|
|
Sedimentary environment shift and organic matter enrichment mechanism in response to volcanic ash in?uence: A case study of the Permian Lucaogou Formation, Santanghu Basin, NW China |
Miao Yua,b, Gang Gaoa,b,*, Miao Liua,b, Hui Liangc, Ji-Lun Kangc, Xiong-Fei Xuc, Xin-Ying Zhaoa,b |
a College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China;
b National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing, 102249, China;
c PetroChina Tuha Oilfield Company, Hami, 839009, China; |
|
|
Abstract The second member of the Lucaogou Formation (P2l2) in the Tiaohu and Malang Sags of the Santanghu Basin (study area) underwent periodic volcanic activity and frequent lithological changes. This study comprehensively analyzed the organic geochemistry, mineral composition, organic matter (OM) types, volcanic cycle, and palaeoenvironment of shale in the study area. Techniques such as total organic carbon (TOC), rock pyrolysis (Rock-Eval), organic petrology, scanning electron microscopy (SEM) with energy-dispersive spectrum (EDS) analysis, X-ray diffraction (XRD), trace elements, and saturated hydrocarbon gas chromatography and mass spectrometry (GC-MS) were employed. The findings suggest that limited terrigenous input during the sedimentary period of the P2l2 led to the deposition of a distinctive mixture of volcanic ash (felsic) and carbonate (dolomite and calcite), with a low average clay mineral content of 6%. The P2l2 shale emerged as a high-quality source rock, predominantly composed of type I and II kerogens, with moderate OM maturity. The deposition environment was characterized by hot and arid conditions, high salinity, and intensive reducibility, which was favorable for algae development and conducive to OM preservation. Notably, two lamalginite types, labeled as lamalginite “A” and lamalginite “B,” were identified. Lamalginite “B”-rich shales were deposited in a hotter and drier climate compared to lamalginite “A”-rich shales. Lamalginite “B”- rich shale inexhibited high levels of C28 regular sterane and β-carotenes, distinguishing it from lamalginite “A”-rich shale. A comprehensive analysis involving organic petrology, SEM, sedimentary environment, and biomarker characteristics suggests that lamalginite “B” may be a salt-tolerant green alga, while lamalginite “A” may be a cyanobacterium. Finally, an OM enrichment model for the P2l2 shale was established.
|
Received: 07 January 2024
|
Corresponding Authors:
* Engaged in research and teaching of oil and gas exploration and development, College of Geosciences, China Uni- versity of Petroleum (Beijing), 18 Fuxue Road, ChangPing District, Beijing, China. E-mail addresses: 461973844@qq.com (M. Yu), gg_2819@163.com (G. Gao), 1909185919@qq.com (M. Liu), lianghui@petrochina.com.cn (H. Liang), kangjl@petrochina.com.cn (J.-L. Kang), 405997141@qq.com (X.-F. Xu), 2628342536@qq.com (X.-Y. Zhao).
|
|
|
|
A.K. Adegoke, W.H. Abdullah, M.H. Hakimi, B.S. Yandoka, 2014. Geochemical characterisation of Fika Formation in the Chad (Bornu) Basin, northeastern Nigeria: implications for depositional environment and tectonic setting. Applied Geochemistry, 43, pp. 1-12.
T.J. Algeo, J.B. Maynard, 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206 (3–4), pp. 289-318.
T.J. Algeo, T.W. Lyons, 2006. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21 (1), Article PA1016.
T.J. Algeo, N. Tribovillard, 2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology, 268 (3), pp. 211-225.
C. Basile, C. François, 2009. Phreatomagmatic eruption during the buildup of a Triassic carbonate platform (Oman Exotics): eruptive style, associated deformations, and implications on co2 release by volcanism. Journal of Volcanology and Geothermal Research, 183 (1–2), pp. 84-96.
C.E. Brett, G.C. Baird, 1992. Taphofacies and bioevents in marine sequences of the Appalachian Basin Middle Devonian. The Paleontological Society Special Publications, 6, p. 35.
