Diversified calcimicrobes in dendrolites of the Zhangxia Formation, Miaolingian Series (Middle Cambrian) of the North China craton
Ming-Xiang Mei1,2, Muhammad Riaz3,4,5*, Zhen-Wu Zhang1, Qing-Fen Meng1, Yuan Hu1
1School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; 2State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; 3State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China; 4College of Energy Resources, Chengdu University of Technology, Chengdu 610059, China; 5Centre for Geographical Information System, University of the Punjab, Lahore 54590, Pakistan
Abstract As a type of non-laminated microbial carbonates, dendrolites are dominated by isolated dendritic clusters of calcimicrobes and are distinct from stromatolites and thrombolites. The dendrolites in the upper part of the Miaolingian Zhangxia Formation at Anjiazhuang section in Feicheng city of Shandong Province, China, provide an excellent example for further understanding of both growth pattern and forming mechanism of dendrolites. These dendrolites are featured by sedimentary fabrics and composition of calcified microbes as follows. (1) The strata of massive limestones, composed of dendrolites with thickness of more than one hundred meters, intergrade with thick-bedded to massive leiolites, formimg the upper part of a third-order depositional sequence that constitutes a forced regressive systems tract. (2) A centimeter-sized bush-like fabric (shrub) typically produced by calcified microbes is similar to the mesoclot in thrombolites but distinctive from clotted fabrics of thrombolites. This bush-like fabric is actually constituted by diversified calcified microbes like the modern shrub as a result of gliding mobility of filamentous cyanobacteria. Such forms traditionally include: the Epiphyton group (which actually has uncertain biological affinity), the Hedstroemia group which closely resembles modern rivulariacean cyanobacteria, and the possible calcified cyanobacteria of the Lithocodium-Bacinella group. (3) Significantly, dense micrite of leiolite is associated with sponge fossils and burrows, and is covered by microstromatolite. The Lithocodium-Bacinella group is a controversial group of interpreted calcified cyanobacteria in the Cambrian that has also been widely observed and described in the Mesozoic. Therefore, dendrolites with symbiosis of leiolites in the studied section provide an extraordinary example for further understanding of growing style of bush-like fabrics (shrubs) of the dendrolites dominated by cyanobacterial mats. Furthermore, the present research provides some useful thinking approaches for better understanding of the history of the Early Paleozoic skeletal reefs and the microbe-metazoan transitions of the Cambrian.
. Diversified calcimicrobes in dendrolites of the Zhangxia Formation, Miaolingian Series (Middle Cambrian) of the North China craton[J]. Journal of Palaeogeography, 2021, 10(2): 157-181.
. Diversified calcimicrobes in dendrolites of the Zhangxia Formation, Miaolingian Series (Middle Cambrian) of the North China craton[J]. Journal of Palaeogeography, 2021, 10(2): 157-181.
[1] Adachi N.,T. Nakai,Y. Ezaki, and J.B. Liu.2014. Late Early Cambrian archaeocyath reefs in Hubei Province, South China: modes of construction during their period of demise.Facies 60(2): 703-717. [2] Adachi N.,A. Kotani,Y. Ezaki, and J.B. Liu.2015. Cambrian Series 3 lithistid sponge-microbial reefs in Shandong Province, North China: Reef development after the disappearance of archaeocyaths.Lethaia 48(3): 405-416. [3] Aitken J.D.1967. