1 Bray F,Laversanne M,Sung H,et al.Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2024,74(3):229-263. 2 Xia C,Dong X,Li H,et al.Cancer statistics in China and United States,2022:profiles,trends,and determinants[J].Chin Med J(Engl.),2022,135(5):584-590. 3 吉雨婷,刘斯文,张芸萌,等.中美两国恶性肿瘤疾病负担、流行趋势及归因风险因素比较[J].中华肿瘤杂志,2024,46(7):646-656. 4 Waks AG,Winer EP.Breast cancer treatment:a review[J].JAMA,2019,321(3):288. 5 Ma Q,Dieterich LC,Detmar M.Multiple roles of lymphatic vessels in tumor progression[J].Curr Opin Immunol,2018,53:7-12. 6 Fujimoto N,Dieterich LC.Mechanisms and clinical significance of tumor lymphatic invasion[J].Cells,2021,10(10):2585. 7 Rakha E A,Martin S,Lee AHS,et al.The prognostic significance of lymphovascular invasion in invasive breast carcinoma[J].Cancer,2012,118(15):3670-3680. 8 程思佳,翟晓阳,周仕豪,等.基于术前MRI特征及定量参数列线图预测乳腺癌患者淋巴血管侵犯[J].磁共振成像,2024,15(5):111-118. 9 王立峰,海梦璐,张孝先,等.乳腺癌淋巴血管浸润的MRI影像研究[J].医药论坛杂志,2024,45(1):109-113. 10 韦姗姗,罗显廷,朱旭娜,等.MRI征象联合炎症指标对肿块型早期浸润性乳腺癌淋巴血管侵犯预测价值[J].广西医科大学学报,2024,41(3):436-443. 11 Du Y,Cai M,Zha H,et al.Ultrasound radiomics-based nomogram to predict lymphovascular invasion in invasive breast cancer:a multicenter,retrospective study[J].Eur Radiol,2024,34(1):136-148. 12 Zhang J,Wang G,Ren J,et al.Multiparametric MRI-based radiomics nomogram for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive ductal carcinoma[J].Eur Radiol,2022,32(6):4079-4089. 13 Zheng H,Jian L,Li L,et al.Delta-radiomics based on dynamic contrast-enhanced MRI for predicting lymphovascular invasion in invasive breast cancer[J].Acad Radiol,2024,31(5):1762-1772. 14 Jiang W,Meng R,Cheng Y,et al.Intra-and peritumoral based radiomics for assessment of lymphovascular invasion in invasive breast cancer[J].J Magn Reson Imaging,2024,59(2):613-625. 15 Aleskandarany MA,Sonbul SN,Mukherjee A,et al.Molecular mechanisms underlying lymphovascular invasion in invasive breast cancer[J].Pathobiology,2015,82(3-4):113-123. 16 Gonzalez J,Bahmad HF,Ocejo S,et al.The usefulness of elastin staining to detect vascular invasion in cancer[J].Int J Mol Sci,2023,24(20):15264. 17 刘冬,张太娟,党计锋.炎症反应驱动乳腺癌转移的研究进展[J].实用肿瘤学杂志,2024,38(05):336-341. 18 Kariri YA,Aleskandarany MA,Joseph C,et al.Molecular complexity of lymphovascular invasion:the role of cell migration in breast cancer as a prototype[J].Pathobiology,2020,87(4):218-231. 19 Kurozumi S,Joseph C,Sonbul S,et al.A key genomic subtype associated with lymphovascular invasion in invasive breast cancer[J].Br J Cancer,2019,120(12):1129-1136. 20 Shi X,Wang X,Yao W,et al.Mechanism insights and therapeutic intervention of tumor metastasis:latest developments and perspectives[J].Signal Transduct Target Ther,2024,9(1):192. 21 Lloyd AJ,Ryan ÉJ,Boland MR,et al.The histopathological and molecular features of breast carcinoma with tumour budding—a systematic review and meta-analysis[J].Breast Cancer Res Treat,2020,183(3):503-514. 22 林颖欣,张月华,张淦梅,等.免疫组化联合半定量法检测淋巴脉管间隙浸润在早期子宫内膜癌的预后价值[J].陆军军医大学学报,2022,44(13):1370-1377. 23 Van den Eynden GG,Van der Auwera I,Van Laere S J,et al.Distinguishing blood and lymph vessel invasion in breast cancer:a prospective immunohistochemical study[J].Br J Cancer,2006,94(11):1643-1649. 24 Kuhn E,Gambini D,Despini L,et al.Updates on lymphovascular invasion in breast cancer[J].Biomedicines,2023,11(3):968. 25 Nishimura R,Osako T,Okumura Y,et al.An evaluation of lymphovascular invasion in relation to biology and prognosis according to subtypes in invasive breast cancer[J].Oncol Lett,2022,24(2):245. 26 Houvenaeghel G,Cohen M,Classe JM,et al.Lymphovascular invasion has a significant prognostic impact in patients with early breast cancer,results from a large,national,multicenter,retrospective cohort study[J].ESMO Open,2021,6(6):100316. 