Abdel-Fattah,Z.A., 2019. Morpho-sedimentary characteristics and generated primary sedimentary structures on the modern microtidal sandy coast of eastern Nile Delta, Egypt. Journal of African Earth Sciences, 150, 355-378. https://doi.org/10.1016/j.jafrearsci.2018.11.015.
Ayranci K., Dashtgard S.E.,MacEachern, J.A., 2014. A quantitative assessment of the neoichnology and biology of a delta front and prodelta, and implications for delta ichnology. Palaeogeography, Palaeoclimatology, Palaeoecology, 409, 114-134. https://doi.org/10.1016/j.palaeo.2014.05.013.
Bown T.M.,1982. Ichnofossils and rhizoliths of the nearshore fluvial Jebel Qatrani Formation (Oligocene), Fayum Province, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 40(4), 255-309. https://doi.org/10.1016/0031-0182(82)90031-1.
Bown T.M., Kraus M.J., 1983. Ichnofossils of the alluvial Willwood Formation (lower Eocene), Bighorn Basin, northwest Wyoming, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 43(1-2), 95-128. https://doi.org/10.1016/0031-0182(83)90050-0.
Campbell K.A., Nesbitt E.A., 2000. High-resolution architecture and paleoecology of an active margin, storm-flood influenced estuary, Quinault Formation (Pliocene), Washington. Palaios, 15 (6), 553-579. https://doi.org/10.1669/0883-1351(2000)015<0553:HRAAPO>2.0.CO;2.
Chakrabarti A.,1981. Burrow patterns ofOcypode ceratophthalma(Pallas) and their environmental significance. Journal of Paleontology, 55(2), 431-441.
Chan F.K.S., Yang, L.E., Scheffran, J., Mitchell, G., Adekola, O., Griffiths, J., Chen, Y., Li, G., Lu, X., Qi, Y., Li, L., Zheng, H., McDonald, A., 2021. Urban flood risks and emerging challenges in a Chinese delta: The case of the Pearl River Delta. Environmental Science & Policy, 122, 101-115. https://doi.org/10.1016/j.envsci.2021.04.009.
Curran H.A., Martin A.J., 2003. Complex decapod burrows and ecological relationships in modern and Pleistocene intertidal carbonate environments, San Salvador Island, Bahamas. Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 229-245. https://doi.org/10.1016/S0031-0182(02)00687-9.
Dashtgard S.E.,2011a. Linking invertebrate burrow distributions (neoichnology) to physicochemical stresses on a sandy tidal flat: Implications for the rock record.Sedimentology, 58(6), 1303-1325.
Dashtgard S.E.,2011b. Neoichnology of the lower delta plain: Fraser River Delta, British Columbia, Canada: Implications for the ichnology of deltas. Palaeogeography, Palaeoclimatology, Palaeoecology, 307, 98-108. https://doi.org/10.1016/j.palaeo.2011.05.001.
Dashtgard S.E., Gingras M.K., Pemberton S.G.,2008. Grain-size controls on the occurrence of bioturbation. Palaeogeography, Palaeoclimatology, Palaeoecology, 257(1-2), 224-243. https://doi.org/10.1016/j.palaeo.2007.10.024.
De Carvalho C.N., Rodrigues N.P.C., Viegas P.A., Baucon A., Santos V.F., 2010. Patterns of occurrence and distribution of crustacean ichnofossils in the Lower Jurassic-Upper Cretaceous of Atlantic occidental margin basins, Portugal.Acta Geologica Polonica, 60(1), 19-28.
de Gibert J.M., Muñiz F., Belaústegui Z., Hyžný M., 2013. Fossil and modern fiddler crabs (Uca tangeri: Ocypodidae) and their burrows from SW Spain: Ichnologic and biogeographic implications. Journal of Crustacean Biology, 33(4), 537-551. https://doi.org/10.1163/1937240X-00002151.
De C.,2000. Neoichnological activities of endobenthic invertebrates in downdrift coastal Ganges delta complex, India: Their significance in trace fossil interpretations and paleoshoreline reconstructions. Ichnos, 7(2), 89-113. https://doi.org/10.1080/10420940009380149.
