[1] Abrajevitch A., Font E., Florindo F., Roberts A.P.,2015. Asteroid impact vs. Deccan eruptions: The origin of low magnetic susceptibility beds below the Cretaceous-Paleogene boundary revisited. Earth and Planetary Science Letters, 430, 209-223. https://doi.org/10.1016/j.epsl.2015.08.022.
[2] Abramovich S., Keller G., 2003. Planktonic foraminiferal response to the latest Maastrichtian abrupt warm event: a case study from South Atlantic DSDP Site 525A. Marine Micropaleontology, 48(3-4), 225-249. https://doi.org/10.1016/S0377-8398(03)00021-5.
[3] Aldridge D., Beer C.J., Purdie D.A.,2012. Calcification in the planktonic foraminifera Globigerina bulloides linked to phosphate concentrations in surface waters of the North Atlantic Ocean. Biogeosciences, 9(5), 1725-1739. https://doi.org/10.5194/bg-9-1725-2012.
[4] Alegret L., Kaminski M.A., Molina E., 2004. Paleoenvironmental recovery after the Cretaceous/Paleogene boundary crisis: evidence from the marine Bidart section (SW France). Palaios, 19(6), 574-586. https://doi.org/10.1669/0883-1351(2004)019<0574:PRATPB>2.0.CO;2.
[5] Alegret L., Thomas E., Lohmann K.C., 2012. End-Cretaceous marine mass extinction not caused by productivity collapse. Proceedings of the National Academy of Sciences, 109(3), 728-732. https://doi.org/10.1073/pnas.1110601109.
[6] Alvarez L.W., Alvarez W., Asaro F., Michel H.V., 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208(4448), 1095-1108. https://doi.org/10.1126/science.208.4448.1095.
[7] Apellaniz E., Baceta J.I., Bernaola-Bilbao G., Nunez-Betelu K., Orue-Etxebarria X., Payros A., Pujalte V., Robin E., Rocchia R., 1997. Analysis of uppermost Cretaceous-lowermost Tertiary hemipelagic successions in the Basque Country (western Pyrenees); evidence for a sudden extinction of more than half planktic foraminifera species at the K/T boundary.BSGF-EARTH SCI B, 168(6), 783-793.
[8] Barker S., Elderfield H., 2002. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science, 297(5582), 833-836. https://doi.org/10.1126/science.1072815.
[9] Berger W.H., Bonneau M.C., Parker F.L., 1982. Foraminifera on the deep-sea floor-lysocline and dissolution rate. Oceanologica Acta, 5(2), 249-258.
[10] Bergquist B.A.,2017. Mercury, volcanism, and mass extinctions. Proceedings of the National Academy of Sciences, 114(33), 8675-8677. https://doi.org/10.1073/pnas.1709070114.
[11] Bond D.P., Grasby S.E.,2017 On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005.
[12] Bonté P., Delacotte O., Renard M., Laj C., Boclet D., Jehanno C., Rocchia R., 1984. An iridium rich layer at the Cretaceous/Tertiary boundary in the Bidart section (southern France). Geophysical Research Letters, 11(5), 473-476. https://doi.org/10.1029/GL011i005p00473.
[13] Chenet A.L., Courtillot V., Fluteau F., Gérard M., Quidelleur X., Khadri S.F.R., Subbarao K.V., Thordarson T., 2009. Determination of rapid Deccan eruptions across the Cretaceous‐Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500‐m‐thick composite section. Journal of Geophysical Research Solid Earth, 114(B6). https://doi.org/10.1029/2008JB005644.
[14] Clauser S.,1994. Etudes stratigraphiques du Campanien et du Maastrichtien de l’Europe Occidentale: Cote Basque, Charentes (France), Limbourg (Pays-Bas).Documents du Bureau de Recherches Géologiques et Minières, 235, pp. 243.