P. Brocks, D. Rohjans, ¨ Barbara, M. Scholz-Bottcher, ¨ Jürgen Rullkotter, 1999. Molecular composition of organic matter in the sediment of a mussel bee as an indicator of ecological variations. Marine BiodiversIty, 29 (5 Suppl. l), pp. 45-50.
V. Caron, J. Bailleul, F. Chanier, G. Mahieux, 2019. Demise and recovery of Antillean shallow marine carbonate factories adjacent to active submarine volcanoes (Lutetian-Bartonian limestones, st. Bartholomew, French West Indies). Sedimentary Geology, 387, pp. 104-125.
A.R. Carroll, K.M. Bohacs, 1999. Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology, 27, pp. 99-102.
J. Collister, R. Ehrlich, F. Mango, G. Johnson, 2004. Modification of the petroleum system concept: origins of alkanes and isoprenoids in crude oils. AAPG Bulletin, 88, pp. 587-611.
A.C. Cook, N.R. Sherwood, 1991. Classification of oil shales, coals, and other organic-rich rocks. Organic Geochemistry, 17, pp. 211-222.
R.L. Cullers, V.N. Podkovyrov, 2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Research, 104, pp. 77-93.
X. Ding, G. Liu, M. Zha, C. Gao, Z. Huang, J. Qu, X.J. Lu, P.E. Wang, Z.L. Chen, 2016. Geochemical characterization and depositional environment of source rocks of small fault basin in Erlian Basin, northern China. Marine and Petroleum Geology, 69, pp. 231-240.
X.J. Ding, C.H. Gao, M. Zha, H. Chen, Y. Su, 2017. Depositional environment and factors controlling β-carotane accumulation: a case study from the Jimsar Sag, Junggar Basin, northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, pp. 833-842.
N.L. Dobretsov, M.M. Buslov, U. Yu, 2004. Fragments of oceanic islands in accretion-collision areas of Gorny Altai and Salair, southern Siberia, Russia: early stages of continental crustal growth of the Siberian continent in Vendian-Early Cambrian time. Journal of Asian Earth Sciences, 23 (5), pp. 673-690.
G. Dobson, D.M. Ward, N. Robinson, G. Eglinton, 1988. Biogeochemistry of hot spring environments: extractable lipids of a cyanobacterial mat. Chemical Geology, 68 (1–2), pp. 155-179.
S. Duggen, P. Croot, U. Schacht, L. Hoffmann, 2007. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophysical Research Letters, 34 (1) (2007).
C. Er, Y. Li, J. Zhao, R. Wang, Z. Wei, 2016. Characteristics of lacustrine organic-rich shale: a case study of the Chang 7 Member, Triassic Yanchang Formation, Ordos Basin, China. Journal of Natural Gas Geoscience, 1 (2), pp. 173-185.
H.P. Eugster, R.C. Surdam, 1973. Depositional environment of the Green River Formation of Wyoming: a preliminary report. Geological Society of America Bulletin, 84 (4), pp. 1115-1120.
Q. Feng, Y.Q. Liu, J.R. Hao, 2004. The source rocks and its palaeo-environment of Lucaogou Formation, Permian in Santanghu Basin. Acta Sedimentologica Sinica, 22 (3), pp. 513-517.
P. Frogner, N. Skarsson, 2000. Fertilizing potential of volcanic ash in ocean surface water. Geology, 29 (6), pp. 487-490.
J. Gaibor, J. Hochuli, W. Winkler, J. Toro, 2008. Hydrocarbon source potential of the Santiago Formation, Oriente Basin, SE of Ecuador. Journal of South American Earth Sciences, 25 (2), pp. 145-156.
GB/T 14506.30-2010. Methods for Chemical Analysis of Silicate Rocks - Part 30: Determination of 44 Elements. Beijing, Standards Press of China..
GB/T 18602-2012. Rock Pyrolysis Analysis. Beijing, Standards Press of China..
GB/T 18606-2017. The Test Method for Biomarkers in Sediment and Crude Oil by GC-MS. Beijing, Standards Press of China..
GB/T 19145-2003. Determination of Total Organic Carbon in Sedimentary Rocks. Beijing, Standards Press of China..
