Spatiotemporal patterns of sediment deposition on the northern slope of the South China Sea in the last 150,000 years
Zhe Hu1,*, Bao-Qi Huang1,*, Le-Jun Liu2, Na Wang3
1Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing 100871, China; 2Marine Engineering Environment Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, Shandong Province, China; 3School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, Guangdong Province, China
Abstract The source-to-sink system of the northern South China Sea (SCS) has been widely discussed during the past few decades. Sr-Nd isotope, clay minerals and trace elements were extensively used as the proxies of sediment provenance, however, still little is known about the transport processes and controlling mechanisms on detailed spatiotemporal scales due to the limitations of these methods. Here we put forward the new provenance proxies RAK and RKCN based on major element compositions to study the spatiotemporal changes in sediment provenance since 150 ka mainly from four sites, DLW3101, MD12-3429, ZHS-176 and MD12-3432, which are located on the northern SCS continental slope. Our results show that, spatially, the pathways and intensities of contour currents and gravity flows play important roles in sediment transport. For alongslope processes, the South China Sea Branch of Kuroshio Current (SCSBKC) and the Deep Water Current (DWC) transport sediments from southwestern Taiwan, while the Intermediate Water Current (IWC) can carry sediments from Hainan, the Red River or the Indochina Peninsula. For downslope processes, gravity flows transport materials from the Pearl River delta and shelf to the slope. Moreover, seafloor bathymetry influences sediment transport by altering the pathways of ocean currents. Temporally, the impacts of sea level and monsoon rainfall fluctuations are always superimposed over the last 150 ka. Sea level fluctuations could significantly change the distance from the Pearl River estuary to the slope, while variations in the East Asian summer monsoon (EASM) rainfall would affect continental erosion rates in the source regions.
. Spatiotemporal patterns of sediment deposition on the northern slope of the South China Sea in the last 150,000 years[J]. , 2021, 10(3): 399-415.
. Spatiotemporal patterns of sediment deposition on the northern slope of the South China Sea in the last 150,000 years[J]. Journal of Palaeogeography, 2021, 10(3): 399-415.
[1] Andrews J.E.,P. Brimblecombe,T.D. Jickells,P.S. Liss, and B. Reid.2003. An Introduction to Environmental Chemistry, 2nd Edition, pp. 104-110. New York: John Wiley & Sons. [2] Berger A.,M.F. Loutre.1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10 (4): 297-317. https://doi.org/10.1016/0277-3791(91)90033-Q. [3] Boulay S.,C. Colin, A. Trentesaux, N. Frank, and Z. Liu. 2005. Sediment sources and East Asian monsoon intensity over the last 450 ky. Mineralogical and geochemical investigations on South China Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 228 (3-4): 260-277. https://doi.org/10.1016/j.palaeo.2005.06.005. [4] Cao L.,J.G. Liu, X.F. Shi, W. He, and Z. Chen. 2019. Source-to-sink processes of fluvial sediments in the northern South China Sea: Constraints from river sediments in the coastal region of South China. Journal of Asian Earth Sciences 185: 104020. https://doi.org/10.1016/j.jseaes.2019.104020. [5] Chen C.H.,T. Lee.1990. A Nd-Sr isotopic study on river sediments of Taiwan.Proceedings of the Geological Society of China 33(4): 339-350. [6] Chen H.,X.N. Xie, D. Van Rooij, T. Vandorpe, M. Su, and D.X. Wang. 2014. