First record of stable isotopes (δ13C, δ18O) and element ratios (Mg/Ca, Sr/Ca) of Middle to Late Jurassic belemnites from the Indian Himalayas and their potential for palaeoenvironmental reconstructions
Matthias Alberti1,*, Franz T. Fürsich2, Dhirendra K. Pandey3,4, Nils Andersen5, Dieter Garbe-Schönberg6, Suraj Bhosale4, Ketan Chaskar4, Jörg M. Habermann2
1State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Center for Research and Education on Biological Evolution and Environment and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, Jiangsu Province, China; 2GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstraße 28, 91054 Erlangen, Germany; 3Department of Geology, School of Earth, Biological and Environmental Science, Central University of South Bihar SH 7, Gaya-Panchanpur Road, Village Karhara, Post Fatehpur, Gaya 824236 (Bihar), India; 4Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj, India; 5Leibniz Laboratory for Radiometric Dating and Stable Isotope Research, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 11, 24118 Kiel, Germany; 6Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany
Abstract Middle to Late Jurassic belemnites from the Spiti and Zanskar valleys in the Indian Himalayas were used for stable isotope (δ13C, δ18O) and element (Mg/Ca, Sr/Ca) analyses. Although the Himalayan orogeny deformed and altered a large portion of the collected fossils, cathodoluminescence and scanning electron microscopy in combination with analyses of iron and manganese contents allowed the identification of belemnites believed to still retain their original chemical composition. Results indicate a long-term temperature decrease from the Middle Callovian-Oxfordian to the Tithonian, which is proposed to have been caused by a concomitant drift of eastern Gondwana into higher palaeolatitudes. Reconstructed absolute temperatures depend on the used equation and assumed δ18O value of seawater, but most likely varied between 17.6°C to 27.6°C in the Kimmeridgian and Tithonian with average values between 22°C to 24°C. This way, temperatures were similar to slightly warmer than today at comparable latitudes. The reconstruction of absolute temperatures for the Middle Callovian-Oxfordian was hindered by a larger number of poorly preserved belemnites representing this time interval.
. First record of stable isotopes (δ13C, δ18O) and element ratios (Mg/Ca, Sr/Ca) of Middle to Late Jurassic belemnites from the Indian Himalayas and their potential for palaeoenvironmental reconstructions[J]. , 2021, 10(3): 416-437.
. First record of stable isotopes (δ13C, δ18O) and element ratios (Mg/Ca, Sr/Ca) of Middle to Late Jurassic belemnites from the Indian Himalayas and their potential for palaeoenvironmental reconstructions[J]. Journal of Palaeogeography, 2021, 10(3): 416-437.