GB/T 33834-2017. Micrometer Length Measurement by Scanning Electron Microscopy. Beijing, Standards Press of China..
GB/T 5618-2014. X-ray Diffraction Analysis Methods and Technical Conditions. Beijing, Standards Press of China..
GB/T 8899-2013. Methods for Microgroup and Mineral Determination of Coal. Beijing, Standards Press of China..
E. Gelpi, H. Schneider, J. Mann, J. Oró, 1970. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry, 9, pp. 603-612.
H. Gerald, W. Michael, N. Stephanie, 2013. Geochemistry of fine-grained sediments of the upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): implications for paleoenvironmental and provenance studies. Geoscience Frontiers, 4 (4), pp. 449-468.
P.J. Grantham, L.L. Wakefield, 1988. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry, 12, pp. 61-73.
J.Y. Guo, N.N. Zhong, H. Liang, X. Li, D.L. Wang, W. Ma, H.Y. Cui, J. Li, 2012. Study on the source and distribution of Middle Permian oils in the Santanghu Basin. Geochimica, 41 (3), pp. 266-277.
P.C. Hackley, N. Fishman, T. Wu, G. Baugher, 2016. Organic petrology and geochemistry of mudrocks from the lacustrine Lucaogou Formation, Santanghu Basin, northwest China: application to lake basin evolution. International Journal of Coal Geology, 168, pp. 20-34.
M.H. Hakimi, W.H. Abdullah, 2013. Organic geochemical characteristics and oil generating potential of the Upper Jurassic Safer shale sediments in the Marib Shabowah Basin, western Yemen. Organic Geochemistry, 54, pp. 115-124.
N.B. Harris, K.H. Freeman, R.D. Pancost, T.S. White, G.D. Mitchell, 2004. The character and origin of lacustrine source rocks in the Lower Cretaceous Synrift Section, Congo Basin,West Africa. AAPG Bulletin (8), p. 88.
H.E. Hartnett, A.H. Devol, 2003. Role of a strong oxygen-deficient zone in the preservation and degradation of organic matter: a carbon budget for the continental margins of northwest Mexico and Washington State. Geochimica et Cosmochimica Acta, 67 (2), pp. 247-264.
H. Haven, M. Rohmer, J. RullkoTTter, P. Bisseret, 1989. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochimica et Cosmochimica Acta, 53 (11), pp. 3073-3079.
C. He, L.M. Ji, A. Su, Y. Liu, J.F. Li, Y.D. Wu, M.Z. Zhang, 2016. Relationship between hydrothermal sedimentation process and source rock development in the Yanchang Formation in southern Ordos Basin. Earth Science Frontiers, 24 (6), pp. 277-285.
J.I. Hedges, R.G. Keil, 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis: authors closing comments. Marine Chemistry, 49 (2–3), pp. 137-139.
I.R. Hills, E.V. Whitehead, D.E. Anders, J.J. Cummins, W.E. Robinson, 1966. An optically active triterpane, gammacerane, in Green River, Colorado, oil shale bitumen. Journal of the Chemical Society, Chemical Communications, 20, pp. 752-754.
T. Hu, X.Q. Pang, F.J. Jiang, Q.F. Wang, T.W. Xu, G.Y. Wu, Z. Cai, J.W. Yu, 2021. Factors controlling differential enrichment of organic matter in saline lacustrine rift basin: A case study of Third Member Shahejie Fm in Dongpu Depression. Acta Sedimentologica Sinica, 39 (1), pp. 140-152.
X. Huang, M. Aretz, X. Zhang, Y. Du, T. Luan, 2019. Upper Visean coral biostrome in a volcanic-sedimentary setting from the eastern Tianshan, northwest ChinaPart B, Palaeogeography, Palaeoclimatology, Palaeoecology, 531, Article 108739.
B. Jones, D. Manning, 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111 (1–4), pp. 111-129.
B.J. Katz, 1995. Factors Controlling the Development of Lacustrine Petroleum Source Rocks- An Update. AAPG Special Volumes, pp. 61-79.
K. Kelts, 1988. Environments of deposition of lacustrine petroleum source rocks: an introduction. Geological Society, London, Special Publications, 40 (1), pp. 3-26.