De C.,2005. Biophysical model of intertidal beach crab burrowing: Application and significance. Ichnos, 12(1), 11-29. https://doi.org/10.1080/10420940590914471.
De C.,2019a. Descriptive ichnology. In: Mangrove Ichnology of the Bay of Bengal Coast, Eastern India. Springer, Berlin, pp. 49-158.
De C.,2019b. Geological and geotechnical significance. In: Mangrove Ichnology of the Bay of Bengal Coast, Eastern India. Springer, Berlin, pp. 233-276.
Desai B.G.,2013. Ichnological analysis of transgressive marine tongue in prograding deltaic system: Evidences from Ukra Hill Member, Western Kachchh, India. Journal of the Geological Society of India, 82(2), 143-152. https://doi.org/10.1007/s12594-013-0132-5.
Dörjes J., Hertweck G., 1975. Recent biocoenoses and ichnocoenoses in shallow-water marine environments. In: Frey, R.W. (Ed.), The Study of Trace Fossils. Springer-Verlag, New York, pp. 459-491.
Doyle E., Orr P., Murray J.,2021. The earliest occurrence of the ichnogenus Psilonichnus: A new record from the Mississippian of the West of Ireland. Ichnos, 28(3), 208-216. https://doi.org/10.1080/10420940.2021.1932488.
Duncan G.A.,1986. Burrows of Ocypode quadrata (Fabricius) as related to slopes of substrate surfaces. Journal of Paleontology, 60(2), 384-389. https://doi.org/10.1017/S0022336000021892.
Edwards T.C.P., Mitchell S.F., 2018. Trace fossils in clastic beachrocks at the Yallahs salt ponds, Jamaica: Implications for beachrock cementation. Journal of Coastal Research, 34(2), 429-433. https://doi.org/10.2112/JCOASTRES-D-16-00176.1.
Frey R.W., Curran H.A., Pemberton S.G., 1984. Tracemaking activities of crabs and their environmental significance: The ichnogenusPsilonichnus. Journal of Paleontology, 58(2), 333-350.
Frey R.W., Pemberton S.G., 1987. The Psilonichnus ichnocoenose, and its relationship to adjacent marine and nonmarine ichnocoenoses along the Georgia coast. Bulletin of Canadian Petroleum Geology, 35(3), 333-357. https://doi.org/10.35767/gscpgbull.35.3.333.
Frey R.W., Seilacher A., 1980. Uniformity in marine invertebrate ichnology. Lethaia, 13(3), 183-207. https://doi.org/10.1111/j.1502-3931.1980.tb00632.x.
Fürsich F.T.,1981. Invertebrate trace fossils from the Upper Jurassic of Portugal.Comunicações dos Serviços Geológicos de Portugal, 67(2), 153-168.
Geng J.J., Wang Y.P., Luo H.J.,2015. Distribution, sources, and fluxes of heavy metals in the Pearl River Delta, South China. Marine Pollution Bulletin, 101(2), 914-921. https://doi.org/10.1016/j.marpolbul.2015.10.066.
Gingras M.K., Dashtgard S.E., MacEachern J.A., Pemberton S.G., 2008. Biology of shallow marine ichnology: A modern perspective. Aquatic Biology, 2(3), 255-268. https://doi.org/10.3354/ab00055.
Gingras M.K., Hubbard S.M., Pemberton S.G., Saunders T., 2000. The significance of Pleistocene Psilonichnus at Willapa Bay, Washington. Palaios, 15(2), 142-151. https://doi.org/10.1669/0883-1351(2000)015<0142:TSOPPA>2.0.CO;2.
Gingras M.K.,MacEachern, J.A., Dashtgard, S.E., 2011. Process ichnology and the elucidation of physico-chemical stress. Sedimentary Geology, 237(3-4), 115-134. https://doi.org/10.1016/j.sedgeo.2011.02.006.