[15] Clyde W.C., Ramezani J., Johnson K.R., Bowring S.A., Jones M.M.,2016. Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth and Planetary Science Letters, 452, 272-280. https://doi.org/10.1016/j.epsl.2016.07.041.
[16] Coccioni, R., Luciani, V., 2006. Guembelitria irregularis bloom at the KT boundary: morphological abnormalities induced by impact-related extreme environmental stress?. In Biological processes associated with impact events (pp. 179-196). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-25736-5_8.
[17] Courtillot V.E., Renne P.R., 2003. On the ages of flood basalt events. Comptes Rendus Geoscience, 335(1), 113-140. https://doi.org/10.1016/S1631-0713(03)00006-3.
[18] Courtillot V., Fluteau F., 2014.A review of the embedded time scales of flood basalt volcanism with special emphasis on dramatically short magmatic pulses.Geological Society of America Special Papers, 505, SPE505-15.
[19] Dameron S.N., Leckie R.M., Clark K.,MacLeod, K.G., Thomas, D.J. and Lees, J.A., 2017. Extinction, dissolution, and possible ocean acidification prior to the Cretaceous/Paleogene (K/Pg) boundary in the tropical Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, pp.433-454. https://doi.org/10.1016/j.palaeo.2017.06.032.
[20] De Moel,H., Ganssen, G.M., Peeters, F.J.C., Jung, S.J.A., Kroon, D., Brummer, G.J.A., Zeebe, R.E., 2009. Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification?. Biogeosciences, 6(9), 1917-1925. https://doi.org/10.5194/bg-6-1917-2009.
[21] Ehrenberg C.G.,1840. Das grössere infusorienwerk (Diagnosen von 274 neuen infusorien). Ber Verh K Preuss Akad Wiss Berl, 1840, pp.197-219.
[22] Erba E., Bottini C., Weissert H.J., Keller C.E., 2010. Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event 1a. Science, 329(5990), 428-432. https://doi.org/10.1126/science.1188886.
[23] Falzoni F., Petrizzo M.R. and Valagussa M., 2018. A morphometric methodology to assess planktonic foraminiferal response to environmental perturbations: The case study of Oceanic Anoxic Event 2, Late Cretaceous. Bollettino della Società Paleontologica Italiana, 57(2), pp.103-124. https://doi.org/10.4435/BSPI.2018.07.
[24] Font E., Nédélec A., Ellwood B.B., Mirão J., Silva P.F., 2011. A new sedimentary benchmark for the Deccan Traps volcanism?. Geophysical Research Letters, 38(24). https://doi.org/10.1029/2011GL049824.
[25] Font E., Fabre S., Nédélec A., Adatte T., Keller G., Veiga-Pires C., Ponte J., Mirão J., Khozyem H., Spangenberg J., Kerr A.C., 2014. Atmospheric halogen and acid rains during the main phase of Deccan eruptions: Magnetic and mineral evidence.Volcanism, Impacts, and Mass Extinctions: causes and effects, 505, 353-368.
[26] Font E., Adatte T., Sial A.N., de Lacerda L.D., Keller G., Punekar J., 2016. Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction. Geology, 44(2), 171-174. https://doi.org/10.1130/G37451.1.
[27] Font E., Adatte T., Andrade M., Keller G., Bitchong A.M., Carvallo C., Ferreira J., Diogo Z., Mirão J.,2018. Deccan volcanism induced high-stress environment during the Cretaceous-Paleogene transition at Zumaia, Spain: Evidence from magnetic, mineralogical and biostratigraphic records. Earth and Planetary Science Letters, 484, 53-66. https://doi.org/10.1016/j.epsl.2017.11.055.
[28] Font E., Chen J., Regelous M., Regelous A., Adatte T., 2022. Volcanic origin of the mercury anomalies at the Cretaceous-Paleogene transition of Bidart, France. Geology, 50(2), 142-146. https://doi.org/10.1130/G49458.1.
[29] Fox L., Stukins S., Hill T., Miller C.G., 2020. Quantifying the effect of anthropogenic climate change on calcifying plankton. Scientific Reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-58501-w.
