Sedimentary types and features of gravity flow depositional systems from Late Oligocene to Early Miocene in Liwan sag, Pearl River Mouth Basin
Lu Yi1, Cui Yu-Chi1, Liu Xin-Yu2, Shao Lei1, Qiao Pei-Jun1
1. State Key Laboratory of Marine Geology, Tongji University, Shanghai200092, China; 2. China National Offshore Oil CorporationHainan Energy Co. Ltd., Guangdong Zhanjiang524057, China
Abstract:Based on combination features of lithology,element geochemistry,TEX86 and many other indicators of Well Xike-1,Shidao Island,Xisha area,South China Sea,we aim to reconstruct the regional sea-level changes in Xisha area since the Early Miocene,and discuss the dominant factors of the carbonate platforms formation and development. Under the impacts of both the regional tectonic events in the South China Sea and the global sea level changes,it is found that the sea level in Xisha area shows a high-low-high-low variation trend during the Early Miocene,Middle Miocene,Late Miocene and Pliocene,and Quaternary. The sea surface temperature shows an overall downward trend from the Early Miocene to Pliocene. The combination features of lithology indicate that the Xisha carbonate platform initially formed in the Early Miocene,and it gradually flourished and developed in the Middle Miocene,then reached up to the peak in the Middle Miocene characterized as the formation of large reefs with lagoon facies. During the Late Miocene-Pliocene,the rapid increase of sea level and water temperature decrease led to the gradual shrinking and submergence of the carbonate platform which further shrinked in the Quaternary.It is found that two intense dolomitization events occurred in Xisha area during the Early Miocene and Late Miocene-Pliocene,respectively. These events are closely related to the exposure and erosion of carbonate platforms caused by regional sea-level drop. The carbonate platform evolution of Xike-1 is there presentation of the prosperity and extinction of the Cenozoic carbonate platform in the South China Sea. It was the comprehensive result of the Cenozoic tectonic evolution and global climate changes in the South China Sea.
Lu Yi,Cui Yu-Chi,Liu Xin-Yu et al. Sedimentary types and features of gravity flow depositional systems from Late Oligocene to Early Miocene in Liwan sag, Pearl River Mouth Basin[J]. JOPC, 2020, 22(6): 1197-1208.
[1] 龚再升,王国纯. 1997. 中国近海油气资源潜力新认识. 中国海上油气, 11(1): 1-12. [Gong Z S,Wang G C.1997. New thoughts upon petroleum resources potential. China Offshore Oil and Gas, 11(1): 1-12] [2] 郝诒纯,陈平富,万晓樵,董军社. 2000. 南海北部莺歌海—琼东南盆地晚第三纪层序地层与海平面变化. 现代地质, 14(3): 237-245. [Hao Y C,Chen P F,Wan X Q,Dong J S.2000. Late Tertiary sequence stratigraphy and sea level changes in Yinggehai-Qiongdongnan Basin. Geoscience, 14(3): 237-245] [3] 金庆焕. 1989. 南海地质与油气资源. 北京: 地质出版社,199-206. [Jin Q H.1989. South China Sea Geology and Oil and Gas Resources. Beijing: Geological Publishing House,199-206] [4] 李颖虹,黄小平,岳维忠,林燕棠,邹仁林,黄晖. 2004. 西沙永兴岛珊瑚礁与礁坪生物生态学研究. 