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta.Journal of Sedimentary Petrology 37(4): 1163-1178. [4] Bosak T.,J.W.M. Bush,M.R. Flynn,B. Liang,S. Ono,A.P. Petroff, and M.S. Sim.2010. Formation and stability of oxygen-rich bubbles that shape photosynthetic mats.Geobiology 8(1): 45-55. [5] Bosak T.,A.H. Knoll, and A.P. Petroff.2013. The meaning of stromatolites.Annual Review of Earth and Planetary Sciences 41: 21-44. [6] Bosence D.,K. Gibbons,D.P. Le Heron,W.A. Morgan,T. Pritchard, and B.A. Vining.2015. Microbial carbonates in space and time: Introduction.Geological Society, London, Special Publications 418: 1-15. [7] Bostick B.C.2019. Massive ore deposits from microscopic organisms.Geology 47(2): 191-192. [8] Bradley J.A.,L.K. Daille,C.B. Trivedi,C.L. Bojanowski,B.W. Stamps,B.S. Stevenson,H.S. Nunn,H.A. Johnson,S.J. Loyd,W.M. Berelson,F.A. Corsetti, and J.R. Spear.2017. Carbonate-rich dendrolitic cones: Insights into a modern analog for incipient microbialite formation, Little Hot Creek, Long Valley Caldera, California. npj Biofilms and Microbiomes 3 (1): 32. https://doi.org/10.1038/s41522-017-0041-2 [9] Braga J.C.,J.M. Martin, and R. Riding.1995. Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain.Palaios 10(4): 347-361. [10] Burne R.V.,L.S. Moore.1987. Microbialites: Organosedimentary deposits of benthic microbial communities.Palaios 2(3): 241-254. [11] Burne R.V.,L.S. Moore,A.G. Christy,U. Troitzsch,P.L. King,A.M. Carnerup, and P.J. Hamilton.2014. Stevensite in the modern thrombolites of Lake Clifton, Western Australia: A missing link in microbialite mineralization?Geology 42(7): 575-578. [12] Chafetz H.S.,S.A. Guidry.1999. Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: Bacterial vs. abiotic precipitation.Sedimentary Geology 126: 57-74. [13] Chen J.Y.,Z.Z. Han,H.H. Fan, and N.J. Chi.2014a. Characteristics and sedimentary environment of thrombolite in the Zhangxia Formation (Third Series of Cambrian), Shandong Province.Acta Sedimentologica Sinica 32(3): 494-502 (in Chinese with English abstract). [14] Chen J.Y.,Z.Z. Han,H.H. Fan,J.T. Chen, and N.J. Chi.2014b. Characteristics and formation mechanism of Cambrian thrombolite in western Shandong Province.Acta Geologica Sinica 88(6): 16-28 (in Chinese with English abstract). [15] Chen Z.Q.,C.Y. Tu,Y. Pei,J. Ogg,Y.H. Fang,S.Q. Wu,X.Q. Feng,Y.G. Huang,Z. Guo, and H. Yang.2019. Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic.Earth-Science Reviews 189: 21-50. [16] Cherchi A.,R. Schroeder.2006. Remarks on the systematic position ofLithocodium Elliott, a problematic microorganism from the Mesozoic carbonate platforms of the Tethyan realm. Facies 52(3): 435-440. [17] Choquette P.W.,E.E. Hiatt.2008. Shallow-burial dolomite cement: A major component of many ancient sucrosic dolomites.Sedimentology 55(2): 423-460. [18] Cordie D.R.,S.Q. Dornbos,P.J. Marenco,T. Oji, and S. Gonchigdorj.2019. Depauperate skeletonized reef-dwelling fauna of the Early Cambrian: Insights from archaeocyathan reef ecosystems of western Mongolia.Palaeogeography, Palaeoclimatology, Palaeoecology 514: 206-221. [19] Coulson K.P.,L.R. Brand.2016. Lithistid sponge-microbial reef-building communities construct laminated, Upper Cambrian (Furongian) ‘stromatolites’.Palaios 31(7): 358-370. [20] De los Ríos, A., C. Ascaso, J. Wierzchos, W.F. Vincent,A. Quesada.2015. Microstructure and cyanobacterial composition of microbial mats from the High Arctic.Biodiversity and Conservation 24(4): 841-863. [21] Decho A.W.2010. Overview of biopolymer-induced mineralization: What goes on in biofilms?Ecological Engineering 36(2): 137-144. [22] Decho A.W.2011. Extracellular polymeric substances (EPS). In Encyclopedia of Geobiology, eds. J. Reitner, and V. Thiel, pp. 359-362. Berlin, Heidelberg: Springer-Verlag. [23] Decho A.W., andT. Gutierrez. 