Provenance of sediments from Barra del Tordo and Tesoro beaches, Tamaulipas State, northwestern Gulf of Mexico
Mayla A. Ramos-Vázquez1, John S. Armstrong-Altrin2,*
1Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, México; 2Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad de Procesos Oceánicos y Costeros, Ciudad Universitaria, Ciudad de México 04510, México
Abstract The mineralogy, bulk sediment geochemical composition, and U-Pb ages of detrital zircons retrieved from the Barra del Tordo (Tordo) and Tesoro beach sediments in the northwestern Gulf of Mexico were analyzed to determine their provenance. The beach sediments are mainly composed of quartz, ilmenite, magnetite, titanite, zircon, and anorthite. The weathering proxies such as the Chemical Index of Alteration (CIA), Chemical Index of Weathering (CIW), and Plagioclase Index of Alteration (PIA), reveal a moderate-to-high intensity of weathering in the source area. The chondrite-normalized rare earth element (REE) patterns are similar to felsic igneous rocks, with large negative europium anomaly (Eu/Eu* = ~0.47-0.80 and ~0.57-0.67 in the Tordo and Tesoro beach sediments, respectively). Three major zircon U-Pb age groups are identified in the Tordo and Tesoro beach sediments, i.e., Proterozoic (~2039-595 Ma), Mesozoic (~244-70.3 Ma), and Cenozoic (~65.9-1.2 Ma). The differences of the zircon age spectrum between the Tordo and Tesoro beach sediments are not significant. The comparison of zircon U-Pb ages in this study with ages of potential source terranes suggests that the Mesozoic and Cenozoic zircons of the studied Tordo and Tesoro beach sediments were derived from the Eastern Alkaline Province (EAP) and Mesa Central Province (MCP). Similarly, the likely sources for the Proterozoic zircons were the Sierra Madre Oriental (SMOr) and Oaxaquia in the northwestern Gulf of Mexico. The results of this study further indicate that the sediments delivered to the beaches by rivers and redistributed by longshore currents were crucial in determining the sediment provenance.
. Provenance of sediments from Barra del Tordo and Tesoro beaches, Tamaulipas State, northwestern Gulf of Mexico[J]. , 2021, 10(3): 382-398.
. Provenance of sediments from Barra del Tordo and Tesoro beaches, Tamaulipas State, northwestern Gulf of Mexico[J]. Journal of Palaeogeography, 2021, 10(3): 382-398.
[1] Al-Juboury A.L.,A. Morton,W.S. Shingaly,J. Howard,B. Thusu,S. Vincent, and M. Fanning.2020. Stratigraphy and age revision of the Pirispiki Formation, Kurdistan Region, Northern Iraq.Arabian Journal of Geosciences 13: 593. [2] Al-Kaaby L.F.,B.N. Albadran.2020. Minerals and sedimentary characteristics of Quaternary sediments of different regions in Southern Iraq.Iraqi Geological Journal 53(No.1A): 68-89. [3] Anaya-Gregorio A.,J.S. Armstrong-Altrin, M.L. Machain-Castillo, P.C. Montiel-García, and M.A. Ramos-Vázquez.2018. Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores (GM6 and GM7), recovered from southwestern Gulf of Mexico.Journal of Palaeogeography 7(3): 253-271. [4] Armstrong-Altrin J.S.,M.A. Ramos-Vázquez N.Y. Hermenegildo-Ruiz, and J. Madhavaraju.2021. Microtexture and U-Pb geochronology of detrital zircon grains in the Chachalacas beach, Veracruz State, Gulf of Mexico.Geological Journal 56(5): 2418-2438. [5] Arribas J.,S. Critelli,E. Le Pera, and A. Tortosa.2000. Composition of modern stream sand derived from a mixture of sedimentary and metamorphic rocks (Henares River, central Spain).Sedimentary Geology 133: 27-48. [6] Ayala-Pérez M.P.,J.S. Armstrong-Altrin, and M.L. Machain-Castillo.2021. Heavy metal contamination and provenance of sediments recovered at the Grijalva River Delta, southern Gulf of Mexico. Journal of Earth System