27 Zhong YM,Tong F,Shen J.Lympho-vascular invasion impacts the prognosis in breast-conserving surgery:a systematic review and meta-analysis[J].BMC Cancer,2022,22(1):102. 28 Ryu YJ,Kang SJ,Cho JS,et al.Lymphovascular invasion can be better than pathologic complete response to predict prognosis in breast cancer treated with neoadjuvant chemotherapy[J].Medicine(Baltimore),2018,97(30):e11647. 29 Wei C,Deng Y,Wei S,et al.Lymphovascular invasion is a significant risk factor for non-sentinel nodal metastasis in breast cancer patients with sentinel lymph node(SLN)-positive breast cancer:a cross-sectional study[J].World J Surg Oncol,2023,21(1):386. 30 Uematsu T,Kasami M,Watanabe J,et al.Is lymphovascular invasion degree one of the important factors to predict neoadjuvant chemotherapy efficacy in breast cancer?[J].Breast Cancer Tokyo Jpn,2011,18(4):309-313. 31 Yang X,Fan X,Lin S,et al.Assessment of lymphovascular invasion in breast cancer using a combined MRI morphological features,radiomics,and deep learning approach based on dynamic contrast‐enhanced MRI[J].J Magn Reson Imaging,2024,59(6):2238-2249. 32 Liu W,Li L,Deng J,et al.A comprehensive approach for evaluating lymphovascular invasion in invasive breast cancer:leveraging multimodal MRI findings,radiomics,and deep learning analysis of intra-and peritumoral regions[J].Comput Med Imaging Graph,2024,116:102415. 33 Ge W,Fan X,Zeng Y,et al.Exploring habitats-based spatial distributions:improving predictions of lymphovascular invasion in invasive breast cancer[J].Acad Radiol,2024:S1076633224003556. 34 Chen Y,Wang L,Luo R,et al.Focal breast edema and breast edema score on T2-weighted images provides valuable biological information for invasive breast cancer[J].Insights Imaging,2023,14(1):73. 35 Liang R,Li F,Yao J,et al.Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer[J].Sci Rep,2024,14(1):16204. 36 Zhang C,Liang Z,Feng Y,et al.Risk factors for lymphovascular invasion in invasive ductal carcinoma based on clinical and preoperative breast MRI features:a retrospective study[J].Acad Radiol,2023,30(8):1620-1627. 37 Tagliafico AS,Piana M,Schenone D,et al.Overview of radiomics in breast cancer diagnosis and prognostication[J].Breast Edinb Scotl,2020,49:74-80. 38 Lambin P,Leijenaar RTH,Deist TM,et al.Radiomics:the bridge between medical imaging and personalized medicine[J].Nat Rev Clin Oncol,2017,14(12):749-762. 39 Conti A,Duggento A,Indovina I,et al.Radiomics in breast cancer classification and prediction[J].Semin Cancer Biol,2021,72:238-250. 40 Bera K,Braman N,Gupta A,et al.Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J].Nat Rev Clin Oncol,2022,19(2):132-146. 41 Stamoulou E,Spanakis C,Manikis G C,et al.Harmonization Strategies in Multicenter MRI-Based Radiomics[J].J Imaging,2022,8(11):303. 42 Whitney HM,Taylor NS,Drukker K,et al.Additive benefit of radiomics over size alone in the distinction between benign lesions and luminal a cancers on a large clinical breast MRI dataset[J].Acad Radiol,2019,26(2):202-209. 43 Guo W,Li H,Zhu Y,et al.Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data[J].J Med Imaging Bellingham Wash,2015,2(4):041007. 44 Tabnak P,HajiEsmailPoor Z,Baradaran B,et al.MRI-based radiomics methods for predicting Ki-67 expression in breast cancer:a systematic review and meta-analysis[J].Acad Radiol,2024,31(3):763-787. 45 Yu Y,Tan Y,Xie C,et al.Development and validation of a preoperative magnetic resonance imaging radiomics-based signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer[J].JAMA Netw Open,2020,3(12):e2028086. 