saraswati, 2009. Glauconites from the late Palaeocene ‒ early Eocene Naredi Formation, western Kutch and their genetic implications. Journal of the Geological Society of India, 73, pp. 567-574.
A. Chaudhuri, S. Banerjee, G. Chauhan, 2020. Compositional evolution of siliciclastic sediments recording the tectonic stability of a pericratonic rift: Mesozoic Kutch Basin, western India. Marine and Petroleum Geology, 111, pp. 476-495.
G. Chauhan, S.K. Biswas, M.G. Thakkar, K.N. Page, 2021. The unique geoheritage of the Kachchh (Kutch) Basin, Western India, and its conservation. Geoheritage, 13, p. 23.
D.V. Chandrasekhar, D.C. Mishra, 2002. Some geodynamic aspects of Kutch Basin and seismicity: An insight from gravity studies. Current Science, 83, pp. 492-498.
M. Das, S. Dasgupta, R. D’souza, A. Natarajan, 2023. A new ichnospecies Nummipera saraswatii from the early Eocene (Ypresian) Assilina bank deposits of the Naredi Formation, Kutch Basin, India. Ichnos, 30, pp. 283-304.
M. Das, S. Dasgupta, T.R. Choudhury, R. D'souza, S. Banerjee, 2024a. Impact of early Eocene (Ypresian) warming events on ichnological assemblage of the Naredi Formation, western Kutch (Kachchh) Basin of Gujarat, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 639, Article 112063.
M. Das, S. Dasgupta, A. Srivastava, D. Rajkhowa, S. Banerjee, 2024b. Ichnological response to the Middle Eocene Climatic Optimum (MECO) in the Bartonian deposits of Kutch Basin, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 643, Article 112183.
R.J. Dunham, 1962. Classification of carbonate rocks according to depositional texture. W.E. Ham (Ed.), Classification of Carbonate Rocks – A Symposium, American Association of Petroleum Geologists, Memoir 1, pp. 108-121.
P.C. Dworschak, S.A. de Rodrigues, 1997. A modern analogue for the trace fossil Gyrolithes: burrows of the thalassinidean shrimp Axianassa australis. Lethaia, 30, pp. 41-52.
J.F. Genise, M.G. Mángano, L.A. Buatois, J.H. Laza, M. Verde, 2000. Insect trace fossil associations in paleosols: the Coprinisphaera ichnofacies. Palaios, 15, pp. 49-64.
J.A. Golab, J.J. Smith, S.T. Hasiotis, 2018. Paleoenvironmental and paleogeographic implications of paleosols and ichnofossils in the Upper Pennsylvanian Halgaito Formation, southeastern Utah. Palaios, 33, pp. 296-311.
S.S. Gurav, K.G. Kulkarni, 2019. Foraminifera-walled Schaubcylindrichnus coronus Frey and Howard, 1981, from the Middle Eocene, Kachchh, Western India. Ichnos, 26, pp. 134-140.
S.T. Hasiotis, T.M. Bown, 1992. Invertebrate trace fossils: the backbone of continental ichnology. Short Courses in Paleontology, 5, pp. 64-104.
S.T. Hasiotis, 2002. Continental ichnology: using terrestrial and freshwater trace fossils for environmental and climatic interpretations. S.T. Hasiotis (Ed.), Continental Trace Fossils, Society of Economic Paleontologists and Mineralogists, Short Course Notes, 51, pp. 1-42.
S.T. Hasiotis, 2007. Continental ichnology: fundamental processes and controls on trace fossil distribution. W. Miller (Ed.), Trace Fossils. Concepts, Problems, Prospects, Elsevier, pp. 268-284.
Y. Khanna, S. Singh, S. Singh, 2018. Micromorphological studies of the complex early Oligocene Himalayan foreland palaeosols in relation to Asian monsoon climate. Catena, 164, pp. 1-12.
Trace Fossils as Indicators of Sedimentary Environments. D. Knaust, R. Bromley (Eds.), 2012. Developments in Sedimentology, 64, Elsevier, Oxford, p. 960.
M.J. Kraus, 1998. Development of potential acid sulfate paleosols in Paleocene floodplains, Bighorn Basin, Wyoming, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, pp. 203-224.
M.J. Kraus, S.T. Hasiotis, 2006. Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, USA. Journal of Sedimentary Research, 76, pp. 633-646.
K.G. Kulkarni, S. Bhattacharjee, V.D. Borkar, 2007. Entobian bioerosion of Miocene oysters, Kachchh, Gujarat. Journal of the Geological Society of India, 69, pp. 827-833.
A. Kumar, P.K. Saraswati, 1997. Response of larger foraminifera to mixed carbonate-siliciclastic environments: an example from the Oligocene-Miocene sequence of Kutch, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, pp. 53-65.