Science https://doi.org/10.1007/s12040-021-01570-w. [7] Balaram V.2021. Current and emerging analytical techniques for geochemical and geochronological studies.Geological Journal 55(5): 2300-2359. DOI:10.1002/gj.4005. [8] Banerjee S.,T.R. Choudhury,P.K. Saraswati, and S. Khanolkar.2020. The formation of authigenic deposits during Paleogene warm climatic intervals: A review.Journal of Palaeogeography 9(1): 27. [9] Bankole O.M.,A.E. Albani,A. Meunier,M. Poujol, and A. Bekker.2020. Elemental geochemistry and Nd isotopic constraints on the provenance of the basal siliciclastic succession of the middle Paleoproterozoic Francevillian Group, Gabon.Precambrian Research 348: 105874. [10] Barboza-Gudiño J.R.,A. Zavala-Monsiváis V. Castellanos-Rodríguez, and L.D. Barajas-Nigoche.2010. Late Triassic stratigraphy and facies from northeastern Mexico: Tectonic setting and provenance.Geosphere 6(5): 621-640. [11] Barboza-Gudiño,J.R., A. Zavala-Monsiváis, V. Castellanos-Rodríguez, D. Jaime-Rodríguez, and C. Almaraz-Martínez. 2020. Subduction-related Jurassic volcanism in the Mesa Central Province and contemporary Gulf of Mexico opening. Journal of South American Earth Sciences https://doi.org/10.1016/j.jsames.2020.102961. [12] Basu A.2020. Chemical weathering, first cycle quartz sand, and its bearing on quartz arenite.Journal Indian Association of Sedimentologists 37(2): 3-14. [13] Bineli A.T.N.,V.L. Onana,S.D.N. Tang,Y.R. Bikoy, and G.E. Ekodeck.2020. Mineralogy and geochemistry of sands of the lower course of the Sanaga River, Cameroon: Implications for weathering, provenance, and tectonic setting. Acta Geochimica https://doi.org/10.1007/s11631-020-00437-z. [14] Chaudhuri A.,S. Banerjee, and E. Le Pera.2018. Petrography of Middle Jurassic to Early Cretaceous sandstones in the Kutch Basin, western India: Implications on provenance and basin evolution.Journal of Palaeogeography 7(1): 2. [15] Chaudhuri A.,S. Banerjee,N. Prabhakar, and A. Das.2020. The use of heavy mineral chemistry in reconstructing provenance: A case study from Mesozoic sandstones of Kutch Basin, India. Geological Journal 1-11. DOI: 10.1002/gj.3922. [16] Cox R.,D.R. Lowe, and R.L. Cullers.1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States.Geochimica et Cosmochimica Acta 59: 2919-2940. [17] Critelli S.2018. Provenance of Mesozoic to Cenozoic Circum-Mediterranean sandstones in relation to tectonic setting.Earth-Science Reviews 185: 624-648. [18] Critelli S.,E. Le Pera, and R.V. Ingersoll.1997. The effects of source lithology, transport, deposition and sampling scale on the composition of southern California sand.Sedimentology 44(4): 653-671. [19] Critelli S.,J. Arribas,E. Le Pera,A. Tortosa,K.M. Marsaglia, and K.K. Latter.2003. The recycled orogenic sand provenance from an uplifted thrust-belt, Betic Cordillera, southern Spain.Journal of Sedimentary Research 73: 72-81. [20] Critelli S.,M. Martín-Martín W. Capobianco, and F. Perri.2021. Sedimentary history and palaeogeography of the Cenozoic clastic wedges of the Malaguide Comple, Internal Betic Cordillera, southern Spain.Marine and Petroleum Geology 124: 104775. [21] Cullers R.L.2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies.Lithos 51: 305-327. [22] Cullers R.L.,A. Basu, and L.J. Suttner.1988. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA.Chemical Geology 70: 335-348. [23] Damian G.,Z.S.G. Iepure, and F. Damian.2019. Distribution of heavy metals in granulometric fractions and on soil profiles.Carpathian Journal of Earth and Environmental Sciences 14(2): 343-351. [24] Demant A.,C. Robin.1975. Las Fases del Vulcanismo en México. Una síntesis en relación con la Evolución Geodinámica desde el Cretácico.Revista Instituto de Geologia UNAM 75: 70-83. [25] Devi S.R.,M.E.A. Mondal, and J.S. Armstrong-Altrin.2017. Geochemistry and the factors controlling on the weathering and erosion of the Barail Group of rocks, NW Manipur, India.Journal of the Indian Association of Sedimentologists 34(1-2): 9-16. [26] Dew R.,C.K. Morley,T.A. Myint, and A. Collins.2019. Age and provenance of the Chaung Magyi Group, Yeywa Dome, Myanmar, based on U-Pb dating of detrital zircons.Journal of Asian Earth Sciences 184: 103967. [27] Dickinson W.R.1970. Interpreting detrital modes of graywacke and arkose.Journal of Sedimentary Petrology 40: 695-707. [28] Ekoa Bessa, A.Z., G. Nguetchoua, A.K. Janpou, Y.A. El-Amier, O.N.N.M. Nguetnga, U.R. Kayou, S.B. Bisse, E.C.N. Mapuna,J.S. Armstrong-Altrin.2021. Heavy metal contamination and its ecological risks in the beach sediments along the Atlantic Ocean (Limbe coastal fringes, Cameron). Earth Systems and Environment https://doi.org/10.1007/s41748-020-00167-5. [29] Escalona-Alcázar F.J.,L. Solari,J.C. García y Barragán, C. Carrillo-Castillo, J. Bluhm-Gutiérrez, P. García-Sandoval, A.F. Nieto-Samaniego, and E.P. Núñez-Peña.2016. The Paleocene-Early Oligocene Zacatecas conglomerate, Mexico: Sedimentology, detrital zircon U-Pb ages, and sandstone provenance.International Geology Review 58: 826-848. [30] Fedo C.M.,H.W. Nesbitt, and G.M. Young.1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance.Geology 23: 921-924. [31] Folk R.L.,W.C. Ward.1957. Brazos river bar, a study in the significance of grain-size parameters.Journal of Sedimentary Petrology 27: 3-26. [32] Gärtner A.,N. Youbi,M. Villeneuve,A. Sagawe,M. Hofmann,A. Mahmoudi,M.A. Boumehdi, and U. Linnemann.2017. The zircon evidence of temporally changing sediment transport — the NW Gondwana margin during Cambrian to Devonian time (Aoucert and Samara areas, Moroccan Sahara).International Journal of Earth Sciences 106: 2747-2769. [33] Gazzi P.1966. Le arenarie del flysch sopracretaceo dell’Appennino modensese: Correlazioni con il flysch di Monghidoro.Mineralogica et Petrographica Acta 12: 69-97. [34] Girty G.H.,D.L. Ridge,C. Knaack,D. Johnson, and R.K. Al-Riyami.1996. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California.Journal of Sedimentary Research 66: 107-118. [35] Harnois L.1988. The CIW index: A new chemical index of weathering.Sedimentary Geology 55(3-4): 319-322. [36] Hernández-Hinojosa V.,P.C. Montiel-García, J.S. Armstrong-Altrin, R. Nagarajan, and J.J. Kasper-Zubillaga.2018. Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico.Carpathian Journal of Earth and Environmental Sciences 13(1): 161-174. [37] Hoskin P.W.O.,T.R. Ireland.2000. Rare earth element chemistry of zircon and its uses as a provenance indicator.Geology 28: 627-630. [38] Hossain H.M.Z.2019. Major, trace, and REE geochemistry of the Meghna River sediments, Bangladesh: Constraints on weathering and provenance. Geological Journal 55 (3): DOI:10.1002/gj.3595. [39] Hudson P.F.2003. Event sequence and sediment exhaustion in the Lower Panuco Basin, eastern Mexico.Catena 52: 57-76. [40] Jarvis K.E.1988. Inductively coupled plasma mass spectrometry: A new technique for the rapid or ultra-level determination of the rare-earth elements in geological materials.Chemical Geology 68: 31-39. [41] Juárez-Arriaga E.,T.F. Lawton,Y.Z.E. Ocampo-Díaz D.F. Stockli, and L. Solari.2019. Sediment provenance, sediment-dispersal systems, and major arc-magmatic events recorded in the Mexican foreland basin, North-Central and Northeastern Mexico.International Geology Review 61(17): 2118-2142. [42] Karlik M.,I. Gyollai,A. Vancsik,K. Fintor,Z. Szalai,M. Mîndrescu, I. Grădinaru, S. Vágási, G. Bozsó,M. Polgári, and E. Pál-Molnár.2021. High resolution mineralogical characterization of sediments — lake