2017. Microbial extracellular polymeric substances (EPSs) in ocean systems. Frontiers in Microbiology 8: 922. https://doi.org/10.3389/fmicb.2017.00922 [24] Dupraz C.,R.P. Reid, and P.T. Visscher, 2011. Microbialites, modern. In Encyclopedia of Geobiology, eds. J. Reitner, and V. Thiel, pp. 617-635. Berlin, Heidelberg: Springer-Verlag. [25] Dupraz C.,R.P. Reid,O. Braissant,A.W. Decho,R.S. Norman, and P.T. Visscher.2009. Processes of carbonate precipitation in modern microbial mats.Earth-Science Reviews 96(3): 141-162. [26] Elliott G.F.1956. Further records of fossil calcareous algae from the Middle East.Micropaleontology 2: 327-334. [27] Ezaki Y.,J.B. Liu,N. Adachi, and Z. Yan.2017. Microbialite development during the protracted inhibition of skeletal-dominated reefs in the Zhangxia Formation (Cambrian Series 3) in Shandong Province, North China.Palaios 32(9): 559-571. [28] Feng Z.Z.,Y.H. Wang, J.S. Zhang, W.Q. Zuo, X.L. Zhang, G.L. Hong, J.X. Chen, S.H. Wu, Y.T. Chen, Y.L. Chi, and C.Y. Yang. 1990. Lithofacies Palaeogeography of the Early Paleozoic of North China Platform. Beijing: Geological Publishing House, pp. 28-48 (in Chinese). [29] Feng Z.Z.,Y.M. Peng, Z.K. Jin, P.L. Jiang, and Z.D. Bao. 2004. Lithofacies Palaeogeography of the Cambrian and Ordovician in China. Beijing: Petroleum Industry Press, pp. 112-121 (in Chinese). [30] Flemming H.C.,J. Wingender.2010. The biofilm matrix.Nature Reviews Microbiology 8(9): 623-633. [31] Flemming H.C.,J. Wingender,U. Szewzyk,P. Steinberg,S.A. Rice, and S. Kjelleberg.2016. Biofilms: An emergent form of bacterial life.Nature Reviews Microbiology 14(9): 563-575. [32] Gallagher K.L.,T.J. Kading,O. Braissant,C. Dupraz, and P.T. Visscher.2012. Inside the alkalinity engine: The role of electron donors in the organomineralization potential of sulfate-reducing bacteria.Geobiology 10(6): 518-530. [33] Gerdes G.,2010. What are microbial mats? In: Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems, eds. J. Seckbach, and A. Oren, pp. 5-25. Berlin, Heidelberg: Springer-Verlag. [34] Gómez J.J.,S. Fernández-López.1994. Condensation processes in shallow platforms.Sedimentary Geology 92(3-4): 147-159. [35] Gong Y.Y.2016. Sedimentary fabrics for the Cambrian thrombolite bioherm: An example from the Zhangxia Formation in western Shandong Province.Geoscience 30(2): 436-444 (in Chinese with English abstract). [36] Gregg J.M.,D.L. Bish,S.E. Kaczmarek, and H.G. Machel.2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review.Sedimentology 62(6): 1749-1769. [37] Han Z.Z.,J.T. Chen,X.L. Zhang, and X.F. Yu.2009. Characteristics ofEpiphyton and Epiphyton microbialites in the Zhangxia Formation (Third Series of Cambrian), Shandong Province. Acta Geologica Sinica 83(8): 1097-1103 (in Chinese with English abstract). [38] Helm, R.F.,M. Potts. 2012. Extracellular matrix (ECM). In: Ecology of Cyanobacteria II: Their Diversity in Space and Time, ed. B.A. Whitton, pp. 461-480. Netherlands: Springer. [39] Howell J.,J. Woo, and S.K. Chough.2011. Dendroid morphology and growth patterns: 3-D computed tomographic reconstruction.Palaeogeography, Palaeoclimatology, Palaeoecology 299(1-2): 335-347. [40] Hunt D.,M.E. Tucker.1992. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level fall.Sedimentary Geology 81(1): 1-9. [41] Jiang M.S.,Q.A. Sha.1996. Algal limestones and their sedimentary fabrics in the Zhangxia Formation (Middle Cambrian), North Jiangsu-West Shandong region.Sedimentary Facies and Palaeogeography 16(5): 12-17 (in Chinese with English abstract). [42] Kah L.C.,R. Riding.2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria.Geology 35(9): 799-802. [43] Kaźmierczak J.,T. Fenchel,M. Kühl,S. Kempe,B. Kremer,B. Łącka, and K. Małkowski.2015. CaCO3 precipitation in multilayered cyanobacterial mats: Clues to explain the alternation of micrite and sparite layers in calcareous stromatolites.Life 5(1): 744-769. [44] Kennard J.M.,N.P. James.1986. Thrombolites and stromatolites: Two distinct types of microbial structures.Palaios 1(5): 492-503. [45] Kiessling W.2009. Geologic and biologic controls on the evolution of reefs.Annual Review of Ecology, Evolution, and Systematics 40(1): 173-192. [46] Kruse P.D.,J.R. Reitner.2014. Northern Australian microbial-metazoan reefs after the mid-Cambrian mass extinction.Memoirs of the Association of Australasian Palaeontologists 45(45): 31-53. [47] Kwon S.W.,J. Park,S.J. Choh,D.C. Lee, and D.J. Lee.2012. Tetradiid-siliceous sponge patch reefs from the Xiazhen Formation (late Katian), southeast China: A new Late Ordovician reef association. Sedimentary Geology 267-268: 15-24. [48] Larmagnat S.,F. Neuweiler.2015. Taphonomic filtering in Ordovician bryozoan carbonate mounds, Trenton Group, Montmorency Falls, Quebec, Canada.Palaios 30(3): 169-180. [49] Latif K.,E.Z. Xiao,M. Riaz,L. Wang,M.Y. Khan,A.A. Hussein, and M.U. Khan.2018. Sequence stratigraphy, sea-level changes and depositional systems in the Cambrian of the North China Platform: A case study of Kouquan section, Shanxi Province, China.Journal of Himalayan Earth Sciences 51(1): 1-16. [50] Laval B.,S.L. Cady,J.C. Pollack,C.P. McKay,J.S. Bird,J.P. Grotzinger,D.C. Ford, and H.R. Bohm.2000. Modern freshwater microbialite analogues for ancient dendritic reef structures.Nature 407(6804): 626-629. [51] Lee J.H.,R. Riding.2018. Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs.Earth-Science Reviews 181: 98-121. [52] Lee J.H.,J.T. Chen,S.J. Choh,D.J. Lee,Z.Z. Han, and S.K. Chough.2014a. Furongian (Late Cambrian) sponge-microbial maze-like reefs in the North China Platform.Palaios 29(1): 27-37. [53] Lee J.H.,H.S. Lee,J. Chen,J. Woo, and S.K. Chough.2014b. Calcified microbial reefs in Cambrian Series 2, North China Platform: Implications for the evolution of Cambrian calcified microbes.Palaeogeography, Palaeoclimatology, Palaeoecology 403: 30-42. [54] Lee J.H.,J.T. Chen, and S.K. Chough.2015. The Middle-Late Cambrian reef transition and related geological events: A review and new view.Earth-Science Reviews 145: 66-84. [55] Lee J.H.,J. Woo, and D.J. Lee.2016. The earliest reef-building anthaspidellid spongeRankenella zhangxianensis n. sp. from the Zhangxia Formation (Cambrian Series 3), Shandong Province, China. Journal of Paleontology 90(1): 1-9. [56] Lee J.H.,B.F. Dattilo,S. Mrozek,J.F. Miller, and R. Riding.2019. Lithistid sponge-microbial reefs, Nevada, USA: Filling the Late Cambrian ‘reef gap’.Palaeogeography, Palaeoclimatology, Palaeoecology 520: 251-262. [57] Li Q.J.,Y. Li,J.P. Wang, and W. Kiessling.2015. Early Ordovician lithistid sponge-Calathium reefs on the Yangtze Platform and their paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 425: 84-96. [58] Lin C.Y.,A.V. Turchyn,Z. Steiner,P. Bots,G.I. Lampronti, and N.J. Tosca.2018. The role of microbial sulfate reduction in calcium carbonate polymorph selection.Geochimica et Cosmochimica Acta 237: 184-204. [59] Liu L.J.,Y.S. Wu,H.X. Jiang, and R. Riding.2016. Calcified rivulariaceans from the Ordovician of the Tarim Basin, Northwest China, Phanerozoic lagoonal examples, and possible controlling factors.Palaeogeography, Palaeoclimatology, Palaeoecology 448: 371-381. [60] Lu Y.H.,W.T. Zhang,Z.L. Zhu,L.W. Xiang,H.L. Lin,Z.Y. Zhou,J.L. Yuan,S.C. Peng,Y. Qian,S.G. Zhang,S.J. Li,H.J. Guo, and H.L. Luo.1994. Suggestions for the establishment of the Cambrian Stages in China.Journal of Stratigraphy 