P. Kumar, P.K. Saraswati, S. Banerjee, 2009. Early Miocene shell concentration in the mixed carbonate-siliciclastic system of Kutch and their distribution in sequence stratigraphic framework. Journal of the Geological Society of India, 74, pp. 432-444.
P. Kumar, P.K. Saraswati, S. Banerjee, A. Ghosh, 2016. Sequence Stratigraphic Analysis of a Shallow Marine, Mixed Carbonate-Siliciclastic System, Early Miocene, Kutch, 6, Special Publication of the Geological Society of India, pp. 57-74.
J. Macedo, R.B. Bryant, 1987. Morphology, mineralogy, and genesis of a hydrosequence of Oxisols in Brazil. Soil Science Society of America, 51, pp. 690-698.
E. Mayoral, 1986. Gyrolitbes vidali nov. icnoesp.(Plioceno marino) en el sector suroccidental de la cuenca del Guadalquivir (Área de Palos de la Frontera, Huelva, España). Estudios Geológicos, 42, pp. 211-223.
M.N. Menezes, H.I. Araújo-Júnior, P.F. Dal'Bó, M.A.A. Medeiros, 2019. Integrating ichnology and paleopedology in the analysis of Albian alluvial plains of the Parnaíba Basin, Brazil. Cretaceous Research, 96, pp. 210-226.
N.J. Minter, L.A. Buatois, M.G. Mángano, N.S. Davies, M.R. Gibling, C. Labandeira, 2016. The establishment of continental ecosystems. The trace-fossil record of major evolutionary events: Volume 1. Precambrian and Paleozoic, 39, pp. 205-324.
J. Mount, 1985. Mixed siliciclastic and carbonate sediments: a proposed first-order textural and compositional classification. Sedimentology, 32, pp. 435-442.
K. Nanglu, T.M. Cullen, 2023. Across space and time: A review of sampling, preservational, analytical, and anthropogenic biases in fossil data across macroecological scales. Earth-Science Reviews, 244, Article 104537.
R.G. Netto, L.A. Buatois, M.G. Mángano, P.R.M.N. Balistieri, 2007. Gyrolithes as a multipurpose burrow: an ethologic approach. Revista Brasileira de Paleontologia, 10, pp. 157-168.
B.R. Prasad, N. Venkateswarlu, A.S.S.S.R.S. Prasad, A.S.N. Murthy, T. Sateesh, 2010. Basement configuration of on-land Kutch Basin from seismic refraction studies and modeling of first arrival travel time skips. Journal of Asian Earth Sciences, 39, pp. 460-469.
K. Prasad, S. Dasgupta, A, 2024. Bioerosion, encrustation, and taphonomic pathways of Nummulites tests and the palaeoenvironmental implications: the Oligocene interval of Kutch Basin, India, Lethaia (2024)in press.
S.B. Pruss, D.J. Bottjer, 2004. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios, 19, pp. 551-564.
D.S.N. Raju, 1974. Observation on the Eocene, Oligocene, and Miocene foraminiferal biostratigraphy of Kutch, Western India, 10, Punjab University, Chandigarh, pp. 136-155Publication Centre Advanced Study in Geology.
G.J. Retallack, J. Reinhardt, 1988. Field recognition of paleosols. Geological Society of America Special Paper, 216, pp. 1-20.
G.J. Retallack, 1991. Untangling the effects of burial alteration and ancient soil formation. Annual Review of Earth and Planetary Sciences, 19, pp. 183-206.
G. Retallack, 2001. Soils of the Past: An Introduction to Paleopedology, second. Blackwell Science (2001)London, 404.
P.K. Saraswati, S. Banerjee, U. Sarkar, S. Chakraborty, S. Khanolkar, 2016a. Eocene depositional sequence and cycles in Kutch. 6, Special Publication of The Geological Society of, India, pp. 46-56.
P.K. Saraswati, S. Khanolkar, D.S.N. Raju, S, 2016b. An updated Eocene stratigraphy of Kutch, 6, Special Publication of The Geological Society of, India, pp. 25-31.
P.K. Saraswati, S. Khanolkar, S. Banerjee, 2018. Paleogene stratigraphy of Kutch, India: an update about progress in foraminiferal biostratigraphy. Geodinamica Acta, 30, pp. 100-118.
U. Sarkar, S. Banerjee, P.K. Saraswati, W. Yuan, L. Min, 2012. Integrated borehole and outcrop study for documentation of sea level cycles within the early Eocene Naredi Formation, western Kutch, India. Journal of Palaeogeography, 1 (4), pp. 126-137.
E. Schwarz, G.D. Veiga, G.Á. Trentini, L.A. Spalletti, 2016. Climatically versus eustatically controlled, sediment-supply-driven cycles: carbonate–siliciclastic, high-frequency sequences in the Valanginian of the Neuquén Basin (Argentina). Journal of Sedimentary Research, 86, pp. 312-335.