M. Keym, V. Dieckmann, B. Horsfield, M. Erdmann, O. Podlaha, 2012. Source rock heterogeneity of the Upper Jurassic Draupne Formation, North Viking Graben, and its relevance to petroleum generation studies. Organic Geochemistry, 37 (2), pp. 220-243.
G.G. Lash, D.R. Blood, 2014. Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennsylvania, Appalachian Basin. Marine and Petroleum Geology, 57, pp. 244-263.
A. Lerman, P. Baccini, 1978. Lakes: Chemistry, Geology, Physics. Springer, Verlag, New York (1978).
J. Leventhal, 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99 (1–3), pp. 65-82.
K. Li, K.L. Xi, Y.C. Cao, Y.C. Wang, M.R. Lin, 2023. Genesis of granular calcite in lacustrine fine-grained sedimentary rocks and its indication to volcanic-hydrothermal events: A case study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin, NW China. Petroleum Exploration and Development, 50 (3), pp. 541-552.
Q. Li, H. Lu, S.H. Wu, D.L. Xia, J.S. Li, F.Q. Qi, Y.P. Fu, Y. Wu, 2022. Sedimentary origins and reservoir characteristics of the Triassic Chang 73 tuffs in the southern Ordos Basin. Oil & Gas Geology, 43 (5), pp. 1141-1154.
Y.F. Li, T.W. Zhang, G.S. Ellis, D.Y. Shao, 2017. Depositional environment and organic matter accumulation of Upper Ordovician–Lower Silurian marine shale in the Upper Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 466, pp. 252-264.
H. Liang, X.N. Li, Q. Ma, H. Liang, Q.S. Luo, X. Chen, G.J. Bai, Q. Zhang, Y.L. Meng, 2014. Geological features and exploration potential of Permian Tiaohu Formation tight oil, Santanghu Basin, NW China. Petroleum Exploration and Development, 41 (5), pp. 563-572.
S.J. Liang, Z.L. Huang, B. Liu, L.C. Yan, H.M. Li, J. Ma, 2012. Formation mechanism and enrichment conditions of Lucaogou Formation shale oil from Malang sag, Santanghu Basin. Acta Petrolei Sinica, 33 (4), pp. 588-594.
S.J. Liang, Q.S. Luo, R. Wang, X. Chen, B. Yang, Q. Ma, H. Liang, 2019. Geological characteristics and exploration practice of unconventional Permian oil resources in the Santanghu Basin. China Petroleum Exploration, 24 (5), pp. 624-635.
l.l. Lin, C. Hu, Y. Li, T. Ho, T.P. Fischer, 2011. Fertilization potential of volcanic dust in the low-nutrient low-chlorophyll western north pacific subtropical gyre: satellite evidence and laboratory study. Global Biogeochemical Cycles, 25 (1) (2011)73-73.
B. Liu, A. Bechtel, D. Gross, X. Fu, X. Li, R.F. Sachsenhofer, 2018. Middle Permian environmental changes and shale oil potential evidenced by high-resolution organic petrology, geochemistry and mineral composition of the sediments in the Santanghu Basin, Northwest China. International Journal of Coal Geology, 185, pp. 119-137.
B. Liu, Y.F. Lv, R. Zhao, X.X. Tu, X.B. Guo, Y. Shen, 2012. Formation overpressure and shale oil enrichment in the shale system of Lucaogou Formation, Malang Sag, Santanghu Basin, NW China. Petroleum Exploration and Development, 39 (6), pp. 699-705.
Liu et al., 2016C.L. Liu, H.H. Li, X. Zhang, et al.Geochemical characteristics of the Paleogene and Neogene saline lacustrine source rocks in the western Qaidam Basin, northwestern China. Energy & Fuels, 30 (6), pp. 4537-4549.
S.J. Liu, G. Gao, J. Jin, W.Z. Gang, B.L. Xiang, 2022. Source rock with high abundance of C28 regular sterane in typical brackish-saline lacustrine sediments: Biogenic source, depositional environment and hydrocarbon generation potential in Junggar Basin, China. Journal of Petroleum Science & Engineering, 208, Article 109670.