[1] Ait-Itto F.-Z.,G.D. Price,A. Ait Addi,D. Chafiki, and I. Mannani.2017. Bulk-carbonate and belemnite carbon-isotope records across the Pliensbachian-Toarcian boundary on the northern margin of Gondwana (Issouka, Middle Atlas, Morocco).Palaeogeography, Palaeoclimatology, Palaeoecology 466: 128-136. [2] Alberti M.,A. Agnieszka,F.T. Fürsich,N. Andersen, and P. Ziółkowski.2019. The Middle to Upper Jurassic stable isotope record of Madagascar: Linking temperature changes with plate tectonics during the break-up of Gondwana.Gondwana Research 73: 1-15. [3] Alberti M.,D.K. Pandey,M. Hethke, and F.T. Fürsich.2015. Ammonites of the subfamily Mayaitinae Spath, 1928 from the Oxfordian of Kachchh, Western India.Geobios 48: 85-130. [4] Alberti M.,F.T. Fürsich,A.A. Abdelhady, and N. Andersen.2017. Middle to Late Jurassic equatorial seawater temperatures and latitudinal temperature gradients based on stable isotopes of brachiopods and oysters from Gebel Maghara, Egypt.Palaeogeography, Palaeoclimatology, Palaeoecology 468: 301-313. [5] Alberti M.,F.T. Fürsich, and D.K. Pandey.2012a. The Oxfordian stable isotope record(δ18O, δ13C) of belemnites, brachiopods, and oysters from the Kachchh Basin (western India) and its potential for palaeoecologic, palaeoclimatic, and palaeogeographic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 344-345: 49-68. [6] Alberti M.,F.T. Fürsich,D.K. Pandey, and M. Ramkumar.2012b. Stable isotope analyses of belemnites from the Kachchh Basin, western India: Paleoclimatic implications for the Middle to Late Jurassic transition.Facies 58: 261-278. [7] Alberti M.,H. Parent,A.C. Garrido,N. Andersen,D. Garbe-Schönberg, and S. Danise.2020b. Stable isotopes(δ13C, δ18O) and element ratios (Mg/Ca, Sr/Ca) of Jurassic belemnites, bivalves and brachiopods from the Neuquén Basin (Argentina): Challenges and opportunities for palaeoenvironmental reconstructions. Journal of the Geological Society, London 178: jgs2020-163. [8] Alberti M.,Y. Leshno,F.T. Fürsich,Y. Edelman-Furstenberg N. Andersen, and D. Garbe-Schönberg.2020a. Stress in the tropics? Impact of a latitudinal seawater δ18O gradient on Middle Jurassic temperature reconstructions at low latitudes.Geology 48: 1210-1215. [9] Anderson, T.F.,M.A. Arthur. 1983. Stable isotopes of oxygen and carbon and their application to sedimentological and paleoenvironmental problems. In: Stable isotopes in sedimentary geology. SEPM Short Course, vol. 10, ed. M.A. Arthur, T.F. Anderson, I.R. Kaplan, J. Veizer, and L. Land, pp. 1-151. [10] Arabas A.2016. Middle-Upper Jurassic stable isotope records and seawater temperature variations: New palaeoclimate data from marine carbonate and belemnite rostra (Pieniny Klippen Belt, Carpathians).Palaeogeography, Palaeoclimatology, Palaeoecology 446: 284-294. [11] Arabas A.,J. Schlögel, and C. Meister2017. Early Jurassic carbon and oxygen isotope records and seawater temperature variations: Insights from marine carbonate and belemnite rostra (Pieniny Klippen Belt, Carpathians).Palaeogeography, Palaeoclimatology, Palaeoecology 485: 119-135. [12] Bailey T.R.,Y. Rosenthal,J.M. McArthur,B. van de Schootbrugge, and M.F. Thirlwall.2003. Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: A possible link to the genesis of an oceanic anoxic event.Earth and Planetary Science Letters 212: 307-320. [13] Bajnai D.,J. Fiebig,A. Tomašových, S. Milner Garcia,C. Rollion-Bard J. Raddatz,N. Löffler,C. Primo-Ramos, and U. Brand.2018. Assessing kinetic fractionation in brachiopod calcite using clumped isotopes.Scientific Reports 8: 533. [14] Baud A.,M. Gaetani,E. Garzanti,E. Fois,A. Nicora, and A. Tintori.1984. Geological observations in southeastern Zanskar and adjacent Lahul area (northwestern Himalaya).Eclogae Geologicae Helvetiae 77: 171-197. [15] Bertle R.J.,T.J. Suttner.2005. New