Gingras M.K., MacEachern J.A., Pemberton S.G., 1998. A comparative analysis of the ichnology of wave- and river-dominated allomembers of the Upper Cretaceous Dunvegan Formation. Bulletin of Canadian Petroleum Geology, 46(1), 51-73. https://doi.org/10.35767/gscpgbull.46.1.051.
Gingras M.K., Räsänen M.E., Pemberton S.G., Romero L.P., 2002. Ichnology and sedimentology reveal depositional characteristics of bay-margin parasequences in the Miocene Amazonian foreland basin. Journal of Sedimentary Research, 72(6), 871-883. https://doi.org/10.1306/052002720871.
Hasiotis S.T., Bown T.M., 1992. Invertebrate trace fossils: The backbone of continental ichnology. Short Courses in Paleontology, 5: 64-104. https://doi.org/10.1017/S2475263000002294.
Heiri O., Lotter A.F., Lemcke G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101-110. https://doi.org/10.1023/A:1008119611481.
Howard J.D., Scott R.M., 1983. Comparison of Pleistocene and Holocene barrier island beach-to-offshore sequences, Georgia and northeast Florida coasts, U.S.A. Sedimentary Geology, 34(2-3), 167-183. https://doi.org/10.1016/0037-0738(83)90085-4.
Huang Z.G., Zong Y.Q., Zhang W.Q., 2004. Coastal inundation due to sea level rise in the Pearl River Delta, China. Natural Hazards, 33(2), 247-264. https://doi.org/10.1023/B:NHAZ.0000037038.18814.b0.
Kim J.Y., Kang J.H., 2018. Trace fossils from the late Pleistocene marginal marine deposits of Jeju Island, Korea: Implications for the Psilonichnus and Skolithos ichnofacies. Journal of the Korean Earth Science Society, 39(1), 23-45. https://doi.org/10.5467/JKESS.2018.39.1.23.
Koo B.J., Kim S.H., Hyun J.H.,2019. Feeding behavior of the ocypodid crab Macrophthalmus japonicus and its effects on oxygen-penetration depth and organic-matter removal in intertidal sediments. Estuarine, Coastal and Shelf Science, 228, 106366. https://doi.org/10.1016/j.ecss.2019.106366.
Kumar A.,2017. Recent biogenic traces from the coastal environments of the southern Red Sea coast of Saudi Arabia. Arabian Journal of Geosciences, 10(22), 1-11. https://doi.org/10.1007/s12517-017-3293-5.
La Croix,A.D., Dashtgard, S.E., Gingras, M.K., Hauck, T.E., MacEachern, J.A., 2015. Bioturbation trends across the freshwater to brackish-water transition in rivers. Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 66-77. https://doi.org/10.1016/j.palaeo.2015.08.030.
Lan Z.W., Zhang S.J., Chen Z.Q., Mitchell R.N., 2021. Locomotion and feeding trails produced by crabs. Geological Journal, 56(12), 6288-6293. https://doi.org/10.1002/gj.4190.
Lokho K., Singh B.P., 2013. Ichnofossils from the Miocene Middle Bhuban Formation, Mizoram, Northeast India and their paleoenvironmental significance. Acta Geologica Sinica (English Edition), 87(5), 1460-1471. https://doi.org/10.1111/1755-6724.12142.
Martin A.J.,2006. Resting traces of Ocypode quadrata associated with hydration and respiration: Sapelo Island, Georgia, USA. Ichnos, 13(2), 57-67. https://doi.org/10.1080/10420940600739575.
Mayoral E.,Ledesma-Vazquez, J., Baarli, B.G., Santos, A., Ramalho, R., Cachão, M., da Silva, C.M., Johnson, M.E., 2013. Ichnology in oceanic islands; case studies from the Cape Verde Archipelago. Palaeogeography, Palaeoclimatology, Palaeoecology, 381-382, 47-66. https://doi.org/10.1016/j.palaeo.2013.04.014.
Myint M.,2001. Psilonichnus quietis isp. nov. from the Eocene Iwaki Formation, Shiramizu Group, Joban Coal Field, Japan. Ichnos, 8(1), 1-14. https://doi.org/10.1080/10420940109380170.