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin, South China Sea. Marine Geology 355: 36-53. https://doi.org/10.1016/j.margeo.2014.05.008. [7] Chen Q.,C. Kissel, and Z.F. Liu. 2017b. Late Quaternary climatic forcing on the terrigenous supply in the northern South China Sea: Input from magnetic studies. Earth and Planetary Science Letters 471: 160-171. https://doi.org/10.1016/j.epsl.2017.04.047. [8] Chen Q.,Z.F. Liu, and C. Kissel.2017a. Clay mineralogical and geochemical proxies of the East Asian summer monsoon evolution in the South China Sea during Late Quaternary. Scientific Reports 7: 42083. https://doi.org/10.1038/srep42083. [9] Cheng H.,R.L. Edwards,A. Sinha,C. Spötl,L. Yi,S.T. Chen,M. Kelly,G. Kathayat,X.F. Wang,X.L. Li,X.G. Kong,Y.J. Wang,Y.F. Ning, and H.W. Zhang.2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534 (7609): 640-646. https://doi.org/10.1038/nature18591. [10] Clift P.D. 2006. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth and Planetary Science Letters 241 (3-4): 571-580. https://doi.org/10.1016/j.epsl.2005.11.028 [11] Clift P.D.2020. Asian monsoon dynamics and sediment transport in SE Asia. Journal of Asian Earth Sciences 195: 104352. https://doi.org/10.1016/j.jseaes.2020.104352. [12] Clift P.,J.I. Lee,M.K. Clark, and J. Blusztajn.2002. Erosional response of South China to arc rifting and monsoonal strengthening; a record from the South China Sea. Marine Geology 184 (3-4): 207-226. https://doi.org/10.1016/S0025-3227(01)00301-2. [13] Clift P.D.,S.M. Wan, and J. Blusztajn. 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25Ma in the northern South China Sea: A review of competing proxies. Earth-Science Reviews 130: 86-102. https://doi.org/10.1016/j.earscirev.2014.01.002. [14] Fedo C.M.,H.W. Nesbitt, and G.M. Young.1995. Unraveling the effects of potassium metasomatism in sedimentary-rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23 (10): 921-924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2. [15] Ge Q.,F.Y. Chu,Z. Xue,J.P. Liu,Y.S. Du, and Y.X. Fang.2010. Paleoenvironmental records from the northern South China Sea since the Last Glacial Maximum. Acta Oceanologica Sinica 29 (3): 46-62. https://doi.org/10.1007/s13131-010-0036-9. [16] Ge Q.,J.P. Liu,Z. Xue, and F.Y. Chu.2014. Dispersal of the Zhujiang River (Pearl River) derived sediment in the Holocene. Acta Oceanologica Sinica 33 (8): 1-9. https://doi.org/10.1007/s13131-014-0407-8. [17] Gong C.L.,Y.M. Wang,W.L. Zhu,W.G. Li, and Q. Xu.2013. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea. AAPG Bulletin 97 (2): 285-308. https://doi.org/10.1306/07121211159. [18] Gonneea M.E., andA. Paytan. 2006. Phase associations of barium in marine sediments. Marine Chemistry 100 (1): 124-135. https://doi.org/10.1016/j.marchem.2005.12.003. [19] Hammer Ø.,D.A.T. Harper, and P.D. Ryan.2001. PAST: paleontological statistics software package for education and data analysis.Palaeontologia Electronica 4(1): 1-9. [20] Hatano N.,K. Yoshida, and E. Sasao. 