biostratigraphic data for the Chikkim Formation (Cretaceous, Tethya Himalaya, India).Cretaceous Research 26: 882-894. [16] Bertle R.J.,T.J. Suttner.2021. Facies, sequence stratigraphy and depositional environment of the Lower Cretaceous Giumal Formation in Spiti (Tethyan Himalaya, India).Marine and Petroleum Geology 128: 105009. [17] Besse J.,V. Courtillot.2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr.Journal of Geophysical Research 107: 2300. [18] Bhargava O.N.2008. An updated introduction to the Spiti Geology.Journal of the Palaeontological Society of India 53: 113-129. [19] Bhargava O.N.,U.K. Bassi.1998. Geology of Spiti-Kinnaur Himachal Himalaya.Memoirs of the Geological Survey of India 124: 1-210. [20] Blanford H.F.1864. On Dr. Gerard's collection of fossils from the Spiti valley, in the Asiatic Society's Museum.Journal of the Asiatic Society of Bengal 32: 124-138. [21] Bougeois L.,M. de Rafélis,G.-J. Reichart,L.J. de Nooijer, and G. Dupont-Nivet.2016. Mg/Ca in fossil oyster shells as palaeotemperature proxy, an example from the Palaeogene of Central Asia.Palaeogeography, Palaeoclimatology, Palaeoecology 441: 611-626. [22] Bowen R.1963. O18/O16 paleotemperature measurements on Mesozoic Belemnoidea from Neuquen and Santa Cruz provinces, Argentina.Journal of Paleontology 37: 714-718. [23] Brand U.,J. Veizer.1980. Chemical diagenesis of a multicomponent carbonate system — 1: Trace elements.Journal of Sedimentary Petrology 50: 1219-1236. [24] Brand U.,J. Veizer.1981. Chemical diagenesis of a multicomponent carbonate system — 2: Stable isotopes.Journal of Sedimentary Petrology 51: 987-997. [25] Brookfield M.E.,G.E.G. Westermann.1982. Mesozoic ammonites from the Spong Valley, Zanskar, N.W. India.Journal of the Geological Society of India 23: 263-266. [26] Cariou E.,R. Enay.1999. Les ammonites du Bathonien et du Callovien de Thakkhola (Népal Central): Biochronologie et intérêt paléobiogéographique.Geobios 32: 701-726. [27] Cariou E.,R. Enay, and Y. Almeras.1996. Découverte d’une faune d’ammonites callovienne dans les Spiti Shales himalayens à Spiti et chronostratigraphie comparée des successions du Jurassique moyen et supérieur de Spiti et du Népal central (Thakkhola).Comptes Rendus de l’Académie des Sciences 322: 861-868. [28] Cléroux C.,E. Cortijo,P. Anand,L. Labeyrie,F. Bassinot,N. Caillon, and J.-C. Duplessy.2008. Mg/Ca and Sr/Ca ratio in planktonic foraminifera: Proxies for upper water column temperature reconstruction. Paleoceanography 23: PA3214. [29] Coplen T.B.2007. Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory.Geochimica et Cosmochimica Acta 71: 3948-3957. [30] Craig H.1965. The measurement of oxygen isotope paleotemperatures. In: Stable isotopes in oceanographic studies and paleotemperatures. Consiglio Nazionale delle Ricerche Laboratorio di Geologia Nucleare, Pisa, ed. E. Tongiorgi, pp. 161-182. [31] Daëron M.,R.N. Drydale,M. Peral,D. Huyghe,D. Blamart,T.B. Coplen,F. Lartaud, and G. Zanchetta.2019. Most Earth-surface calcites precipitate out of isotopic equilibrium.Nature Communications 10: 429. [32] Danise S.,G.D. Price,M. Alberti, and S.M. Holland.2020. Isotopic evidence for partial geochemical decoupling between a Jurassic epicontinental sea and the open ocean.Gondwana Research 82: 97-107. [33] Davies A.J.,S. Davis, and C.M. John.2021. Evidence of taxonomic non-equilibrium effects in the clumped isotope composition of modern cephalopod carbonate.Chemical Geology 578: 120317. [34] Dera G.,B. Brigaud,F. Monna,R. Laffont,E. Pucéat,J.