Myint M.,2007. The Psilonichnus ichnofacies: An example from the Iwaki Formation, Shiramizu Group, Joban Coal Field, Japan. In: MacEachern, J.A., Bann, K.L., Gingras, M.K., Pemberton, S.G. (Eds.), Applied Ichnology. SEPM Short Course Notes 52: SEPM Society for Sedimentary Geology, pp. 335-342. https://doi.org/10.2110/pec.07.52.0335.
Nesbitt E.A., Campbell K.A., 2002. A new Psilonichnus ichnospecies attributed to mud-shrimp Upogebia in estuarine settings. Journal of Paleontology, 76(5), 892-901. https://doi.org/10.1666/0022-3360(2002)076<0892:ANPIAT>2.0.CO;2.
Nesbitt E.A., Campbell K.A., 2006. The paleoenvironmental significance ofPsilonichnus. Palaios, 21(2), 187-196.
Neto de Carvalho, C., 2016. Psilonichnus Fürsich, 1981 in its type-locality (Praia do Salgado, western Portugal). Comunicações Geológicas, 103, 13-21.
Netto R.G., Grangeiro M.E.,2009. Neoichnology of the seaward side of Peixe Lagoon in Mostardas, southernmost Brazil: The Psilonichnus ichnocoenosis revisited. Revista Brasileira de Paleontologia, 12(3), 211-224. https://doi.org/10.4072/rbp.2009.3.04.
Otani S., Kozuki Y., Yamanaka R., Sasaoka H., Ishiyama T., Okitsu Y., Sakai H., Fujiki Y.,2010. The role of crabs(Macrophthalmus japonicus) burrows on organic carbon cycle in estuarine tidal flat, Japan. Estuarine, Coastal and Shelf Science, 86(3), 434-440. https://doi.org/10.1016/j.ecss.2009.07.033.
Pemberton S.G., Reinson G.E., MacEachern, J.A., 1992. Comparative ichnological analysis of late Albian estuarine valley-fill and shelf-shoreface deposits, Crystal Viking Field, Alberta. In: Pemberton, S.G. (Ed.), Applications of Ichnology to Petroleum Exploration: A Core Workshop. SEPM Core Workshop Notes 17: SEPM Society for Sedimentary Geology, pp. 291-317. https://doi.org/10.2110/cor.92.01.0291.
Reineck H.E.,1967. Layered sediments in tidal flats, beaches, and shelf bottoms of the North Sea. In: Lauff, G. (Ed.), Estuaries. American Association for the Advancement of Science, Washington, D.C, pp. 191-206.
Rodríguez-Tovar F.J., Seike K., Curran H.A., 2014. Characteristics, distribution patterns, and implications for ichnology of modern burrows of Uca (Leptuca) speciosa, San Salvador Island, Bahamas. Journal of Crustacean Biology, 34(5), 565-572. https://doi.org/10.1163/1937240X-00002263.
Seike K., Curran H.A., 2014. Burrow morphology of the land crab Gecarcinus lateralis and the ghost crab Ocypode quadrata on San Salvador Island, The Bahamas: Comparisons and palaeoenvironmental implications. Spanish Journal of Palaeontology, 29(1), 61-70. https://doi.org/10.7203/sjp.29.1.17489.
Seike K., Nara M.,2007. Occurrence of bioglyphs on Ocypode crab burrows in a modern sandy beach and its palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(3-4), 458-463. https://doi.org/10.1016/j.palaeo.2007.05.003.
Semeniuk V., Unno J.,2014. Complex ichnology of the Western Australian soldier crab Mictyris occidentalis Unno 2008-The Rosetta Stone to interpreting its population age structure and age-related behavior. Ichnos, 21(1), 44-61. https://doi.org/10.1080/10420940.2013.877007.
Sparacio C.A., Buynevich I.V., Curran H.A., Kopcznski K.,2020. Morphometry of blue land crab(Cardisoma guanhumi) burrows: Ichnological context and paleoenvironmental implications. Palaios, 35(11), 461-469. https://doi.org/10.2110/palo.2020.034.