18(4): 318-328 (in Chinese with English abstract). [61] Luchinina V.A.2009. Remalcis and Epiphyton as different stages in the life cycle of calcareous algae. Paleontological Journal 43(4): 463-468. [62] Luchinina V.A.,A.A. Terleev.2008. The morphology of the genusEpiphyton Bornemann. Geologia Croatica 61(2-3): 105-111. [63] Luchinina V.A.,A.A. Terleev.2014. Features of calcareous algae mineralization at the transition to the Phanerozoic biosphere.Paleontological Journal 48(14): 1450-1456. [64] Luo C.,J. Reitner.2014. First report of fossil “keratose” demosponges in Phanerozoic carbonates: Preservation and 3-D reconstruction.Naturwissenschaften 101(6): 467-477. [65] Luo C.,J. Reitner.2016. ‘Stromatolites’ built by sponges and microbes — A new type of Phanerozoic bioconstruction.Lethaia 49(4): 555-570. [66] Ma Y.S.,M.X. Mei,R.X. Zhou, and W. Yang.2017. Forming patterns for the oolitic bank within the sequence-stratigraphic framework: An example from the Cambrian Series 3 at the Xiaweidian section in the western suburb of Beijing.Acta Petrologica Sinica 33(4): 1021-1036 (in Chinese with English abstract). [67] Mata S.A.,C.L. Harwood,F.A. Corsetti,N.J. Stork,K. Eilers,W.M. Berelson, and J.R. Spear.2012. Influence of gas production and filament orientation on stromatolite microfabric.Palaios 27(4): 206-219. [68] Mazzullo S.J.2000. Organogenic dolomitization in peritidal to deep-sea sediments.Journal of Sedimentary Research 70(1): 10-23. [69] McKenzie N.R.,N.C. Hughes,B.C. Gill, and P.M. Myrow.2014. Plate tectonic influences on Neoproterozoic-Early Paleozoic climate and animal evolution.Geology 42(2): 127-130. [70] Mei M.X.1996. Carbonate third-order cyclic sequence of the drowning-unconformity type: Discussion on the condensation of carbonate platform.Sedimentary Facies and Palaeogeography 16(6): 24-33 (in Chinese with English abstract). [71] Mei M.X.2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy.Journal of Palaeography (Chinese Edition) 12(5): 549-564 (in Chinese with English abstract). [72] Mei M.X.2011a. Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: A case study of the Xiaweidian section in the western suburb of Beijing.Geology in China 38(2): 317-337 (in Chinese with English abstract). [73] Mei M.X.2011b. Microbial-mat sedimentology: A young branch from sedimentology.Advances in Earth Science 26(6): 586-597 (in Chinese with English abstract). [74] Mei M.X.2012. Brief introduction of “dolostone problem” in sedimentology according to three scientific ideas.Journal of Palaeogeography (Chinese Edition) 14(1): 1-12 (in Chinese with English abstract). [75] Mei M.X.2014. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology.Journal of Palaeography (Chinese Edition) 16(3): 285-304 (in Chinese with English abstract). [76] Mei M.X.,X.D. Yang.2000. Forced regression and forced regressive wedge system tract: Revision on traditional Exxon model of sequence stratigraphy.Geological Science and Technology Information 19(2): 17-21 (in Chinese with English abstract). [77] Meng X.H.,M. Ge, and M.E. Tucker.1997. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform.Sedimentary Geology 114: 189-222. [78] Mei M.X.,R. Zhang,Y.Y. Li, and L. Jie.2017. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform.Acta Petrologica Sinica 33(4): 1073-1093 (in Chinese with English abstract). [79] Mei M.X.,K. Latif, C.J. Mei, J.H. Gao, and Q.F. Meng. 2020. Thrombolitic clots dominated by filamentous cyanobacteria and crusts of radio-fibrous calcite in the Furongian Changshan Formation, North China. Sedimentary Geology 395: 105540. https://doi.org/10.1016/j.sedgeo.2019.105540. [80] Miller C.R.,N.P. James.2012. Autogenic microbial genesis of middle Miocene palustrine ooids, Nullarbor Plain, Australia.Journal of Sedimentary Research 82(9): 633-647. [81] Mlewski E.C.,C. Pisapia, F. Gomez, L. Lecourt, E. Soto Rueda, K. Benzerara, B. Ménez, S. Borensztajn, F. Jamme, M. Réfrégiers, and E. Gérard. 