-F. Deconinck,P. Pellenard,M.M. Joachimski, and C. Durlet.2011. Climatic ups and downs in a disturbed Jurassic world.Geology 39: 215-218. [35] Eggins S.,P. Deckker, and J. Marshall.2003. Mg/Ca variation in planktonic foraminifera tests: implications for reconstructing palaeo-seawater temperature and habitat migration.Earth and Planetary Science Letters 212: 291-306. [36] Enay R.2009. Les faunes d'ammonites de l'Oxfordien au Tithonien et la biostratigraphie des Spiti-Shales (Callovien supérieur-Tithonien) de Thakkhola, Népal Central.Documents des Laboratoires de Géologie Lyon 166: 1-351. [37] Enay R.,E. Cariou.1997. Ammonite faunas and palaeobiogeography of the Himalayan belt during the Jurassic: Initiation of a Late Jurassic austral ammonite fauna.Palaeogeography, Palaeoclimatology, Palaeoecology 134: 1-38. [38] Epstein S.,R. Buchsbaum, and H.A. Lowenstam.1953. Revised carbonate-water isotopic temperature scale.Geological Society of America Bulletin 64: 1315-1325. [39] Epstein S.,R. Buchsbaum,H.A. Lowenstam, and H.C. Urey.1951. Carbonate-water isotopic temperature scale.Geological Society of America Bulletin 62: 417-426. [40] Fernandez A.,C. Korte,C.V. Ullmann,N. Looser,S. Wohlwend, and S.M. Bernasconi.2021. Reconstructing the magnitude of Early Toarcian (Jurassic) warming using the reordered clumped isotope compositions of belemnites.Geochimica et Cosmochimica Acta 293: 308-327. [41] Fürsich F.T.,I.B. Singh,M. Joachimski,S. Krumm,M. Schlirf, and S. Schlirf.2005. Palaeoclimatic reconstructions of the Middle Jurassic of Kachchh (western India): An integrated approach based on palaeoecological, oxygen isotopic, and clay mineralogical data.Palaeogeography, Palaeoclimatology, Palaeoecology 217: 289-309. [42] Gaetani M.,R. Casnedi,E. Fois,E. Garzanti,F. Jadoul,A. Nicora, and A. Tintori.1986. Stratigraphy of the Tethys Himalaya in Zanskar, Ladakh — Initial Report.Rivista Italiana di Paleontologia e Stratigrafia 91: 443-478. [43] Garzanti E.,F. Jadoul,A. Nicora, and F. Berra.1995. Triassic of Spiti (Tethys Himalaya, N India).Rivista Italiana di Paleontologia e Stratigrafia 101: 267-300. [44] Greaves M.,N. Caillon,H. Rebaubier,G. Bartoli,S. Bohaty,I. Cacho,L. Clarke,M. Cooper,C. Daunt,M. Delaney,P. deMenocal,A. Dutton,S. Eggins,H. Elderfield,D. Garbe-Schoenberg E. Goddard,D. Green,J. Groeneveld,D. Hastings,E. Hathorne,K. Kimoto,G. Klinkhammer,L. Labeyrie,D.W. Lea,T. Marchitto,M.A. Martínez-Botí P.G. Mortyn,Y. Ni,D. Nuernberg,G. Paradis,L. Pena,T. Quinn,Y. Rosenthal,A. Russell,T. Sagawa,S. Sosdian,L. Stott,K. Tachikawa,E. Tappa,R. Thunell, and P.A. Wilson.2008. Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry.Geochemistry, Geophysics, Geosystems 9: Q08010. [45] Gupta V.J.,S. Kumar.1975. Geology of Ladakh, Lahaul and Spiti regions of Himalaya with special reference to the stratigraphic position of flysch deposits.Geologische Rundschau 64: 540-563. [46] Hathorne E.C.,A. Gagnon,T. Felis,J. Adkins,R. Asami,W. Boer,N. Caillon,D. Case,K.M. Cobb,E. Douville,P. deMenocal,A. Eisenhauer,D. Garbe-Schönberg W. Geibert,S. Goldstein,K. Hughen,M. Inoue,H. Kawahata,M. Kölling,F.L. Cornec,B.K. Linsley,H.V. McGregor,P. Montagna,I.S. Nurhati,T.M. Quinn,J. Raddatz,H. Rebaubier,L. Robinson,A. Sadekov,R. Sherrell,D. Sinclair,A.W. Tudhope,G. Wei,H. Wong,H.C. Wu, and C.