Uchman A., Pervesler P., 2006. Surface lebensspuren produced by amphipods and isopods (crustaceans) from the Isonzo Delta tidal flat, Italy.Palaios, 21(4), 384-390.
Uchman A., Wetzel A., 2011. Deep-sea ichnology: The relationships between depositional environment and endobenthic organisms. In: HüNeke, H., Mulder, T. (Eds.), Deep-Sea Sediments. Developments in Sedimentology, volume 63. Elsevier, pp. 517-556. https://doi.org/10.1016/B978-0-444-53000-4.00008-1.
Unno J.,2008. The Western Australian soldier crab,Mictyris occidentalis Unno 2008 (Brachyura: Decapoda: Mictyridae): The importance of behaviour in design of sampling methods. Journal of the Royal Society of Western Australia, 91, 243-263.
Unno J., Semeniuk V., 2008. Ichnological studies of the Western Australian soldier crabMictyris occidentalis Unno 2008: Correlations of field and aquarium observations. Journal of the Royal Society of Western Australia, 91, 175-198.
Unno J., Semeniuk V.,2019. Soldier crab paleo-ichnology and its preservation in beach rock along the Pilbara Coast, Western Australia: Its geoheritage significance. Australian Journal of Earth Sciences, 66(6), 923-935. https://doi.org/10.1080/08120099.2018.1548377.
Wang Y.Y., Gou S.L., Wang C., Zhang G.C., Uchman A., Wetzel A.,2024. The crab Macrophthalmus japonicus burrows on a tidal flat of the Yellow River Delta in China: Their 3D morphological variability in relation to physicochemical conditions and palaeoichnological perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 638, 112037. https://doi.org/10.1016/j.palaeo.2024.112037.
Wang Y.Y., Hu B., 2014. Biogenic sedimentary structures of the Yellow River Delta in China and their composition and distribution characters. Acta Geologica Sinica (English Edition), 88(5), 1488-1498. https://doi.org/10.1111/1755-6724.12313.
Wang Y.Y., Wang X.Q., Hu B., Luo M.,2019a. Tomographic reconstructions of crab burrows from deltaic tidal flat: Contribution to palaeoecology of decapod trace fossils in coastal settings. Palaeoworld, 28(4), 514-524. https://doi.org/10.1016/j.palwor.2019.04.003.
Wang Y.Y., Wang X.Q., Uchman A., Hu B., Song H.B.,2019b. Burrows of the polychaete Perinereis aibuhiutensis on a tidal flat of the Yellow River delta in China: Implications for the ichnofossils Polykladichnus and Archaeonassa. Palaios, 34(5), 271-279. https://doi.org/10.2110/palo.2018.105.
Weng Q.H.,2007. A historical perspective of river basin management in the Pearl River Delta of China. Journal of Environmental Management, 85(4), 1048-1062. https://doi.org/10.1016/j.jenvman.2006.11.008.
Wilson M.A., Curran H.A., White B., 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia, 31(3), 241-250. https://doi.org/10.1111/j.1502-3931.1998.tb00513.x.
Yang B., Dalrymple R.W., Gingras M.K., Pemberton S.G.,2009. Autogenic occurrence of Glossifungites ichnofacies: Examples from wave-dominated, macrotidal flats, southwestern coast of Korea. Marine Geology, 260, 1-5. https://doi.org/10.1016/j.margeo.2009.01.008.
Zhang H.R., Zhang G.F., Jia Q.W.,2019. Integration of analytical hierarchy process and landslide susceptibility index based landslide susceptibility assessment of the Pearl River Delta area, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(11), 4239-4251. https://doi.org/10.1109/JSTARS.2019.2938554.
Zhang S.R., Lu X.X., Higgitt D.L., Chen C.T.A., Han, J.T., Sun, H.G., 2008. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Global and Planetary Change, 60(3-4), 365-380. https://doi.org/10.1016/j.gloplacha.2007.04.003. |