2019. Effects of grain size on the chemical weathering index: A case study of Neogene fluvial sediments in southwest Japan. Sedimentary Geology 386: 1-8. https://doi.org/10.1016/j.sedgeo.2019.03.017. [21] Hu B.Q.,J. Li, R.Y. Cui, H.L. Wei, J.T. Zhao, G.G. Li, X.S. Fang, X. Ding, L. Zou, and F.L. Bai. 2014. Clay mineralogy of the riverine sediments of Hainan Island, South China Sea: Implications for weathering and provenance. Journal of Asian Earth Sciences 96: 84-92. https://doi.org/10.1016/j.jseaes.2014.08.036. [22] Hu D.K.,P. Böning, C.M. Köhler, S. Hillier, N. Pressling, S.M. Wan, H.J. Brumsack, and P.D. Clift. 2012. Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14 ka in the South China Sea. Chemical Geology 326-327: 1-18. https://doi.org/10.1016/j.chemgeo.2012.07.024. [23] Hu D.K.,P.D. Clift,P. Böning,R. Hannigan,S. Hillier,J. Blusztajn,S.M. Wan, and D.Q. Fuller.2013. Holocene evolution in weathering and erosion patterns in the Pearl River delta. Geochemistry, Geophysics, Geosystems 14 (7): 2349-2368. https://doi.org/10.1002/ggge.20166. [24] Hu D.K.,P.D. Clift,S.M. Wan,P. Böning,R. Hannigan,S. Hillier, and J. Blusztajn.2016. Testing chemical weathering proxies in Miocene-Recent fluvial-derived sediments in the South China Sea. Geological Society, London, Special Publications 429 (1): 45-72. https://doi.org/10.1144/sp429.5. [25] Huang J.,A.C. Li, and S.M. Wan. 2011. Sensitive grain-size records of Holocene East Asian summer monsoon in sediments of northern South China Sea slope. Quaternary Research 75 (3): 734-744. https://doi.org/10.1016/j.yqres.2011.03.002. [26] Huang J.,S.M. Wan, Z.F. Xiong, D.B. Zhao, X.T. Liu, A.C. Li, and T.G. Li. 2016. Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology 441: 871-881. https://doi.org/10.1016/j.palaeo.2015.10.036. [27] Huang W.,P.X. Wang.2006. Sediment mass and distribution in the South China Sea since the Oligocene. Science in China Series D: Earth Sciences 49 (11): 1147-1155. https://doi.org/10.1007/s11430-006-2019-4. [28] Huybers P.2006. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313 (5786): 508-511. https://doi.org/10.1126/science.1125249. [29] Israeli Y., andS. Emmanuel. 2018. Impact of grain size and rock composition on simulated rock weathering. Earth Surface Dynamics 6 (2): 319-327. https://doi.org/10.5194/esurf-6-319-2018. [30] Jiang H.,S. Björck,L.H. Ran,Y. Huang, and J.Y. Li.2006. Impact of the Kuroshio Current on the South China Sea based on a 115000 year diatom record. Journal of Quaternary Science 21 (4): 377-385. https://doi.org/10.1002/jqs.1000. [31] Kissel C.,Z. Jian,H. Leau.2012. MD190-CIRCEA cruise report, les rapports de cam-pagne à la mer. Institut polaire français Paul-Émile Victor, Brest. [32] Lan C.Y.,C.S. Lee,J.J.S. Shen,C.Y. Lu,S.A. Mertzman, and T.W. Wu.2002. Nd-Sr isotopic composition and geochemistry of sediments from Taiwan and their implications.Western Pacific Earth Sciences 2(2): 205-222. [33] Leleyter L.,C. Rousseau, L. Biree, and F. Baraud. 2012. Comparison of EDTA, HCl and sequential extraction procedures, for selected metals (Cu, Mn, Pb, Zn), in soils, riverine and marine sediments. Journal of Geochemical Exploration 116: 51-59. https://doi.org/10.1016/j.gexplo.2012.03.006 [34] Li H.,B.Q. Huang, and N. Wang. 2017. Changes of the palaeo-sea surface productivity and bottom water dissolved oxygen content at MD12-3429, northern South China Sea. Acta Palaeontologica Sinica 56 (2): 238-248. https://doi.org/10.19800/j.cnki.aps.2017.02.010 (in Chinese with English abstract). [35] Lisiecki L.E.,M.E. Raymo.2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20 (1): PA1003. https://doi.org/10.1029/2004PA001071. [36] Liu B.L.,Y.P. Wang, X. Su, and H.Y. Zheng. 