W.A. Shear, J. Kukalová-Peck, 1990. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Canadian Journal of Zoology, 68, pp. 1807-1834.
N.D. Sheldon, N.J. Tabor, 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95, pp. 1-52.
S. Singh, A.K. Awasthi, Y. Khanna, A. Kumari, B. Singh, A. Kumar, C. Popli, 2021. Sediment colour as recorder of climate and tectonics: Cenozoic continental red beds of the Himalayan foreland basin in NW India. Catena, 203, Article 105298.
S. Singh, B. Parkash, A.K. Awasthi, S. Kumar, 2011. Late Miocene record of palaeovegetation from Siwalik palaeosols of the Ramnagar sub-basin, India. Current Science, 100, pp. 213-222.
Soil Survey Staff, 1992. Key to Soil Taxonomy: Soil Management. Support Services Monograph No. 19. Pocahontas Press, Blacksburg, p. 541p.
A. Srivastava, S. Dasgupta, K. Chatterjee, M. Das, 2024a. Trace fossil evidences of an Early Miocene paleoseismic event and depositional regime change from the Kutch (Kachchh) Basin. Journal of Palaeogeography, 13 (3), pp. 165-180.
A. Srivastava, M. Das, S. Dasgupta, R. D’souza, 2024b. The new ichnospecies Teredolites solitarius and its taphonomy from the Cenozoic carbonate intervals of Kutch Basin, India. Ichnos, 31, pp. 18-39, http://doi.org/10.1080/10420940.2024.2341381.
V.K. Srivastava, B.P. Singh, 2017. Facies analysis and depositional environments of the early Eocene Naredi Formation (Nareda locality), Kutch, Western India. Carbonates and Evaporites, 32, pp. 279-293.
G. Stoops, 2021. Guidelines for Analysis and Description of Soil and Regolith Thin Sections. (second ed.), John Wiley & Sons (2021).
G. Stoops, V. Marcelino, F. Mees, 2010. Micromorphological features and their relation to processes and classification: general guidelines and keys. G. Stoops, V. Marcelino, F. Mees (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths, Elsevier, pp. 15-35.
N.J. Tabor, R.M. Smith, J.S. Steyer, C.A. Sidor, C.J. Poulsen, 2011. The Permian Moradi Formation of northern Niger: paleosol morphology, petrography and mineralogy. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, pp. 200-213.
A.M. Taylor, R. Goldring, 1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150, pp. 141-148.
A. Uchman, 1991. Trace fossils from stress environments in Cretaceous-Paleogene flysch of the Polish Outer Carpathians. Annales Societatis Geologorum Poloniae, 61, pp. 207-220.
F.G. Varejão, L.V. Warren, M.G. Simoes, L.A. Buatois, M.G. Mángano, A.M. Bahniuk Rumbelsperger, M.L. Assine, 2021. Mixed siliciclastic–carbonate sedimentation in an evolving epicontinental sea: Aptian record of marginal marine settings in the interior basins of north-eastern Brazil. Sedimentology, 68, pp. 2125-2164.
A.N. Varela, G.D. Veiga, D.G. Poiré, 2012. Sequence stratigraphic analysis of Cenomanian greenhouse palaeosols: a case study from southern Patagonia, Argentina. Sedimentary Geology, 271, pp. 67-82.
A.N. Varela, L.M. Yeste, C. Viseras, F. García-García, D.M. Paz, 2021. Implications of palaeosols in low net-to-gross fluvial architecture reconstruction: Reservoir analogues from Patagonia and Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 577, Article 110553.
C. Wentworth, 1922. A scale of grade and class terms for the clastic sediments. The Journal of Geology, 30, pp. 377-392.
A. Wetzel, R. Tjallingii, K. Stattegger, 2010. Gyrolithes in Holocene estuarine incised-valley fill deposits, offshore southern Vietnam. Palaios, 25 (4), pp. 239-246.
V.P. Wright, S.B. Marriott, 1993. The sequence stratigraphy of fluvial depositional systems: the role of floodplain sediment storage. Sedimentary Geology, 86, pp. 203-210.
M. Zecchin, O. Catuneanu, 2013. High-resolution sequence stratigraphy of clastic shelves I: units and bounding surfaces. Marine and Petroleum Geology, 39, pp. 1-25.
M. Zecchin, O. Catuneanu, 2017. High-resolution sequence stratigraphy of clastic shelves VI: Mixed siliciclastic-carbonate systems. Marine and Petroleum Geology, 88, pp. 712-723.
J.P. Zonneveld, M.K. Gingras, T.W. Beatty, D.J. Bottjer, J.R. Chaplin, S.E. Greene, R.C. Martindale, S.A. Mata, L.P. McHugh, S.G. Pemberton, J.A. Schoengut, 2012. Mixed siliciclastic/carbonate systems. Developments in Sedimentology, 64, pp. 807-833. |
|
|
|