J. Ma, Z.L. Huang, Z.Z. Liu, C.C. Chen, X.Y. Gao, 2015. Tight reservoir characteristics of sedimentary organic matter-bearing tuff in Tiaohu Formation of Santanghu Basin. Earth Science Frontiers, 22 (6), pp. 185-196.
M.R. Mello, P.C. Gaglianone, S.C. Brassell, J.R. Maxwell, 1988. Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils. Marine and Petroloeum Geology, 5, pp. 205-223.
Z. Meng, J.G. Wang, E. Garzanti, Z. Han, G. Chen, 2021. Late Triassic rifting and volcanism on the northeastern Indian margin: A new phase of Neo-Tethyan seafloor spreading and its paleogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 570, Article 110367.
E.K. Miller, J.D. Blum, A.J. Friedland, 1993. Determination of soil exchangeable-cation loss and weathering rates using sr isotopes. Nature, 362, pp. 438-441.
J.M. Moldowan, W.K. Seifert, E.J. Gallegos, 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69, pp. 1255-1268.
T. Morgan, Jones, R. Sigurur, Gislason, 2008. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments. Geochimica et Cosmochimica Acta, 72 (15), pp. 3661-3680.
Y.S. Pan, Z.L. Huang, T.J. Li, X.B. Guo, X. Chen, 2020. Environmental response to volcanic activity and its effect on organic matter enrichment in the Permian Lucaogou Formation of the Malang Sag, Santanghu Basin, Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 560 (11), Article 110024.
G. Peniguel, R. Couderc, C. Seyve, 1989. Les microalgues actuelles et fossiles Interêtsstratigraphique et pétrolier. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 13 (2), pp. 455-482.
K.E. Peters, M.R. Cassa, 1994. Applied source rock geochemistry. L.B. Magoon, W.G. Dow (Eds.), The Petroleum System – from Source to Trap, American Association of Petroleum Geologists, Tulsa, OK, pp. 3-117.
K.E. Peters, C.C. Walters, J.M. Moldowan, 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History. (second ed.s), Cambridge University Press, Cambridge, p. 2.
X.W. Qiu, C.Y. Liu, G.Z. Mao, B.L. Wu, 2011. Geochemical characteristics of volcanic ash sediments in Yanchang Formation, Ordos Basin. Earth Science, 36 (1), pp. 139-150.
C.S. Qu, L.W. Qiu, Y.Q. Yang, K.H. Yu, L.L. Tang, M. Wan, 2019. Environmental response of the Permian volcanism in Lucaogou Formation in Jimsar Sag, Junggar Basin, Northwest China. Seismology and Geology, 41 (3), pp. 654-672.
M. Reuter, W.E. Piller, C. Erhart, 2012. A Middle Miocene carbonate platform under silici-volcaniclastic sedimentation stress (Leitha limestone, Styrian Basin, Austria) - depositional environments, sedimentary evolution and palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, pp. 350-352(Null).
W.E. Robinson, 1969. Kerogen of the Green River Formation. G. Eglinton, M.T.J. Murphy (Eds.), Organic Geochemistry, Springer, Berlin\Heidelberg\New York, pp. 619-637.
Alan Robock, 2000. Volcanic eruptions and climate. Reviews of Geophysics, 38 (2), pp. 191-219.
H.D. Rowe, R.G. Loucks, S.C. Ruppel, S.M. Rimmer, 2008. Mississippian Barnett formation, Fort Worth Basin, Texas: bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction. Chemical Geology, 257, pp. 16-25.
B.B. Sageman, A.E. Murphy, J.P. Werne, C. Straeten, T.W. Lyons, 2003. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian Basin. Chemical Geology, 195 (1), pp. 229-273.
S.U. Schmincke, 2012. Iblean diatremes 3: volcanic processes on a Miocene carbonate platform (Iblean Mountains, SE-Sicily): a comparison of deep vs. shallow marine eruptive processes. Bulletin of Volcanology, 74 (1), pp. 207-230.