[30] Galbrun B., Gardin S.,2004. New chronostratigraphy of the Cretaceous-Paleogene boundary interval at Bidart (France). Earth and Planetary Science Letters, 224(1-2), 19-32. https://doi.org/10.1016/j.epsl.2004.04.043.
[31] Garilli V., Rodolfo-Metalpa R., Scuderi D., Brusca L., Parrinello D., Rastrick S.P., Foggo A., Twitchett R.J., Hall-Spencer J.M., Milazzo M., 2015. Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans. Nature Climate Change, 5(7), 678-682. https://doi.org/10.1038/nclimate2616.
[32] Gilabert V., Arz J.A., Arenillas I., Robinson S.A., Ferrer D.,2021. Influence of the Latest Maastrichtian Warming Event on planktic foraminiferal assemblages and ocean carbonate saturation at Caravaca, Spain. Cretaceous Research, 125, 104844. https://doi.org/10.1016/j.cretres.2021.104844.
[33] Gertsch B., Keller G., Adatte T., Garg R., Prasad V., Berner Z., Fleitmann D.,2011. Environmental effects of Deccan volcanism across the Cretaceous-Tertiary transition in Meghalaya, India. Earth and Planetary Science Letters, 310(3-4), 272-285. https://doi.org/10.1016/j.epsl.2011.08.015.
[34] Grasby S.E.,Them II, T.R., Chen, Z., Yin, R., Ardakani, O.H., 2019. Mercury as a proxy for volcanic emissions in the geologic record. Earth-Science Reviews, 196, 102880. https://doi.org/10.1016/j.earscirev.2019.102880.
[35] Green T., Renne P.R., Keller C.B., 2022. Continental flood basalts drive Phanerozoic extinctions. Proceedings of the National Academy of Sciences, 119(38), p.e2120441119. https://doi.org/10.1073/pnas.2120441119.
[36] Gutjahr M., Ridgwell A., Sexton P.F., Anagnostou E., Pearson P.N., Pälike H., Norris R.D., Thomas E., Foster G.L., 2017. Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum. Nature, 548(7669), 573-577. https://doi.org/10.1038/nature23646.
[37] Hammer Ø., Harper D.A., Ryan P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.
[38] Hart M.B., Leighton A.D., Hampton M., Smart C.W.,2019. Global bioevents and the Cretaceous/Paleogene boundary in Texas and Alabama: Stratigraphy, correlation and ocean acidification. Global and Planetary Change, 175, 129-143. https://doi.org/10.1016/j.gloplacha.2019.01.020.
[39] Henehan M.J., Hull P.M., Penman D.E., Rae J.W., Schmidt D.N.,2016. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1694), 20150510. https://doi.org/10.1098/rstb.2015.0510.
[40] Henehan M.J., Evans D., Shankle M., Burke J.E., Foster G.L., Anagnostou E., Chalk T.B., Stewart J.A., Alt C.H., Durrant J., Hull P.M.,2017. Size-dependent response of foraminiferal calcification to seawater carbonate chemistry. Biogeoscience, 14(13), 3287-3308. https://doi.org/10.5194/bg-14-3287-2017.
[41] Henehan M.J., Ridgwell A., Thomas E., Zhang S., Alegret L., Schmidt D.N., Rae J.W., Witts J.D., Landman N.H., Greene S.E., Huber B.T., 2019. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proceedings of the National Academy of Sciences, 116(45), 22500-22504. https://doi.org/10.1073/pnas.1905989116.
[42] Husson D., Galbrun B., Gardin S., Thibault N., 2014. Tempo and duration of short-term environmental perturbations across the Cretaceous-Paleogene boundary.Stratigraphy, 11(2), 159-171.
[43] Iwasaki S., Kimoto K., Sasaki O., Kano H., Uchida H., 2019. Sensitivity of planktic foraminiferal test bulk density to ocean acidification. Scientific Reports, 9(1), 1-9. https://doi.org/10.1038/s41598-019-46041-x.