海洋与湖沼, 35(2): 176-182. [Li Y H,Huang X P,Yue W Z,Lin Y T,Zou L R,Huang H.2004. Ecological study on coral reef and intertidal benthos around Yongxing island,South China Sea. Oceanologia et Limnologia Sinica, 35(2): 176-182] [5] 吕彩丽,姚永坚,吴时国,姚根顺. 2011. 南沙海区万安盆地中新世碳酸盐台地的地震响应与沉积特征. 地球科学, 36(5): 931-938. [Lü C L,Yao Y J,Wu S G,Yao G S. 2011. Seismic responses and sedimentary characteristics of the Miocene carbonate platform in the southern South China Sea. Earth Science, 36(5): 931-938] [6] 吕修祥,金之钧. 2000. 碳酸盐岩油气田分布规律. 石油学报, 21(3): 8-12. [Lü X X,Jin Z J. 2000. Distribution law of carbonate oil and gas fields. Acta Petrolei Sinica, 21(3): 8-12] [7] 王崇友,何希贤,裘松余. 1979. 西沙群岛西永一井碳酸盐岩地层与微体古生物的初步研究. 石油实验地质,(1):23-39. [Wang C Y,He X X,Qiu S Y.1979. A preliminary study of carbonate rocks and micropalaeontology in the well XiYong I well. Petroleum Experimental Geology,(1):23-39] [8] 王振峰,时志强,张道军,黄可可,尤丽,段雄,李胜勇. 2015a. 西沙群岛西科1井中新统—上新统白云岩微观特征及成因. 地球科学: 中国地质大学学报, 40(4): 633-644. [Wang Z F,Shi Z Q,Zhang D J,Huang K K,You L,Duan X,Li S Y.2015a. Microscopic features and genesis for Miocene to Pliocene dolomite in well Xike-1,Xisha Island. Earth Science-Journal of China University of Geosciences, 40(4): 633-644] [9] 王振峰,崔宇驰,邵磊,张道军,董茜茜,刘新宇,张传伦,尤丽,肖安涛. 2015b. 西沙地区碳酸盐台地发育过程与海平面变化: 基于西科1井 BIT 指标分析数据. 地球科学: 中国地质大学学报, 40(5): 900-908. [Wang Z F,Cui Y C,Shao L,Zhang D J,Dong Q Q,Liu X Y,Zhang C L,YouL,Xiao A T.2015b. Carbonate platform development and sea-level variations of Xisha Islands based on BIT index of well Xike-1. Earth Science-Journal of China University of Geosciences, 40(5): 900-908] [10] 魏喜,祝永军,许红,赵国春,李玉喜. 2006. 西沙群岛新近纪白云岩形成条件的探讨: C、O同位素和流体包裹体证据. 岩石学报, 22(9): 2394-2404. [Wei X,Zhu Y J,Xu H,Zhao G C,Li Y X.2006. Discussion on Neogene dolostone forming condition in Xisha Islands: Evidences from isotope C and O and fluid inclosures. Acta Petrologica Sinica, 22(9): 2394-2404] [11] 吴时国,袁圣强,董冬冬,米立军,张功成. 2009. 南海北部深水区中新世生物礁发育特征. 海洋与湖沼, 40(2): 117-121. [Wu S G,Yuan S Q,Dong D D,Mi L J,Zhang G C.2009. The Miocene reef development characteristics in northern South China Sea. Oceanologia et Limnologia Sinica, 40(2): 117-121] [12] 吴时国,朱伟林,马永生. 2018. 南海半封闭边缘海碳酸盐台地兴衰史. 海洋地质与第四纪地质, 38(6): 4-20. [Wu S G,Zhu W L,Ma Y S.2018. Vicissitude of Cenozoic carbonate platforms in the South China Sea: Sedimentation in semi-closed marginal seas. Marine Geology & Quaternary Geology, 38(6): 4-20] [13] 张明书. 1989. 西沙生物礁碳酸盐沉积地质学研究. 北京: 科学出版社,9-12. [Zhang M S.1989. A Study of Sedimentary Geology of Xisha Reef Carbonates. Beijing: Science Press,9-12] [14] 翟世奎,米立军,沈星,刘新宇,修淳,孙志鹏,曹佳琪. 2015. 西沙石岛生物礁的矿物组成及其环境指示意义. 地球科学: 中国地质大学学报, 40(4): 597-605. [Zhai S K,Mi L J,Shen X,Liu X Y,Xiu C,Sun Z P,Cao J Q.2015. Mineral composition and environment implications in reef of Shidao Island,Xisha. Earth Science-Journal of China University of Geosciences, 40(4):597-605] [15] 朱伟林,解习农,王振峰,张道军,张成立,曹立成,邵磊. 2017. 南海西沙隆起基底成因新认识. 中国科学: 地球科学, 47: 1460-1468. [Zhu W L,Xie X N,Wang Z F,Zhang D J,Zhang C L,Cao L C,Shao L.2017. New insights on the origin of the basement of the Xisha Uplift,South China Sea. Science China Earth Sciences, 47: 1460-1468] [16] 朱袁智,沙庆安,郭丽芬. 1997. 