2018. Characterization of pustular mats and related Rivularia-rich laminations in oncoids from the Laguna Negra Lake (Argentina). Frontiers in Microbiology 9: 996. https://doi.org/10.3389/fmicb.2018.00996. [82] Mohr K.I.,N. Brinkmann, and T. Friedl. 2011. Cyanobacteria. In: Encyclopedia of Geobiology, eds. J. Reitner, and V. Thiel, pp. 306-311. Berlin, Heidelberg: Springer-Verlag. [83] Noffke N.,S.M. Awramik.2013. Stromatolites and MISS: Differences between relatives.GSA Today 23(9): 4-9. [84] Pacton M.,D. Ariztegui,D. Wacey,M.R. Kilburn,C. Rollion-Bard R. Farah, and C. Vasconcelos.2012. Going nano: A new step toward understanding the processes governing freshwater ooid formation.Geology 40(6): 547-550. [85] Park J.,J.H. Lee,J. Hong,S.J. Choh,D.C. Lee, and D.J. Lee.2015. An Upper Ordovician sponge-bearing micritic limestone and implication for Early Palaeozoic carbonate successions.Sedimentary Geology 319: 124-133. [86] Peng S.C.2009. Review on the studies of Cambrian trilobite faunas from Jiangnan slope belt, South China, with notes on Cambrian correlation between South and North China.Acta Palaeontologica Sinica 48: 437-452 (in Chinese with English abstract). [87] Peng S.C.,Y.L. Zhao.2018. The proposed global standard stratotype-section and point (GSSP) for the conterminous base of Miaolingian Series and Wuliuan Stage at Balang, Jianhe, Guizhou, China was ratified by IUGS.Journal of Stratigraphy 42(3): 325-327 (in Chinese with English abstract). [88] Pepe-Ranney C.,W.M. Berelson,F.A. Corsetti,M. Treants, and J.R. Spear.2012. Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park.Environmental Microbiology 14(5): 1182-1197. [89] Perri E.,M.E. Tucker,M. Słowakiewicz F. Whitaker,L. Bowen, and I.D. Perrotta.2018. Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses.Sedimentology 65(4): 1213-1245. [90] Peters S.E.,R.R. Gaines.2012. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion.Nature 484(7394): 363-366. [91] Potts M.1997. Etymology of the genus name Nostoc (cyanobacteria). International Journal of Systematic and Evolutionary Microbiology 47 (2): 584. https://doi.org/10.1099/00207713-47-2-584. [92] Pratt B.R.,M.M. Raviolo, and O.L. Bordonaro.2012. Carbonate platform dominated by peloidal sands: Lower Ordovician La Silla Formation of the eastern Precordillera, San Juan, Argentina.Sedimentology 59(3): 843-866. [93] Qi Y.A.,Y.P. Wang,M.Y. Dai, and D. Li.2014. Thrombolites and controlling factors from the Zhangxia Formation of Cambrian Series 3 in Dengfeng, western Henan Province.Acta Micropalaeontologica Sinica 31(3): 243-255 (in Chinese with English abstract). [94] Radoičić R.1959. Nekoliko problematičnih mikrofosila iz dinarske krede (Some problematic microfossils from the Dinarian Cretaceous).Bulletin du Service Géologique et Géophysique RP Serbie 17: 87-92. [95] Rameil N.,A. Immenhauser,G. Warrlich,H. Hillgärtner, and H.J. Droste.2010. Morphological patterns of AptianLithocodium-Bacinella geobodies: Relation to environment and scale. Sedimentology 57(3): 883-911. [96] Reitner J.2011a. Biofilm. In: Encyclopedia of Geobiology, eds. J. Reitner, and V. Thiel, pp. 134-135. Berlin, Heidelberg: Springer-Verlag. [97] Reitner J.2011b. Microbial mats. In: Encyclopedia of Geobiology, eds. J. Reitner, and V. Thiel, pp. 606-608. Berlin, Heidelberg: Springer-Verlag. [98] Riaz M.,E.Z. Xiao,K. Latif, and T. Zafar.2019a. Sequence-stratigraphic position of oolitic bank of Cambrian in North