[44] Keller G.,1988a. Biotic turnover in benthic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology, 66(3-4), 153-171. https://doi.org/10.1016/0031-0182(88)90198-8.
[45] Keller G.,1988b. Extinction, survivorship and evolution of planktic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Marine Micropaleontology, 13(3), 239-263. https://doi.org/10.1016/0377-8398(88)90005-9.
[46] Keller G., Abramovich S.,2009. Lilliput effect in late Maastrichtian planktic foraminifera: Response to environmental stress. Palaeogeography, Palaeoclimatology, Palaeoecology, 284(1-2), 47-62. https://doi.org/10.1016/j.palaeo.2009.08.029.
[47] Keller G., Mateo P., Monkenbusch J., Thibault N., Punekar J., Spangenberg J.E., Abramovich S.,Ashckenazi-Polivoda, S., Schoene, B., Eddy, M.P., Samperton, K.M., 2020. Mercury linked to Deccan Traps volcanism, climate change and the end-Cretaceous mass extinction. Global and Planetary Change, 194, 103312. https://doi.org/10.1016/j.gloplacha.2020.103312.
[48] Khanna N., Godbold J.A., Austin W.E., Paterson D.M., 2013. The impact of ocean acidification on the functional morphology of foraminifera. PloS One, 8(12), 83118. https://doi.org/10.1371/journal.pone.0083118.
[49] Kucera M., Malmgren B.A., Sturesson U., 1997. Foraminiferal dissolution at shallow depths of the Walvis Ridge and Rio Grande Rise during the latest Cretaceous: Inferences for deep-water circulation in the South Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 129(3-4), 195-212. https://doi.org/10.1016/S0031-0182(96)00133-2.
[50] Kuroyanagi A., Kawahata H., Suzuki A., Fujita K., Irie T.,2009. Impacts of ocean acidification on large benthic foraminifers: Results from laboratory experiments. Marine Micropaleontology, 73(3-4), 190-195. https://doi.org/10.1016/j.marmicro.2009.09.003.
[51] Lischka S., Stange P., Riebesell U.,2018. Response of pelagic calcifiers (Foraminifera, Thecosomata) to ocean acidification during oligotrophic and simulated up-welling conditions in the subtropical North Atlantic off Gran Canaria. Frontiers in Marine Science, 5, 379. https://doi.org/10.3389/fmars.2018.00379.
[52] Lombard F., da Rocha, R.E., Bijma, J., Gattuso, J.P. ,2010. Effect of carbonate ion concentration and irradiance on calcification in planktonic foraminifera. Biogeosciences, 7(1), 247-255. https://doi.org/10.5194/bg-7-247-2010.
[53] Lowery C.M., Bown P.R., Fraass A.J., Hull P.M., 2020. Ecological response of plankton to environmental change: thresholds for extinction. Annual Review of Earth and Planetary Sciences, 48, 403-429. https://doi.org/10.1146/annurev-earth-081619-052818.
[54] MacLeod, Norman, Ortiz Nievez., Fefferman, Nina, Clyde, William, Schulter, Christine, MacLean, Jena, Culver, S.J., Rawson P.E., 2000. Phenotypic response of foraminifera to episodes of global environmental change.Biotic Response to Global Environmental Change: The Last, 145, 51-78.
[55] Manda S., Punekar J.,2020. Experimental validation of the planktic foraminifera fragmentation index as proxy for the end-Cretaceous Ocean Acidification. Marine Micropaleontology, 155, 101821. https://doi.org/10.1016/j.marmicro.2020.101821.
[56] Marshall B.J., Thunell R.C., Henehan M.J., Astor Y., Wejnert K.E., 2013. Planktonic foraminiferal area density as a proxy for carbonate ion concentration: A calibration study using the Cariaco Basin ocean time series. Paleoceanography, 28(2), 363-376. https://doi.org/10.1002/palo.20034.