Bolătău-Feredeu (Romania).Carpathian Journal of Earth and Environmental Sciences 16(1): 199-210. [43] Kasper-Zubillaga J.J.,R.G. Martínez-Serrano, E. Arellano-Torres, L.F. Álvarez-Sánchez, D.P. Andrade,A.G. Bermúdez, and L. Carlos-Delgado.2021. Petrographic and geochemical analysis of dune sands from southeastern, Oaxaca, Mexico.Geological Journal 56(6): 3012-2034. DOI: 10.1002/gj.4086. [44] Katz A.,G.M. Friedman.1965. The preparation of stained acetate peels for the study of carbonate rocks.Journal of Sedimentary Petrology 35: 248-249. [45] Kettanah Y.A.,J.S. Armstrong-Altrin, and F.A. Mohammad.2021. Petrography and geochemistry of siliciclastic rocks of the Middle Eocene Gercus Formation, northern Iraq: Implications for provenance and tectonic setting.Geological Journal 56: 2528-2549. DOI:10.1002/gj.3880. [46] Lawton T.F.,R.S. Molina-Garza.2014. U-Pb geochronology of the type Nazas Formation and superjacent strata, northeastern Durango, Mexico: Implications of a Jurassic age for continental-arc magmatism in north-central Mexico.Geological Society of America Bulletin 126: 1181-1199. [47] Lee Y.I.,J. Yi, and T. Choi.2015. Provenance analysis of Lower Cretaceous Sindong Group sandstones in the Gyeongsang Basin, Korea, using integrated petrography, quartz SEM-Cathodoluminescence, and zircon Zr/Hf analysis.Journal of Sedimentary Research 85: 529-543. [48] Ludwig K.L.1998. On the treatment of concordant Uranium-Lead ages.Geochimica et Cosmochimica Acta 62(4): 665-676. [49] Ludwig K.R.2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel, Special Publication 4a. Berkeley Geochronological Centre, Berkeley, California. [50] Machain-Castillo M.,A. Ruiz-Fernández A. Gracia,J. Sanchez-Cabeza, A. Rodríguez-Ramírez, H. Alexander-Valdés, L. Pérez-Bernal, X. Nava-Fernández, L. Gómez-Lizárraga, L. Almaraz-Ruiz, P. Schwinge, and D. Hollander.2019. Natural and anthropogenic oil impacts on benthic foraminifera in the southern Gulf of Mexico.Marine and Environmental Research 149: 111-125. [51] Madhavaraju J.,S.P. Rajendra,Y.I. Lee,E.R. Montoya,S. Ramasamy, and R.F. SantaCruz.2020. Mineralogy and geochemistry of clastic sediments of the Terani Formation, Cauvery Basin, southern India: Implications for paleoweathering, provenance and tectonic setting.Geosciences Journal 24: 651-667. [52] Madhavaraju J.,J.S. Armstrong-Altrin R.P. Pillai, and T. Pi-Puig.2021. Geochemistry of sands from the Huatabampo and Altata beaches, Gulf of California, Mexico.Geological Journal 56: 2398-2417. DOI:10.1002/gj.3864. [53] McRivette M.W.,A. Yin,X. Chen, and G.E. Gehrels.2019. Cenozoic basin evolution of the Central Tibetan Plateau as constrained by U-Pb detrital zircon geochronology, sandstone petrology, and fission-track thermochronology.Tectonophysics 751: 150-179. [54] Monreal-Gómez A.,D. Salas-de-León A. Padilla-Pilotze, and M. Alatorre-Mendieta.1992. Hydrography and estimation of density currents in the southern part of the Bay of Campeche, Mexico.Ciencias Marinas 18(4): 115-133. [55] Müller W.,M. Shelley,P. Miller, and S. Broude.2009. Initial performance metrics of a new custom-designed ArF Excimer LA-ICPMS system coupled to a two-volume laser-ablation cell.Journal of Analytical Atomic Spectrometry 24: 209-214. [56] Mustafa R.K.,F.H. Tobia.2020. Geochemical application in unravelling paleoweathering, provenance and environmental setting of the shale from Chia Gara Formation, Kurdistan Region, Iraq.Iraqi Geological Journal 53(1A): 90-116. [57] Nesbitt H.W.,G.M. Young.