China Platform: Example from the Kelan Section of Shanxi Province.Arabian Journal for Science and Engineering 44(1): 391-407. [99] Riaz M.,K. Latif,T. Zafar,E.Z. Xiao,S. Ghazi,L. Wang, and A.A. Hussein.2019b. Assessment of Cambrian sequence stratigraphic style of the North China Platform exposed in Wuhai division, Inner Mongolia.Himalayan Geology 40(1): 92-102. [100] Rickard D.,M. Mussmann, and J.A. Steadman.2017. Sedimentary sulfides.Elements 13(2): 117-122. [101] Riding R.1991a. Classification of microbial carbonates. In: Calcareous Algae and Stromatolites, ed. R. Riding, pp. 21-51. Berlin: Springer-Verlag. [102] Riding R.1991b. Calcified cyanobacteria. In: Calcareous Algae and Stromatolites, ed. R. Riding, pp. 55-87. Berlin: Springer-Verlag. [103] Riding R.1991c. Cambrian calcareous cyanobacteria and algae. In: Calcareous Algae and Stromatolites, ed. R. Riding, pp. 305-334. Berlin: Springer-Verlag. [104] Riding R.2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms.Sedimentology 47(s1): 179-214. [105] Riding R.2002a. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories.Earth-Science Reviews 58(1-2): 163-231. [106] Riding R.2002b. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers.Geology 30(1): 31-34. [107] Riding R.2011a. Microbialites, stromatolites, and thrombolites. In: Encyclopedia of Geobiology, eds. J. Reitner, and V. Thiel, pp. 635-654. Berlin, Heidelberg: Springer-Verlag. [108] Riding R.2011b. Calcified cyanobacteria. In: Encyclopedia of Geobiology, eds. J. Reitner, and V. Thiel, pp. 211-223. Berlin, Heidelberg: Springer-Verlag. [109] Riding R.,L.Y. Liang,J.H. Lee, and A. Virgone.2019. Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr.Palaeogeography, Palaeoclimatology, Palaeoecology 514: 135-143. [110] Roberts J.A.,P.A. Kenward,D.A. Fowle,R.H. Goldstein,L.A. González, and D.S. Moore.2013. Surface chemistry allows for abiotic precipitation of dolomite at low temperature.Proceedings of the National Academy of Sciences 110(36): 14540-14545. [111] Rowland S.M.,R.S. Shapiro, 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician. In: Phanerozoic Reef Patterns, eds. W. Kiessling, E. Flügel, and J. Golonka, pp. 95-128. Tulsa: Society of Economic Paleontologists and Mineralogists, Special Publications 72. [112] Săsăran E.,I.I. Bucur,G. Pleş, and R. Riding.2014. Late JurassicEpiphyton-like cyanobacteria: Indicators of long-term episodic variation in marine bioinduced microbial calcification? Palaeogeography, Palaeoclimatology, Palaeoecology 401: 122-131. [113] Schlager W.1989. Drowning unconformities on carbonate platforms. In: Controls on Carbonate Platform and Basin Development, eds. P.D. Crevello, J.L. Wilson, J.F. Sarg, and J.F. Read, pp. 15-25. Tulsa: Society of Economic Paleontologists and Mineralogists, Special Publications 44. [114] Schlager W.1998. Exposure, drowning and sequence boundaries on carbonate platforms. In: Reefs and Carbonate Platforms in the Pacific and Indian Oceans, eds. G. Camoin, and P. Davies, pp. 3-21. International Association of Sedimentologists, Special Publications 25. [115] Schlager W.1999. Type 3 sequence boundaries. In: Carbonate Sequence Stratigraphy: Application to Reservoirs, Outcrops and Models, eds. P. Harris, A. Saller, and A. Simo, pp. 35-46. Tulsa: Society of Economic Paleontologists and Mineralogists, Special Publications 63. [116] Schlager W.,G. Warrlich.2009. Record of sea-level fall in tropical carbonates.Basin Research 21(2): 209-224. [117] Schlagintweit F.,T. Bover-Arnal.2013. Remarks onBačinella Radoičić, 1959 (type species B. irregularis) and its representatives. Facies 59(1): 59-73. [118] Schlagintweit F.,T. Bover-Arnal, and R. Salas.2010. New insights