-F. You.2013. Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements.Geochemistry, Geophysics, Geosystems 14: 3730-3750. [47] Hodgson W.A.1966. Carbon and oxygen isotope ratios in diagenetic carbonates from marine sediments.Geochimica et Cosmochimica Acta 30: 1223-1233. [48] Hoffmann R.,K. Stevens.2019. The palaeobiology of belemnites — foundation for the interpretation of rostrum geochemistry.Biological Reviews 95: 94-123. [49] Holdhaus K.1912. Fauna of the Spiti Shales (Lamellibranchiata and Gastropoda). Memoirs of the Geological Survey of India, Palaeontologia Indica Series 15, 5, Part 2, Fasc. No. 4: 397-456. [50] Hudson J.D.1977. Stable isotopes and limestone lithification.Journal of the Geological Society, London 133: 637-660. [51] Jadoul F.,E. Fois,A. Tintori, and E. Garzanti.1985. Preliminary results on Jurassic stratigraphy in Zanskar (NW Himalaya).Rendiconti Società Geologica Italiana 8: 9-13. [52] Jadoul F.,E. Garzanti, and E. Fois.1990. Upper Triassic-Lower Jurassic stratigraphy and paleogeographic evolution of the Zanskar Tethys Himalaya (Zangla Unit).Rivista Italiana di Paleontologia e Stratigrafia 95: 351-396. [53] Jain K.P.,R. Garg,S. Kumar, and I.B. Singh.1984. Upper Jurassic dinoflagellate biostratigraphy of Spiti Shale (Formation), Malla Johar area, Tethys Himalaya, India.Journal of the Palaeontological Society of India 29: 67-83. [54] Jochum K.P.,U. Nohl,K. Herwig,E. Lammel,B. Stoll, and A.W. Hofmann.2007. GeoReM: A new geochemical database for reference materials and isotopic standards.Geostandards and Geoanalytical Research 29: 333-338. [55] Kele S.,S.F.M. Breitenbach,E. Capezzuoli,A.N. Meckler,M. Ziegler,I.M. Millan,T. Kluge,J. Deák,K. Hanselmann,C.M. John,H. Yan,Z. Liu, and S.M. Bernasconi.2015. Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6-95°C temperature range.Geochimica et Cosmochimica Acta 168: 172-192. [56] Kent D.V.,E. Irving.2010. Influence of inclination error in sedimentary rocks on the Triassic and Jurassic apparent pole wander path for North America and implications for Cordilleran tectonics.Journal of Geophysical Research 115: B10103. [57] Kim S.-T.,J.R. O'Neil.1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates.Geochimica et Cosmochimica Acta 61: 3461-3475. [58] Korte C.,S.P. Hesselbo,C.V. Ullmann,G. Dietl,M. Ruhl,G. Schweigert, and N. Thibault.2015. Jurassic climate mode governed by ocean gateway.Nature Communications 6: 10015. [59] Krishna J.1983. Callovian-Albian ammonoid stratigraphy and palaeobiogeography in the Indian sub-continent with special reference to the Tethys Himalaya.Himalayan Geology 11: 43-72. [60] Krishna J.,S. Kumar, and I.B. Singh.1982. Ammonoid stratigraphy of the Spiti Shale (Upper Jurassic), Tethys Himalaya, India.Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1982 (10): 580-592. [61] Lear C.H.,Y. Rosenthal, and N. Slowey.2002. Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration.Geochimica et Cosmochimica Acta 66: 3375-3387. [62] LeGrande A.N.,G.A. Schmidt.2006. Global gridded data set of the oxygen isotopic composition in seawater.Geophysical Research Letters 33: L12604. [63] Leng M.J.,J.D. Marshall.2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives.Quaternary Science Reviews 23: 811-831. [64] Li Q.,J.M. McArthur,P. Doyle,N. Janssen,M.J. Leng,W. Müller, and S. Reboulet.2013. Evaluating Mg/Ca in belemnite calcite as a palaeo-proxy.Palaeogeography, Palaeoclimatology, Palaeoecology 388: 98-108. [65] Lukeneder A.,T.J. Suttner, and R.J. Bertle.2013. New ammonoid taxa from the Lower Cretaceous Giumal Formation of the Tethyan Himalaya (northern India).Palaeontology 56: 991-1028. [66] Marshall J.D.1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation.Geological Magazine 129: 143-160. [67] Martinez M.,G. Dera.2015. Orbital pacing of carbon fluxes by a ~9-my eccentricity cycle during the Mesozoic.Proceedings of the National Academy of Sciences 112: 12604-12609. [68] McArthur J.M.,P. Doyle,M.J. Leng,K. Reeves,C.T. Williams,R. Garcia-Sanchez, and R.J. Howarth.2007. Testing palaeo-environmental proxies in Jurassic belemnites: Mg/Ca, Sr/Ca, Na/Ca, δ18O and δ13C.Palaeogeography, Palaeoclimatology, Palaeoecology 252: 464-480. [69] Mouchi V.,M. de Rafélis,F. Lartaud,M. Fialin, and E. Verrecchia.2013. Chemical labelling of oyster shells used for time-calibrated high-resolution Mg/Ca ratios: A tool for estimation of past seasonal temperature variations.Palaeogeography, Palaeoclimatology, Palaeoecology 373: 66-74. [70] Mutterlose J.,M. Malkoc,S. Schouten,J.S. Sinninghe Damsté, and A. Forster.2010. TEX86 and stable δ18O paleothermometry of Early Cretaceous sediments: Implications for belemnite ecology and paleotemperature proxy applications.Earth and Planetary Science Letters 298: 286-298. [71] Nelson C.S.,A.M. Smith.1996. Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: A synthesis and review.New Zealand Journal of Geology and Geophysics 39: 93-107. [72] Nunn E.V.,G.D. Price.2010. Late Jurassic (Kimmeridgian-Tithonian) stable isotopes (δ18O, δ13C) and Mg/Ca ratios: New palaeoclimatic data from Helmsdale, northeast Scotland.Palaeogeography, Palaeoclimatology, Palaeoecology 292: 325-335. [73] Oloriz F.,A. Tintori.1991. Upper Jurassic (Tithonian) ammonites from the Spiti Shales in western Zanskar (NW Himalayas).Rivista Italiana di Paleontologia e Stratigrafia 96: 461-486. [74] O'Neil, J.R., R.N. Clayton,T.K. Mayeda.1969. Oxygen isotope fractionation in divalent metal carbonates.Journal of Chemical Physics 51: 5547-5558. [75] Pandey B.,D.B. Pathak, and J. Krishna.2013. Preliminary remarks on new ammonoid collection from freshly exposed succession of the Spiti Formation between Lidang and Giumal, Spiti Valley, Himachal Himalaya, India.Himalayan Geology 34: 124-134. [76] Pathak D.B.1993. The first record of the ammonite genusHybonoticeras from the Himalaya and its biostratigraphic significance. Newsletters on Stratigraphy 28: 121-129. [77] Pathak D.B.1997. Ammonoid stratigraphy of the Spiti Shale Formation in Spiti Himalaya, India.Journal of the Geological Society of India 50: 191-200. [78] Pathak D.B.2007. Jurassic/Cretaceous boundary in the Spiti Himalaya, India.Journal of Palaeontological Society of India 52: 51-57. [79] Price G.D.,B.W. Sellwood.1997. "Warm" palaeotemperatures from high Late Jurassic palaeolatitudes (Falkland Plateau): Ecological, environmental or diagenetic controls?Palaeogeography, Palaeoclimatology, Palaeoecology 