[57] McLean D.M.,1985. Deccan Traps mantle degassing in the terminal Cretaceous marine extinctions. Cretaceous Research, 6(3), 235-259. https://doi.org/10.1016/0195-6671(85)90048-5.
[58] Minoletti F.,De Rafélis, M., Renard, M., Gardin, S., Young, J., 2005. Changes in the pelagic fine fraction carbonate sedimentation during the Cretaceous-Paleocene transition: contribution of the separation technique to the study of Bidart section. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(1-2), 119-137. https://doi.org/10.1016/j.palaeo.2004.10.006.
[59] Moy A.D., Howard W.R., Bray S.G., Trull T.W., 2009. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geoscience, 2(4), 276-280. https://doi.org/10.1038/ngeo460.
[60] Mukhopadhyay S., Farley K.A., Montanari A., 2001. A short duration of the Cretaceous-Tertiary boundary event: Evidence from extraterrestrial helium-3. Science, 291(5510), 1952-1955. https://doi.org/10.1126/science.291.5510.1952.
[61] Nederbragt A.J.,1991. Late Cretaceous biostratigraphy and development of Heterohelicidae (planktic foraminifera). Micropaleontology, 329-372. https://doi.org/10.2307/1485910.
[62] Nelson B.K., Macleod G.K., Ward P.D., 1991. Rapid change in strontium isotopic composition of seawater before the Cretaceous/Tertiary boundary. Nature, 351, 644-647. https://doi.org/10.1038/351644a0.
[63] Nguyen T.M.P., Speijer, R.P., 2014. A new procedure to assess dissolution based on experiments on Pliocene-Quaternary foraminifera (ODP Leg 160, Eratosthenes Seamount, Eastern Mediterranean). Marine Micropaleontology, 106, 22-39. https://doi.org/10.1016/j.marmicro.2013.11.004.
[64] Olsson R.K., Hemleben C., Berggren W.A., Huber B.T., 1999. Atlas of Paleocene Planktonic Foraminifera. Smithsonian Contribution to Paleobiology No. 85. Smithsonian Institution Press, Washington D.C., pp. 252.
[65] Osborne E.B., Thunell R.C., Marshall B.J., Holm J.A., Tappa E.J., Benitez‐Nelson C., Cai W.J., Chen B., 2016. Calcification of the planktonic foraminifera Globigerina bulloides and carbonate ion concentration: Results from the Santa Barbara Basin. Paleoceanography, 31(8), 1083-1102. https://doi.org/10.1002/2016PA002933.
[66] Osborne, E.B., Thunell, R.C., Gruber, N., Feely, R.A. & Benitez-Nelson, C.R. (2020). Decadal variability in twentieth-century ocean acidification in the California Current Ecosystem. Nature Geoscience, 13(1), pp.43-49. https://doi.org/10.1038/s41561-019-0499-z
[67] Penman D.E., Hönisch B., Zeebe R.E., Thomas E., Zachos J.C., 2014. Rapid and sustained surface ocean acidification during the Paleocene‐Eocene Thermal Maximum. Paleoceanography, 29(5), 357-369. https://doi.org/10.1002/2014PA002621.
[68] Punekar J., Mateo P., Keller G., 2014. Effects of Deccan volcanism on paleoenvironment and planktic foraminifera: A global survey.Geological Society Special Publications, 505, 91-116.
[69] Punekar J., Keller G., Khozyem H.M., Adatte T., Font E., Spangenberg J.,2016. A multi-proxy approach to decode the end-Cretaceous mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 116-136. https://doi.org/10.1016/j.palaeo.2015.08.025.
[70] Razin P.,1989. Evolution tecto-sédimentaire alpine des Pyrénées Basques à l’Ouest de la transformante de Pamplona (province du Labourd). (Doctoral dissertation).