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites.Nature 299: 715-717. [58] Paton C.,J.D. Woodhead,J.C. Hellstrom,J.M. Hergt,A. Greig, and R. Maas.2010. Improved laser ablation U‒Pb zircon geochronology through robust downhole fractionation correction. Geochemistry Geophysics Geosystems 11: Q0AA06. DOI: 10.1029/2009GC002618. [59] Patra A.,A. Shukla.2020. Geochemical signatures of Late Paleocene sandstones from the Sanu Formation, Jaisalmer Basin, western India: Implication for provenance, weathering and tectonic setting.Journal of Earth System Science 129: 81. [60] Petrus J.A.,B.S. Kamber.2012. VizualAge: A novel approach to Laser Ablation ICP-MS U‒Pb Geochronology Data Reduction.Geostandards and Geoanalytical Research 36(3): 247-270. [61] Potter-McIntyre S.L.,J.R. Breeden, and D.H. Malone.2018. A Maastrichtian birth of the Ancestral Mississippi River System: Evidence from the U-Pb detrital zircon geochronology of the McNairy sandstone, Illinois, USA.Cretaceous Research 91: 71-79. [62] Rivera-Gómez M.A.,J.S. Armstrong-Altrin S.P. Verma, and L. Díaz-González.2020. APMDisc: An online computer program for the geochemical discrimination of siliciclastic sediments from active and passive margins.Turkish Journal of Earth Sciences 29: 550-578. DOI:10.3906/yer-1908-15. [63] Rosales-Hoz L.,A. Carranza-Edwards, R. Martínez-Serrano, M.A. Alatorre, and J.S. Armstrong-Altrin.2015. Textural and geochemical characteristics of continental margin sediments in the SW Gulf of Mexico: Implications for source and seasonal change.Environmental Monitoring Assessment 187(205): 1-19. [64] Roser B.P.,R.J. Korsch.1988. Provenance signatures of sandstone mudstone suites determined using discrimination function analysis of major element data.Chemical Geology 67: 119-139. [65] Rubio-Cisneros I.I.,T.F. Lawton.2011. Detrital zircon U-Pb ages of sandstones in continental red beds at Valle de Huizachal, Tamaulipas, NE Mexico: Record of Early-Middle Jurassic arc volcanism and transition to crustal extension.Geosphere 7(1): 159-170. [66] Servicio Geológico Mexicano.2008. Carta Geológico-Minera Ciudad Victoria F14-2, Tamps, N. L. y S.L.P. Escala 1:250000. [67] Sieck P.,R. López-Doncel, P. Dávila-Harris, A. Aguillón-Robles, K. Wemmer, and R.C. Maury.2019. Almandine garnet-bearing rhyolites associated to bimodal volcanism in the Mesa Central of Mexico: Geochemical, petrological and geochronological evolution.Journal of South American Earth Sciences 92: 310-328. [68] Silva-Romo G.,C.C. Mendoza-Rosales, E. Campos-Madrigal, A. Morales-Yáñez, A.I. Torre-González, and J.I. Nápoles-Valenzuela.2018. Recycling of Amazonian detrital zircons in the Mixteco terrane, southern Mexico: Paleogeographic implications during Jurassic-Early Cretaceous and Paleogene times.Journal of South American Earth Sciences 83: 210-226. [69] Sláma J.,J. Košler,D.J. Condon,J.L. Crowley,A. Gerdes,J.M. Hanchar,M.S.A. Horstwood,G.A. Morris,L. Nasdala,N. Norberg,U. Schaltegger,B. Schoene,M.N. Tubrett, and M.J. Whitehouse.2008. Plešovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis.Chemical Geology 249: 1-35. [70] Solari L.A.,A. Gómez-Tuena J.P. Bernal,O. Pérez-Arvizu, and M. Tanner.2010. U-Pb zircon geochronology by an integrated LA-ICPMS microanalytical workstation: Achievements in precision and accuracy.Geostandard and Geoanalytical Research 34: 5-18. [71] Solari L.A.,F. Ortega-Gutiérrez, M. Elías-Herrera, C. Ortega-Obregón, C. Macías-Romo, and M. Reyes-Salas.2014. Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: A zircon perspective.International Journal of Earth Sciences 103: 1301-1315. [72] Solari L.A.,J.D. Keppie,F. Ortega-Gutiérrez K.L. Cameron, and R.K. Lopez.2004. Similar to 990 Ma peak granulite metamorphism and amalgamation of Oaxaquia, Mexico: U-Pb zircon geochronological and common Pb isotopic data.Revista Mexicana de Ciencias Geologicas 21: 212-225. [73] Tawfik H.A.,M.K. Salah,W. Maejima,J.S. Armstrong-Altrin A-M.T. Abdel-Hameed, and M.M.E. Ghandour.2018. Petrography and geochemistry of the Lower Miocene Moghra sandstones, Qattara Depression, north Western Desert, Egypt.Geological Journal 53: 1938-1953. [74] Taylor S.R.,S.M. McLennan.1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publishers, Oxford. [75] Tobia F.H.,S.S. Shangola.2019. Geochemistry of sandstones from Beduh Formation in northern thrust zone, Kurdistan Region, Northern Iraq: Provenance and tectonic setting.Iraqi Geological Journal 52(1): 1-25. [76] Torres-Sánchez D.,S.K. Verma,T.L. Barry,S.P. Verma, and J.R. Torres-Hernández.2020. 40Ar/39Ar geochronology and petrogenesis of the Sierra de San Miguelito Volcanic Complex, Mesa Central, Mexico. Lithos 370-371: 105613. [77] Turzewski M.D.,K.W. Huntington,A. Licht, and K.A. Lang.2020. Provenance and erosional impact of Quaternary megafloods through the Yarlung-Tsangpo Gorge from zircon U-Pb geochronology of flood deposits, eastern Himalaya.Earth and Planetary Science Letters 535: 116113. [78] Vega-Granillo R.,A. Sarmiento-Villagrana, J.R. Vidal-Solano, E. Araux-Sánchez, and A. Bourjac-de-Anda.2020. Northern limit of Gondwana in northwestern Mexico from detrital zircon data.Gondwana Research 83: 232-247. [79] Verlekar P.,M. Kotha.2020. Provenance, tectonics and palaeoenvironment of Mesoproterozoic Saundatti Quartzite Member of Kaladgi Basin, India: A petrographic view.Journal of the Indian Association of Sedimentologists 37(2): 91-102. [80] Verma S.K.,D. Torres-Sánchez, K.R. Hernández-Martínez, V.P. Malviya,P.K. Singh,J.R. Torres-Hernández, and B.A. Rivera-Escota.2021. Geochemistry of Eocene felsic volcanic rocks from the Mesa Virgen-Calerilla, Zacatecas, Mexico: Implications for the magma source and tectonic setting.Geological Journal DOI: 10.1002/gj.4233. [81] Verma S.K.,K.G.A. Fimbres,D. Torres-Sánchez, J.R.T. Hernández, S.A. Torres-Sánchez, and H. López-Loera.2020. Geochemistry and petrogenesis of Oligocene felsic volcanic rocks from the Pinos Volcanic Complex, Mesa Central, Mexico.Journal of South American Earth Sciences 102: 102704. [82] Wang Q.,C.J. Spencer,R. Hamdidouche,G. Zhao,N.J. Evans, and B.J. McDonald.2020. Detrital zircon U-Pb-Hf data from Cambrian sandstones of the Ougarta Mountains Algeria: Implication for palaeoenvironment.Geological Journal DOI: 10.1002/gj.3899. [83] Weber B.,E.E. Scherer,C. Schulze,V.A. Valencia,P. Montecinos,K. Mezger, and J. Ruiz.2010. U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico — Geodynamic significance of Oaxaquia in a Rodinia Realm.Precambrian Research 182: 149-162. [84] Wentworth C.K.1922. A scale of grade and class terms for clastic sediments.Journal of Geology 30: 377-392. [85] Yáñez-Arancibia A.,J.W. Day, and B. Currie-Alder.2009. The Grijalva-Usumacinta river delta functioning: Challenge for coastal management.Ocean Yearbook 23: 473-501. [86] Zavala-Monsiváis A.,J.R. Barboza-Gudiño F. Velasco-Tapia, and M.E. García-Arreola.2012. Sucesión volcánica jurásica en el área de charcas, San Luis Potosí: Contribución al entendimiento del arco Nazas en el noreste de México.Boletín de la Sociedad Geológica Mexicana 64: 277-299. [87] Zeng S.,J. Wang,W. Chen,X. Fu,X. Feng,C. Song,D. Wang, and W. Sun.2019. Geochemical characteristics of Early Cretaceous marine oil shale from the Changshe Mountain area in the northern Qiangtang Basin, Tibet: Implications for palaeoweathering, provenance, tectonic setting, and organic matter accumulation.Geological Journal 55(4): 3229-3246. [88] Zeng S.,J. Wang,X. Fu,W. Chen,C. Song,X. Feng, and D. Wang.2020. Geochemistry and detrital zircon geochronology of the Jurassic clastic rocks of the northern Qiangtang Basin, northern Tibet: Implication for palaeoenvironment, provenance, and tectonic setting.Geological Journal Doi:10.1002/gj.4074.