2013. Elemental geochemistry of northern slope sediments from the South China Sea: Implications for provenance and source area weathering since Early Miocene. Geochemistry 73 (1): 61-74. https://doi.org/10.1016/j.chemer.2012.11.005. [37] Liu J.G.,R. Xiang, M.H. Chen, Z. Chen, W. Yan, and F. Liu. 2011. Influence of the Kuroshio current intrusion on depositional environment in the Northern South China Sea: Evidence from surface sediment records. Marine Geology 285: 59-68. https://doi.org/10.1016/j.margeo.2011.05.010. [38] Liu J.G.,S. Steinke, C. Vogt, M. Mohtadi, R. De Pol-Holz, and D. Hebbeln. 2017. Temporal and spatial patterns of sediment deposition in the northern South China Sea over the last 50,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 465: 212-224. https://doi.org/10.1016/j.palaeo.2016.10.033. [39] Liu J.P.,C.S. Liu, K.H. Xu, J.D. Milliman, J.K. Chiu, S.J. Kao, and S.W. Lin. 2008. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology 256 (1-4): 65-76. https://doi.org/10.1016/j.margeo.2008.09.007. [40] Liu Z.F.,A. Trentesaux,S.C. Clemens, and P.X. Wang.2003a. Quaternary clay mineralogy in the northern South China Sea (ODP Site 1146). Science in China Series D: Earth Sciences 46 (12): 1223-1235. https://doi.org/10.1360/02yd0107. [41] Liu Z.F.,A. Trentesaux,S.C. Clemens,C. Colin,P.X. Wang,B.Q. Huang, and S. Boulay.2003b. Clay mineral assemblages in the northern South China Sea: Implications for East Asian monsoon evolution over the past 2 million years. Marine Geology 201 (1): 133-146. https://doi.org/10.1016/S0025-3227(03)00213-5. [42] Liu Z.F.,C. Colin,W. Huang,K.P. Le,S.Q. Tong,Z. Chen, and A. Trentesaux.2007. Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry, Geophysics, Geosystems 8 (5): Q05005. https://doi.org/10.1029/2006GC001490. [43] Liu Z.F.,C. Colin, X.J. Li, Y.L. Zhao, S.T. Tuo, Z. Chen, F.P. Siringan, J.T. Liu, C.Y. Huang, C.F. You, and K.F. Huang. 2010. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Marine Geology 277 (1): 48-60. https://doi.org/10.1016/j.margeo.2010.08.010. [44] Liu Z.F.,Y.L. Zhao, C. Colin, F.P. Siringan, and Q. Wu. 2009. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments. Applied Geochemistry 24 (11): 2195-2205. https://doi.org/10.1016/j.apgeochem.2009.09.025. [45] Liu Z.F.,Y.L. Zhao, C. Colin, K. Stattegger, M.G. Wiesner, C. Huh, Y.W. Zhang, X.J. Li, P. Sompongchaiyakul, C.F. You, C.Y. Huang, J.T. Liu, F.P. Siringan, K.P. Le, E. Sathiamurthy, W.S. Hantoro, J.G. Liu, S.T. Tuo, S.H. Zhao, S.W. Zhou, Z.D. He, Y.C. Wang, S. Bunsomboonsakul, and Y.L. Li. 2016. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews 153: 238-273. https://doi.org/10.1016/j.earscirev.2015.08.005. [46] Luan X.W.,L. Zhang, and X.C. Peng.2012. Dongsha erosive channel on northern South China Sea Shelf and its induced Kuroshio South China Sea Branch. Science China Earth Sciences 55 (1): 149-158. https://doi.org/10.1007/s11430-011-4322-y. [47] McGee, D., A. Donohoe, J. Marshall, and D. Ferreira. 2014. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth and Planetary Science Letters 390: 69-79. https://doi.org/10.1016/j.epsl.2013.12.043. [48] Milliman, J.D.,K.L. Farnsworth. 2011. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge: Cambridge University Press. [49] Nan F.,H.J. Xue, and F. Yu. 2015. Kuroshio intrusion into the South China Sea: A review. Progress in Oceanography 137: 314-333. https://doi.org/10.1016/j.pocean.2014.05.012. [50] Nesbitt H.W.,G.M. Young.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299 (5885): 715-717. https://doi.org/10.1038/299715a0. [51] Nesbitt H.W.,G.M. Young.1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48 (7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3. [52] Nesbitt H.W.,G.M. Young.1989. Formation and diagenesis of weathering profiles. The Journal of Geology 97 (2): 129-147. https://doi.org/10.1086/629290. [53] Qiu Y.,L. Li,C.T.A. Chen,X.G. Guo, and C.S. Jing.2011. Currents in the Taiwan Strait as observed by surface drifters. Journal of Oceanography 67 (4): 395-404. https://doi.org/10.1007/s10872-011-0033-4. [54] Qu H.X., andB.Q. Huang. 2019. Paleoclimate change reflected by element ratios of terrigenous sediments from deep-sea oxygen isotope MIS6 to MIS5 at MD12-3432 station in northern South China Sea. Earth Science Frontiers 26 (3): 236-242. https://doi.org/10.13745/j.esf.sf.2019.4.18 (in Chinese with English abstract). [55] Qu T.D.,J.B. Girton, and J.A. Whitehead.2006. Deepwater overflow through Luzon Strait. Journal of Geophysical Research: Oceans 111 (C1). https://doi.org/10.1029/2005JC003139. [56] Schulz M.,M. Mudelsee.2002. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences 28 (3): 421-426. https://doi.org/10.1016/S0098-3004(01)00044-9. [57] Selvaraj K.,C.T.A. Chen.2006. Moderate chemical weathering of subtropical Taiwan: Constraints from solid-phase geochemistry of sediments and sedimentary rocks. The Journal of Geology 114 (1): 101-116. https://doi.org/10.1086/498102. [58] Shanmugam G.2006. The tsunamite problem. Journal of Sedimentary Research 76 (5): 718-730. https://doi.org/10.2110/jsr.2006.073. [59] Shao L.,P.J. Qiao,X. Pang,G.J. Wei,Q.Y. Li,W.L. Miao, and A. Li.2008. Nd isotopic variations and its implications in the recent sediments from the northern South China Sea. Chinese Science Bulletin 54 (2): 311. https://doi.org/10.1007/s11434-008-0453-8. [60] Shao L.,X.J. Li,J.H. Geng,X. Pang,Y.C. Lei,P.J. Qiao,L.L. Wang, and H.B. Wang.2007. Deep water bottom current deposition in the northern South China Sea. Science in China Series D: Earth Sciences 50 (7): 1060-1066. https://doi.org/10.1007/s11430-007-0015-y. [61] Shao L.,Y.C. Cui,K. Stattegger,W.L. Zhu,P.J. Qiao, and Z.G. Zhao.2019. Drainage control of Eocene to Miocene sedimentary records in the southeastern margin of Eurasian Plate. GSA Bulletin 131 (3-4): 461-478. https://doi.org/10.1130/B32053.1. [62] Shaw P.T.,S.Y. Chao.1994. Surface circulation in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers 41 (11): 1663-1683. https://doi.org/10.1016/0967-0637(94)90067-1. [63] Spratt R.M., andL.E. Lisiecki. 2016. A late Pleistocene sea level stack. Climate of the Past 12 (4): 1079-1092. https://doi.org/10.5194/cp-12-1079-2016. [64] Sun Q.L.,J. Cartwright, S.G. Wu, G.F. Zhong, S.H. Wang, and H.L. Zhang. 