[71] Robaszynski F., Caron M., Gonzalez-Donoso J.M., Wonders A.H., Ewgpf (1983-1984). Paris Atlas of late Cretaceous Globotruncanids.Revue de Micropaléontologie, 36(3-4), 145-305.
[72] Rodríguez-Tovar,F.J., Uchman, A., Molina, E., Monechi, S., 2010. Bioturbational redistribution of Danian calcareous nannofossils in the uppermost Maastrichtian across the K-Pg boundary at Bidart, SW France. Geobios, 43(5), 569-579. https://doi.org/10.1016/j.geobios.2010.03.002.
[73] Rodríguez-Tovar F.J., Uchman A., Orue-Etxebarria X., Apellaniz E., Baceta J.I., 2011. Ichnological analysis of the Bidart and Sopelana Cretaceous/Paleogene (K/Pg) boundary sections (Basque Basin, W Pyrenees): refining eco-sedimentary environment.Sedimentary Geology, 234(1-4), 42-55. DOI: 10.1016/j.sedgeo.2010.11.004.
[74] Schoene B., Eddy M.P., Samperton K.M., Keller C.B., Keller G., Adatte T., Khadri S.F., 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363(6429), 862-866. https://doi.org/10.1126/science.aau2422.
[75] Schoene B., Eddy M.P., Keller C.B., Samperton K.M., 2021. An evaluation of Deccan Traps eruption rates using geochronologic data.Geochronology, 3(1), 181-198.
[76] Schott, G. (1935) Geographie des Indischen und Stillen Ozeans. Boysen, Hamburg 413.
[77] Schulte P., Alegret L., Arenillas I., Arz J.A., Barton P.J., Bown P.R., Bralower T.J., Christeson G.L., Claeys P., Cockell C.S., Collins G.S., 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327(5970), 1214-1218. https://doi.org/10.1126/science.1177265.
[78] Seyve C.,1984. Nannofossil biostratigraphy of the Cretaceous-Tertiary boundary in the French Basque Country. Bulletin des Centres de Recherches Exploration-Production.Elf Aquitaine, 14(2), 553-572.
[79] Smit, J. & Nederbragt, A.J., 1997. Analysis of the El Kef blind test II. Marine Micropaleontology, 29(2), 94-100. https://doi.org/10.1016/S0377-8398(96)00045-X.
[80] Tantawy A.A.A., Keller, G., Pardo, A., 2009. Late Maastrichtian volcanism in the Indian Ocean: effects on calcareous nannofossils and planktic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 284(1-2), 63-87. https://doi.org/10.1016/j.palaeo.2009.08.025.
[81] Urbanek, A. (1993). Biotic crises in the history of Upper Silurian graptoloids: a palaeobiological model. Historical Biology, 7(1), 29-50. https://doi.org/10.1080/10292389309380442.
[82] Vonhof H.B., Smit J., 1997. High-resolution late Maastrichtian-early Danian oceanic 87Sr/86Sr record: Implications for Cretaceous-Tertiary boundary events. Geology, 25(4), 347-350. https://doi.org/10.1130/0091-7613(1997)025%3C0347:HRLMED%3E2.3.CO;2.
[83] Wendler I.,2013. A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late Cretaceous global correlation. Earth-Science Reviews, 126, 116-146. https://doi.org/10.1016/j.earscirev.2013.08.003.
[84] Wolf‐Gladrow D.A., Riebesell U.L.F., Burkhardt S., Bijma J., 1999. Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus b, 51(2), 461-476. https://doi.org/10.1034/j.1600-0889.1999.00023.x.
[85] Yamaguchi T., Norris R.D., Bornemann A.,2012. Dwarfing of ostracodes during the Paleocene-Eocene Thermal Maximum at DSDP Site 401 (Bay of Biscay, North Atlantic) and its implication for changes in organic carbon cycle in deep-sea benthic ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecology, 346, 130-144. https://doi.org/10.1016/j.palaeo.2012.06.004. |