L. Schwark, P. Empt, 2006. Sterane biomarkers as indicators of Palaeozoic algal evolution and extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology, 240 (1–2), pp. 225-236.
S. Self, M. Widdowson, T. Thordarson, A.E. Jay, 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a deccan perspective. Earth and Planetary Science Letters, 248 (1–2), pp. 518-532.
V.C. Smith, R. Isaia, S.L. Engwell, P.G. Albert, 2016. Tephra dispersal during the Campanian Ignimbrite (Italy) eruption: Implications for ultra-distal ash transport during the large caldera-forming eruptions, 88, Congresso Società Geologica Italiana (2016).
W.D. Smith, C.J. St Peter, R.D. Naylor, P.K. Mukhopadhyay, W.D. Kalkreuth, F.D. Ball, G. Macauley, 1991. Composition and depositional environment of major eastern Canadian oil shales. International Journal of Coal Geology, 19 (1–2), pp. 63-85.
A.Q. Tian, S. Chen, Y.X. Yu, J.L. Xiu, F. Jin, 2022. Layered deformation characteristics, formation mechanism strike slip faults on the western edge of Mosuowan uplift. Geoscience, pp. 1-15.
B.P. Tissot, D.H. Welte, 1984. Petroleum Formation and Occurrence. Springer Verlag, Berlin Heidellberg, NewYork (1984).
N. Tribovillard, T.J. Algeo, F. Baudin, A. Riboulleau, 2012. Analysis of marine environmental conditions based onmolybdenum–uranium covariation—applications to Mesozoic paleoceanography. Chemical Geology, 324–325 (none), pp. 46-58.
N. Tribovillard, T.J. Algeo, T. Lyons, A. Riboulleau, 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232 (1–2), pp. 12-32.
J.K. Volkman, 1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 9 (2), pp. 83-99.
J.K. Volkman, S.M. Barrett, S.I. Blackburn, M.P. Mansour, F. Gelin, 1998. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry, 29 (5–7), pp. 1163-1179.
C.G. Wang, B. Yang, 2002. Oil and gas exploration prospect in Santanghu Basin. Xinjiang Petroleum Geology, 2002 (2), pp. 92-94+82.
H.L. Wang, J.Y. Liu, C.M. Wang, 2010. Changes of ostracoids and palynophore assemblages since the middle Holocene in the Ritu area of Qinghai-Tibet Plateau and their paleo-environmental implications. Acta Geologica Sinica, 84 (11) (2010).
D. Waples, T. Machihara, 1991. Biomarkers for geologists, a practical guide to the application of steranes and triterpanes in petroleum geology. American Association of Petroleum Geologists Methods in Exploration Series, 9 (1991)(Tulsa).
P.B. Wignall, 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53 (1), pp. 1-33.
H.Z. Wu, Z.L. Huang, B.S. Yang, B. Liu, Y.K. Yan, T.Y. Sang, C.J. Wen, 2014. Geochemical characteristics and hydrocarbon generating mechanism of low-mature shale oil in Malang Sag. Journal of Jilin University(Earth Science Edition), 44 (1), pp. 56-66.
S.Q. Wu, J.H. Guo, X.K. Wang, Z.Y. Li, C.S. Liu, P. Jiao, G. Chen, 2020. Geochemical characteristics and organic matter enrichment mechanism of the Lower Cambrian Niutitang formation black rock series in central Hunan. Journal of Central South University, 51 (8), pp. 2049-2060.
L.W. Xia, J. Cao, C. Lee, E.E. Stüeken, D. Zhi, G.D. Love, 2020. A new constraint on the antiquity of ancient haloalkaliphilic green algae that flourished in a ca. 300ma Paleozoic lake. Geobiology, 19 (2), pp. 147-161.
X.M. Xiao, 1997. Organic petrological characteristics and hydrocarbon generation evaluation of Triassic source rocks in Tarim Basin. Geochimica (1), pp. 65-72.
C.K. Xu, C.Y. Liu, P. Guo, M.W. Li, L. Huang, Y. Zhao, Y.h. Pan, Y.Y. Zhang, 2018. Geochemical characteristics and their geological significance of intrasalt mudstones from the Paleogene Qianjiang Formation in the Qianjiang Graben, Jianghan Basin, China. Acta Sedimentologica Sinica, 36 (3), pp. 617-629.