2016. Submarine erosional troughs in the northern South China Sea: Evidence for Early Miocene deepwater circulation and paleoceanographic change. Marine and Petroleum Geology 77: 75-91. https://doi.org/10.1016/j.marpetgeo.2016.06.005. [65] Tamburini F.,T. Adatte,K. Föllmi,S.M. Bernasconi, and P. Steinmann.2003. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0-140 000 years): Mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea. Marine Geology 201 (1): 147-168. https://doi.org/10.1016/S0025-3227(03)00214-7. [66] Tribovillard N.,T.J. Algeo, T. Lyons, and A. Riboulleau. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232 (1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012. [67] Wan S.M.,L. Qin, S.Y. Yang, D.B. Zhao, J. Zhang, D.F. Jiao, G.Q. Cai, W.Q. Pei, H.M. Gong, Z.K. Xu, J. Huang, Z.J. Yu, H.L. Jin, A.C. Li, and T.G. Li. 2020. South China Sea shelf weathering in glacial periods and its link to carbon cycle. Quaternary Sciences 40 (6): 1532-1549. https://doi.org/10.11928/j.issn.1001-7410.2020.06.14 (in Chinese with English abstract). [68] Wan S.M.,A.C. Li, P.D. Clift, and J.B.W. Stuut. 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 254 (3-4): 561-582. https://doi.org/10.1016/j.palaeo.2007.07.009. [69] Wan S.M.,A.C. Li, P.D. Clift, S.G. Wu, K.H. Xu, and T.G. Li. 2010a. Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3 Ma. Marine Geology 278 (1): 115-121. https://doi.org/10.1016/j.margeo.2010.09.008. [70] Wan S.M.,P.D. Clift,A.C. Li,T.G. Li, and X.B. Yin.2010b. Geochemical records in the South China Sea: Implications for East Asian summer monsoon evolution over the last 20 Ma. Geological Society, London, Special Publications 342 (1): 245-263. https://doi.org/10.1144/sp342.14. [71] Wan S.M.,P.D. Clift, D.B. Zhao, N. Hovius, G. Munhoven, C. France-Lanord, Y.X. Wang, Z.F. Xiong, J. Huang, Z.J. Yu, J. Zhang, W.T. Ma, G.L. Zhang, A.C. Li, and T.G. Li. 2017. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2. Geochimica et Cosmochimica Acta 200: 123-144. https://doi.org/10.1016/j.gca.2016.12.010. [72] Wang D.X.,B. Hong, J.P. Gan, and H.Z. Xu. 2010. Numerical investigation on propulsion of the counter-wind current in the northern South China Sea in winter. Deep Sea Research Part I: Oceanographic Research Papers 57 (10): 1206-1221. https://doi.org/10.1016/j.dsr.2010.06.007. [73] Wang D.X.,Q. Wang,W.D. Zhou,S.Q. Cai,L. Li, and B. Hong.2013. An analysis of the current deflection around Dongsha Islands in the northern South China Sea. Journal of Geophysical Research: Oceans 118 (1): 490-501. https://doi.org/10.1029/2012JC008429. [74] Wang N.,B.Q. Huang, Y.T. Dong, and X. Xie. 2018b. The evolution of deepwater dissolved oxygen in the northern South China Sea since 400 ka. Palaeoworld 27 (2): 301-308. https://doi.org/10.1016/j.palwor.2017.11.001. [75] Wang X.X.,H.T. Zhuo, Y.M. Wang, P.X. Mao, M. He, W.T. Chen, J.W. Zhou, S.M. Gao, and M.H. Wang. 2018a. Controls of contour currents on intra-canyon mixed sedimentary processes: Insights from the Pearl River Canyon, northern South China Sea. Marine Geology 406: 193-213. https://doi.org/10.1016/j.margeo.2018.09.016. [76] Wei G.J.,Y. Liu,X.H. Li,L. Shao, and X.R. Liang.2003. Climatic impact on Al, K, Sc and Ti in marine sediments: Evidence from ODP Site 1144, South China Sea. Geochemical Journal 37 (5): 593-602. https://doi.org/10.2343/geochemj.37.593. [77] Wei