intoLithocodium aggregatum Elliott 1956 and Bacinella irregularis Radoičić 1959 (Late Jurassic-Lower Cretaceous): Two ulvophycean green algae(?Order Ulotrichales) with a heteromorphic life cycle (epilithic/euendolithic). Facies 56(4): 509-547. [119] Schmid D.U.,R.R. Leinfelder.1996. The JurassicLithocodium aggregatum-Troglotella incrustans foraminiferal consortium. Palaeontology 39(1): 21-52. [120] Sha Q.A.,M.S. Jiang.1998. The deposits of oolitic shoal facies and algal flat facies: Dissect of the Zhangxia Formation of the Middle Cambrian, western Shandong Province.Acta Sedimentologica Sinica 16(4): 62-70 (in Chinese with English abstract). [121] Shen Y.F.,F. Neuweiler.2018. Questioning the microbial origin of automicrite in Ordovician calathid-demosponge carbonate mounds.Sedimentology 65(1): 303-333. [122] Shi X.Y.,J.Q. Chen, and S.L. Mei.1997. Cambrian sequence chronostratigraphic framework of the North China Platform.Earth Science Frontiers 4(3-4): 165-177 (in Chinese with English abstract). [123] Soule T.,F. Garcia-Pichel, and V. Stout.2009. Gene expression patterns associated with the biosynthesis of the sunscreen scytonemin inNostoc punctiforme ATCC 29133 in response to UVA radiation. Journal of Bacteriology 191(14): 4639-4646. [124] Stal L.J.2012. Cyanobacterial mats and stromatolites. In: Ecology of Cyanobacteria II: Their Diversity in Space and Time, ed. B.A. Whitton, pp. 65-125. Netherlands: Springer. [125] Suosaari E.P.,S.M. Awramik,R.P. Reid,J.F. Stolz, and K. Grey.2018. Living dendrolitic microbial mats in Hamelin Pool, Shark Bay, Western Australia.Geosciences 8(6): 212-229. [126] Tourney J.,B.T. Ngwenya.2014. The role of bacterial extracellular polymeric substances in geomicrobiology.Chemical Geology 386: 115-132. [127] Védrine S.,A. Strasser, and W. Hug.2007. Oncoid growth and distribution controlled by sea-level fluctuations and climate (Late Oxfordian, Swiss Jura Mountains).Facies 53(4): 535-552. [128] Wang Y.H.,X.L. Zhang, and C.Y. Yang. 1989. Carbonate Rocks for the Early Paleozoic of the North China Platform. Beijing: Seismological Press, 133 pp. (in Chinese). [129] Whitton, B.A.,P. Mateo. 2012. Rivulariaceae. In: Ecology of Cyanobacteria II: Their Diversity in Space and Time, ed. B.A. Whitton, pp. 561-591. Netherlands: Springer. [130] Wilmeth D.T.,F.A. Corsetti,N. Bisenic,S.Q. Dornbos,T. Oji, and S. Gonchigdorj.2015. Punctuated growth of microbial cones within Early Cambrian oncoids, Bayan Gol Formation, western Mongolia.Palaios 30(12): 836-845. [131] Woo J.,S.K. Chough.2010. Growth patterns of the Cambrian microbialite: Phototropism and speciation ofEpiphyton. Sedimentary Geology 229(1-2): 1-8. [132] Woo J.,S.K. Chough, and Z. Han.2008. Chambers ofEpiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong Province, China. Palaios 23(1): 55-64. [133] Wright D.J.,S.C. Smith,V. Joardar,S. Scherer,J. Jervis,A. Warren,R.F. Helm, and M. Potts.2005. UV irradiation and desiccation modulate the three-dimensional extracellular matrix ofNostoc commune(cyanobacteria). Journal of Biological Chemistry 280(48): 40271-40281. [134] Xiang L.W.,Z.I. Zhu, S.J. Li, and Z.Q. Zhou. 1999. Stratigraphical Lexicon of China: Cambrian. Beijing: Geological Publishing House (in Chinese). [135] Yan Z.,J.B. Liu,Y. Ezaki,N. Adachi, and S.X. Du.2017. Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section, Shandong Province, northern China.Palaeogeography, Palaeoclimatology, Palaeoecology 474: 45-57. [136] Zhang J.M.,Y.K. Zhou, and Z.Z. Wang.1985. Epiphyton boundstone and palaeogeography of the Middle Cambrian Zhangxia Formation in the east of North China Platform. Acta Sedimentologica Sinica 3(1): 63-70 (in Chinese with English abstract).