B.S. Yandoka, W.H. Abdullah, M.B. Abubakar, M.H. Hakimi, A.K. Adegoke, 2015. Geochemical characterisation of Early Cretaceous lacustrine sediments of Bima Formation, Yola sub-basin, northern Benue Trough, NE Nigeria: organic matter input, preservation, paleoenvironment and palaeoclimatic conditions. Marine and Petroloeum Geology, 61, pp. 82-94.
M. Yu, G. Gao, J. Jin, W.Y. Ma, D. He, B.L. Xiang, K.T. Fan, M. Liu, 2022. Hydrocarbon generation simulation of coaly source rocks in the Lower combination on the southern margin of Junggar Basin and indications for oil and gas sources of well Gaotan 1. Petroleum Geology & Experiment, 44 (4), pp. 687-697.
A.M. Zelazny, A. Shaish, S.U. Pick, 1995. Plasma membrane sterols are essential for sensing osmotic changes in the halotolerant alga dunaliella. Plant Physiology, 109 (4), pp. 1395-1403.
G.W. Zhang, S. Tao, D.Z. Tang, Y.B. Xu, Y. Cui, Q. Wang, 2017. Geochemical characteristics of trace elements and rare earth elements in Permian Lucaogou oil shale, Santanghu Basin. Journal of China Coal Society, 42 (8), pp. 2081-2089.
K. Zhang, R. Liu, Z.J. Liu, B.L. Li, J.B. Han, K.G. Zhao, 2020. Influence of volcanic and hydrothermal activity on organic matter enrichment in the Upper Triassic Yanchang Formation, southern Ordos Basin, central China. Marine and Petroleum Geology, 112 (2020)104059-104059.
R.J. Zhang, Z.J. Jin, Q.Y. Liu, P. Li, Z.K. Huang, J.Y. Shi, Y.J. Ge, K.F. Du, 2019. Astronomical constraints on deposition of the Middle Triassic Chang 7 lacustrine shales in the Ordos Basin, central China. Palaeogeography, Palaeoclimatology, Palaeoecology, 528, pp. 87-98.
W.Z. Zhang, H. Yang, P.A. Peng, Y.H. Yang, H. Zhang, X.H. Shi, 2009. Influence of Late Triassic volcanic activity on the development of Chang 7 high-quality source rocks in Ordos Basin. Geochimica, 38 (6), pp. 573-582.
Z.H. Zhang, F. Yang, D.M. Li, C.L. Fang, 1998. Biomarker assemblage characteristics of source rocks and associater crude oils in saline lake facies of Cenozoic in China. Acta Sedimentologica Sinica (3), pp. 119-123+131.
S.M. Zhao, D.C. Chen, J. Deng, 2010. Depositional models of the Permo-Carboniferous carbonate rocks and their significance in Yingen-Ejinaqi area, Inner Mongolia, China. Geological Bulletin of China, 29 (Z1), pp. 351-359.
X.Y. Zhao, Y.Y. Zhang, J. Song, 1994. Some mineralogical characteristics of clay minerals in petroliferous basins in China. Geoscience (3), pp. 264-272+377-378.
K.T. Zheng, J.R. Li, C.L. Zhang, C.X. Yan, J. Jiang, H. You, 2023. Organic matter enrichment mechanism of Ordovician pre-salt source rocks in the eastern-central Ordos Basin. Journal of China University of Mining & Technology, 52 (1), pp. 128-144.
R.C. Zheng, M.Q. Liu, 1999. Study on paleo-salinity of Chang 6 oil-bearing formation in Ordos Basin. Oil & Gas Geology, 20 (1), pp. 22-27.
Y.M. Zhu, A.G. Su, D.G. Liang, K.M. Cheng, H.X. Weng, D.H. Peng, 2003. Distribution characteristics and genesis of N-alkanes in saline lacustrine source rocks in Qaidam Basin. Geochimica (2), pp. 117-123. |
|
|
|