G.J.,X.H. Li,Y. Liu,L. Shao, and X.R. Liang.2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography 21 (4): PA4214. https://doi.org/10.1029/2006PA001300. [78] Wei G.J.,Y. Liu, J.L. Ma, L.H. Xie, J.F. Chen, W.F. Deng, and S. Tang. 2012. Nd, Sr isotopes and elemental geochemistry of surface sediments from the South China Sea: Implications for Provenance Tracing. Marine Geology 319-322: 21-34. https://doi.org/10.1016/j.margeo.2012.05.007. [79] Xiong S.F.,Z.L. Ding, Y.J. Zhu, R. Zhou, and H.J. Lu. 2010. A ∼6 Ma chemical weathering history, the grain size dependence of chemical weathering intensity, and its implications for provenance change of the Chinese loess-red clay deposit. Quaternary Science Reviews 29 (15-16): 1911-1922. https://doi.org/10.1016/j.quascirev.2010.04.009. [80] Zhang H.,L. Shao,G.C. Zhang,Y.C. Cui,Z.G. Zhao, and Y.L. Hou.2020. The response of Cenozoic sedimentary evolution coupled with the formation of the South China Sea. Geological Journal 55 (10): 6989-7010. https://doi.org/10.1002/gj.3856. [81] Zhang J.,X.W. Meng, and X.Q. Wang. 2013. The record of major element ratios in Late Quaternary at northern slope of the South China Sea and its indicative significance on the cooling events. Acta Oceanologica Sinica 35 (4): 106-111. https://doi.org/10.3969/j.issn.0253-4193.2013.04.013 (in Chinese with English abstract). [82] Zhao D.B.,S.M. Wan, P.D. Clift, R. Tada, J. Huang, X.B. Yin, R.Q. Liao, X.Y. Shen, X.F. Shi, and A.C. Li. 2018. Provenance, sea-level and monsoon climate controls on silicate weathering of Yellow River sediment in the northern Okinawa Trough during late last glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 490: 227-239. https://doi.org/10.1016/j.palaeo.2017.11.002. [83] Zhao W.,C. Zhou,J.W. Tian,Q.X. Yang,B. Wang,L.L. Xie, and T.D. Qu.2014. Deep water circulation in the Luzon Strait. Journal of Geophysical Research: Oceans 119 (2): 790-804. https://doi.org/10.1002/2013JC009587. [84] Zhao Y.L.,Z.F. Liu, Y.W. Zhang, J.R. Li, M. Wang, W.G. Wang, and J.P. Xu. 2015. In situ observation of contour currents in the northern South China Sea: Applications for deepwater sediment transport. Earth and Planetary Science Letters 430: 477-485. https://doi.org/10.1016/j.epsl.2015.09.008. [85] Zhong Y.,Z. Chen, L. Li, J.G. Liu, G. Li, X.F. Zheng, S.H. Wang, and A.B. Mo. 2017. Bottom water hydrodynamic provinces and transport patterns of the northern South China Sea: Evidence from grain size of the terrigenous sediments. Continental Shelf Research 140: 11-26. https://doi.org/10.1016/j.csr.2017.01.023. [86] Zhou H.,L.J. Liu, Y.Q. Xu, Q.J. Zhou, and S. Gao. 2018. Sediment characteristics and paleoenvironmental significance of Core DLW3101 from northern slope of the South China Sea. Acta Oceanologica Sinica 40 (7): 103-115. https://doi.org/10.3969/j.issn.0253-4193.2018.07.009 (in Chinese with English abstract). [87] Zhou W.J.,X.F. Lu,Z.K. Wu,L. Deng,A.J.T. Jull,D. Donahue, and W. Beck.2002. Peat record reflecting Holocene climatic change in the Zoigê Plateau and AMS radiocarbon dating. Chinese Science Bulletin 47 (1): 66-70. https://doi.org/10.1360/02tb9013. [88] Zhu M.Z.,S. Graham, X. Pang, and T. McHargue. 2010. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea. Marine and Petroleum Geology 27 (1): 307-319. https://doi.org/10.1016/j.marpetgeo.2009.05.005.