129: 315-327. [80] Price G.D.,D. Bajnai, and J. Fiebig.2020. Carbonate clumped isotope evidence for latitudinal seawater temperature gradients and the oxygen isotope composition of Early Cretaceous seas.Palaeogeography, Palaeoclimatology, Palaeoecology 552: 109777. [81] Price G.D.,M.B. Hart,P.R. Wilby, and K.N. Page.2015. Isotopic analysis of Jurassic (Callovian) mollusks from the Christian Malford Lagerstätte (UK): Implications for ocean water temperature estimates based on belemnoids.Palaios 30: 645-654. [82] Price G.D.,N.M.M. Janssen,M. Martinez,M. Company,J.H. Vandevelde, and S.T. Grimes.2018. A high-resolution belemnite geochemical analysis of Early Cretaceous (Valanginian-Hauterivian) environmental and climatic perturbations.Geochemistry, Geophysics, Geosystems 19: 3832-3843. [83] Prokoph A.,G.A. Shields, and J. Veizer.2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history.Earth-Science Reviews 87: 113-133. [84] Roche D.M.,Y. Donnadieu,E. Pucéat, and D. Paillard.2006. Effect of changes in δ18O content of the surface ocean on estimated sea surface temperatures in past warm climate. Paleoceanography 21: PA2023. [85] Sadji R.,A. Munnecke,M. Benhamou,M. Alberti,S. Belkhedim, and N. Ramdane.2021. Late Jurassic temperatures for the southern Tethyan margin based on belemnites δ18O from the Ouarsenis Mountains, northwestern Algeria.Palaeogeography, Palaeoclimatology, Palaeoecology 566: 110224. [86] Shackleton N.J.,J.P. Kennett.1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP sites 277, 279, and 281.Initial Reports of the Deep Sea Drilling Project 29: 743-755. [87] Shea D.J.,K.E. Trenberth, and R.W. Reynolds.1992. A global monthly sea surface temperature climatology.Journal of Climate 5: 987-1001. [88] Steuber T.,J. Veizer.2002. Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation.Geology 30: 1123-1126. [89] Stevens G.R.,R.N. Clayton.1971. Oxygen isotope studies on Jurassic and Cretaceous belemnites from New Zealand and their biogeographic significance.New Zealand Journal of Geology and Geophysics 14: 829-897. [90] Stoliczka F.1865. Geological sections across the Himalayan Mountains from Wangtu Bridge on the River Sutlej to Sungdo on the Indus, with an account of the formations in Spiti, accompanied by a revision of all known fossils from that district.Memoirs of the Geological Survey of India 5: 1-152. [91] Surge D.,K. Lohmann.2008. Evaluating Mg/Ca ratios as a temperature proxy in the estuarine oyster,Crassostrea virginica. Journal of Geophysical Research 113: G02001. [92] Takayanagi H.,R. Asami,O. Abe,T. Miyajima,H. Kitagawa,K. Sasaki, and Y. Iryu.2013. Intraspecific variations in carbon-isotope and oxygen-isotope compositions of a brachiopodBasiliola lucida collected off Okinawa-jima, southwestern Japan. Geochimica et Cosmochimica Acta 115: 115-136. [93] Tiwari R.S.,V.D.M. Vijaya, and R.S. Misra.1996. Palynological studies on a late Palaeozoic-Mesozoic Tethyan sequence in the Niti area of the Central Himalaya, Uttar Pradesh, India.Review of Palaeobotany and Palynology 94: 169-196. [94] Torsvik T.H.,R. van der Voo,U. Preeden,C. MacNiocaill,B. Steinberger,P.V. Doubrovine,D.J.J. van Hinsbergen,M. Domeier,C. Gaina,E. Tohver,J.G. Meert,P.J.A. McCausland, and L.R.M. Cocks.2012. Phanerozoic polar wander, palaeogeography and