46 Ma Q,Lu X,Chen Q,et al.Multiphases DCE-MRI radiomics nomogram for preoperative prediction of lymphovascular invasion in invasive breast cancer[J].Acad Radiol,2024,31(12):4743-4758. 47 Ma Q,Li Z,Li W,et al.MRI radiomics for the preoperative evaluation of lymphovascular invasion in breast cancer:A meta-analysis[J].Eur J Radiol,2023,168:111127. 48 Liu Z,Feng B,Li C,et al.Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast‐enhanced‐MRI‐based radiomics[J].J Magn Reson Imaging,2019,50(3):847-857. 49 Tang WJ,Kong QC,Cheng ZX,et al.Performance of radiomics models for tumour-infiltrating lymphocyte(TIL)prediction in breast cancer:the role of the dynamic contrast-enhanced(DCE)MRI phase[J].Eur Radiol,2022,32(2):864-875. 50 Wu Z,Lin Q,Song H,et al.Evaluation of lymphatic vessel invasion determined by D2-40 using preoperative MRI-based radiomics for invasive breast cancer[J].Acad Radiol,2023,30(11):2458-2468. 51 Mann RM,Cho N,Moy L.Breast MRI:state of the art[J].Radiology,2019,292(3):520-536. 52 Kim JY,Kim JJ,Hwangbo L,et al.Diffusion-weighted imaging of invasive breast cancer:relationship to distant metastasis-free survival[J].Radiology,2019,291(2):300-307. 53 Ni-Jia-Ti M,Ai-Hai-Ti D,Huo-Jia A,et al.Development of a risk-stratification scoring system for predicting lymphovascular invasion in breast cancer[J].BMC Cancer,2020,20:94. 54 Durando M,Gennaro L,Cho GY,et al.Quantitative apparent diffusion coefficient measurement obtained by 3.0Tesla MRI as a potential noninvasive marker of tumor aggressiveness in breast cancer[J].Eur J Radiol,2016,85(9):1651-1658. 55 Igarashi T,Furube H,Ashida H,et al.Breast MRI for prediction of lymphovascular invasion in breast cancer patients with clinically negative axillary lymph nodes[J].Eur J Radiol,2018,107:111-118. 56 Braman N,Prasanna P,Whitney J,et al.Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2(ERBB2)-positive breast cancer[J].JAMA Netw Open,2019,2(4):e192561. 57 Cheung SM,Husain E,Mallikourti V,et al.Intra-tumoural lipid composition and lymphovascular invasion in breast cancer via non-invasive magnetic resonance spectroscopy[J].Eur Radiol,2021,31(6):3703-3711. 58 Din NMU,Dar RA,Rasool M,et al.Breast cancer detection using deep learning:datasets,methods,and challenges ahead[J].Comput Biol Med,2022,149:106073. 59 Kayadibi Y,Kocak B,Ucar N,et al.MRI radiomics of breast cancer:machine learning-based prediction of lymphovascular invasion status[J].Acad Radiol,2022,29:S126-S134. 60 Zheng H,Jian L,Li L,et al.Prior clinico-radiological features informed multi-modal MR images convolution neural network:a novel deep learning framework for prediction of lymphovascular invasion in breast cancer[J].Cancer Med,2024,13(3):e6932. 61 Jiang D,Qian Q,Yang X,et al.Machine learning based on optimal VOI of multi-sequence MR images to predict lymphovascular invasion in invasive breast cancer[J].Heliyon,2024,10(7):e29267. 62 Jiang Y,Zeng Y,Zuo Z,et al.Leveraging multimodal MRI-based radiomics analysis with diverse machine learning models to evaluate lymphovascular invasion in clinically node-negative breast cancer[J].Heliyon,2024,10(1):e23916. 63 中国抗癌协会乳腺癌专业委员会,中华医学会肿瘤学分会乳腺肿瘤学组.中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J].中国癌症杂志,2023,33(12):1092-1187. 64 Ye DM,Wang HT,Yu T.The application of radiomics in breast MRI:a review[J].Technol Cancer Res Treat,2020,19:1533033820916191. 65 Zhao S,Li Y,Ning N,et al.Association of peritumoral region features assessed on breast MRI and prognosis of breast cancer:a systematic review and meta-analysis[J/OL].Eur Radiol,2024,34(9):6108-6120. |