dynamics.Earth-Science Reviews 114: 325-368. [95] Tynan S.,B.N. Opdyke,M. Walczak,S. Eggins, and A. Dutton.2017. Assessment of Mg/Ca inSaccostrea glomerata(the Sydney rock oyster) shell as a potential temperature record. Palaeogeography, Palaeoclimatology, Palaeoecology 484: 79-88. [96] Uhlig V.1903. The fauna of the Spiti shales.Memoirs of the Geological Survey of India, Series 15, Vol. 4: 1-132. [97] Ullmann C.V.,C. Korte.2015. Diagenetic alteration in low-Mg calcite from macrofossils: A review.Geological Quarterly 59: 3-20. [98] Ullmann C.V.,H.J. Campbell,R. Frei, and C. Korte.2016. Oxygen and carbon isotope and Sr/Ca signature of high-latitude Permian to Jurassic calcite fossils from New Zealand and New Caledonia.Gondwana Research 38: 60-73. [99] Ullmann C.V.,S.P. Hesselbo, and C. Korte.2013. Tectonic forcing of Early to Middle Jurassic seawater Sr/Ca.Geology 41: 1211-1214. [100] Urey H.C.,H.A. Lowenstam,S. Epstein, and C.R. McKinney.1951. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States.Geological Society of America Bulletin 62: 399-416. [101] van Hinsbergen, D.J.J., L.V. de Groot, S.J. van Schalk, W. Spakman, P.K. Bijl, A. Sluijs, C.G. Langereis,H. Brinkhuis.2015. A paleolatitude calculator for paleoclimate studies.PLoS One 10: e0126946. [102] Vickers M.L.,A. Fernandez,S.P. Hesselbo,G.D. Price,S.M. Bernasconi,S. Lode,C.V. Ullmann,N. Thibault,I.W. Hougaard, and C. Korte.2020. Unravelling Middle to Late Jurassic palaeoceanographic and palaeoclimatic signals in the Hebrides Basin using belemnite clumped isotope thermometry.Earth and Planetary Science Letters 546: 116401. [103] Vijaya S.K.2002. Palynostratigraphy of the Spiti Shale (Oxfordian-Berriasian) of Kumaon Tethys Himalaya, Malla Johar area, India.Review of Palaeobotany and Palynology 122: 143-153. [104] Wierzbowski H.2002. Detailed oxygen and carbon isotope stratigraphy of the Oxfordian in Central Poland.International Journal of Earth Sciences 91: 304-314. [105] Wierzbowski H.2004. Carbon and oxygen isotope composition of Oxfordian-Early Kimmeridgian belemnite rostra: Palaeoenvironmental implications for Late Jurassic seas.Palaeogeography, Palaeoclimatology, Palaeoecology 203: 153-168. [106] Wierzbowski H.2015. Seawater temperatures and carbon isotope variations in Central European basins at the Middle-Late Jurassic transition (Late Callovian-Early Kimmeridgian).Palaeogeography, Palaeoclimatology, Palaeoecology 440: 506-523. [107] Wierzbowski H.,M. Joachimski.2007. Reconstruction of late Bajocian-Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (central Poland).Palaeogeography, Palaeoclimatology, Palaeoecology 254: 523-540. [108] Wierzbowski H.,D. Bajnai,U. Wacker,M.A. Rogov,J. Fiebig, and E.M. Tesakova.2018. Clumped isotope record of salinity variations in the Subboreal Province at the Middle-Late Jurassic transition.Global and Planetary Change 167: 172-189. [109] Wierzbowski H.,K. Dembicz, and T. Praszkier.2009. Oxygen and carbon isotope composition of Callovian-Lower Oxfordian (Middle-Upper Jurassic) belemnite rostra from central Poland: a record of a Late Callovian global sea-level rise?Palaeogeography, Palaeoclimatology, Palaeoecology 283: 182-194. [110] Zachos J.C.,L.D. Stott, and K.C. Lohmann.1994. Evolution of Early Cenozoic marine temperatures.Palaeoceanography 9: 353-387.