南沙群岛永暑礁新生代珊瑚礁地质. 北京: 科学出版社,134. [Zhu Y Z,Sha Q A,Guo L F.1997. Cenozoic Coral Reef Geology of Yongshu Reef,Nansha Islands. Beijing: Science Press,134] [17] Beck J W,Edwards R L,Ito E,Taylor F W,Recy J,Rougerie F,Joannot P,Henin C.1992. Sea-Surface temperature from coral skeletal strontium/calcium ratios. Science, 257(5070): 644-647. [18] Bertrand P,Pedersen T F,Martinez P,Calvert S,Shimmield G.2000. Sea level impact on nutrient cycling in coastal upwelling areas during deglaciation: Evidence from nitrogen isotopes. Global Biogeochemical Cycles, 14(1): 341-355. [19] Erlich R N,Longo A P,Hyare S.1993. Response of carbonate platform margins to drowning: Evidence of environmental collapse. AAPG Memoir,57:241-266. [20] Fallon S J,White J C,Mcculloch M T.2002. Porites corals as recorders of mining and environmental impacts: Misima Island,Papua New Guinea. Geochimica et Cosmochimica Acta, 66(1): 45-62. [21] Fournier F,Borgomano J,Montaggioni L F.2005. Development patterns and controlling factors of Tertiary carbonate buildups: Insights from high-resolution 3D seismic and well data in the Malampaya gas field(offshore Palawan,Philippines). Sedimentary Geology, 175(1): 189-215. [22] Haq B U.1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level changes: An integrated approach. In: Wilgus C K,Hastings B S,Posamentier H,Wagoner J V,Ross C A,Kendall C G S C(eds). Spec. Publ. Soc. Econ. Paleontol. Mineral, 42:71-108. [23] Hopmans E C,Weijers J W H,Schefuß E,Herfort L,Sinninghe Damsté J S,Schouten S.2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth & Planetary Science Letters, 224(1-2): 0-116. [24] Kamenos N A,Cusack M,Huthwelker T,Lagarde P,Scheibling R E.2009. Mg-lattice associations in red coralline algae. Geochimica et Cosmochimica Acta, 73(7): 1901-1907. [25] Kinsey D W,Davies P J.1979. Effects of elevated nitrogen and phosphorus on coral reef growth. Limnology and Oceanography, 24(5): 935-940. [26] Larsen H C,Mohn G,Nirrengarten M,Sun Z,StockJ,Jian Z,Klaus A,Alvarez-Zarikian C A,Boaga J,Bowden S A,Briais A,Chen Y,Cukur D,Dadd K,Ding W,Dorais M,Ferré E C,Ferreira F,Furusawa A,Gewecke A,Hinojosa J,Hfig T W,Hsiung K H,Huang B,Huang E,HuangX L,Jiang S,Jin H,Johnson B G,Kurzawski R M,Lei C,Li B,Li L,Li Y,Lin J,Liu C,Liu C,Liu Z,Luna A J,Lupi C,McCarthy A,Ningthoujam L,Osono N,Peate D W,Persaud P,Qiu N,Robinson C,Satolli S,Sauermilch I,Schindlbeck J C,Skinner S,Straub S,SuX,Su C,Tian L,van der Zwan F M,Wan S,Wu H,Xiang R,Yadav R,Yi L,Yu P S,Zhang C,Zhang J,Zhang Y,Zhao N,Zhong G,Zhong L.2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11: 782-789. [27] Li R,Qiao P J,Cui Y C,Zhang D J,Liu X Y,Shao L.2018. Composition and diagenesis of Pleistocene aeolianites at Shidao,Xisha Islands: Implications for palaeoceanography and palaeoclimate during the last glacial period. Palaeogeography,Palaeoclimatology,Palaeoecology, 490(15): 604-616. https://doi.org/10.1016/j.palaeo.2017.11.049. [28] Lowenstein T K,Timofeeff M N,Brennan S T,Hardie L A,Demicco R V.2001. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science, 294(5544): 1086-1088. [29] Riding R.2002. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories. Earth-Science Reviews, 58(1-2): 163-231. [30] Saltzman M R.2005. Phosphorus,nitrogen,and the redox evolution of the Paleozoic oceans. Geology, 33(7): 573-576. [31] Schouten S,Hopmans E C,Pancost R D,Damsté J S S.2000. Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proceedings of the National Academy of Sciences, 97(26): 14421-14426. [32] Schouten S,Hopmans E C,Schefuß E,Damsté J S S.2002. Distributional variations in marine Crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?. Earth and Planetary Science Letters, 204(1-2): 265-274. [33] Schouten S,Hopmans E C,Baas M,Boumann H,Standfest S,Könneke M,Stahl D A.2008. Intact membrane lipids of “Candidatus Nitrosopumilus maritimus”: A cultivated representative of the Cosmopolitan Mesophilic Group I Crenarchaeota. Applied Environmental Microbiology, 74(8): 2433-2440. [34] Shao L,Cui Y C,Qiao P J,Zhang D J,Liu X Y,Zhang C L.2017a. Sea-level changes and carbonate platform evolution of the Xisha Islands(South China Sea)since the Early Miocene. Palaeogeography,Palaeoclimatology,Palaeoecology, 485: 504-516. [35] Shao L,Li Q Y,Zhu W L,Zhang D J,Qiao P J,Liu X Y,You L,Cui Y C,Dong X X.2017b. Neogene Carbonate platform development in the NW South China Sea: Litho-,bio- and chemo-stratigraphic evidenve. Marine Geology, 385: 233-243. [36] SteuerS,Franke D,Meresse F,Savva D,Pubellier M,Auxietre J L,Aurelio M.2013. Time constraints on the evolution of southern Palawan Island,Philippines from onshore and offshore correlation of Miocene limestones. Journal of Asian Earth Sciences, 76: 412-427. [37] Sinninghe Damsté J S,Schouten S,Hopmans E C,van Duin A C T,Geenevasen J A J.2002. Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membranelipid of cosmopolitan pelagic crenarchaeota. The Journal of Lipid Research, 43(10): 1641-1651. [38] Taylor B,Hayes D E.1983. Origin and history of the South China Sea basin. Washington Dc American Geophysical Union Geophysical Monograph, 27: 23-56. [39] Tian J,Zhao Q H,Wang P X,Li Q Y,Cheng X. 2008. Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography,23PA3210. 2008. Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography,23PA3210. http://dx.doi.org/10.1029/2007PA001552. [40] Wang P X,Li Q Y.2009. The South China Sea. Developments in Paleoenvironmental Research, 30: 165-178. [41] Wignall P B,Twitchett R J.1996. Oceanic anoxia and the end Permian mass extinction. Science, 272(5265): 1155-1158. [42] Wilson M E J.2008. Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic. Palaeogeography,Palaeoclimatology,Palaeoecology, 265(3-4): 262-274. [43] Wilson M E J.2012. Equatorial carbonates: An earth systems approach. Sedimentology, 59(1): 1-31. [44] Wu S G,Yang Z,Wang D W,Lü F L,Lüdmanman T,Fulthorpe C,Wang B.2014. Architecture,development and geological control of the Xisha carbonate platforms,northwestern South China Sea. Marine Geology, 350: 71-83. [45] Wyndham T,Mcculloch M,Fallon S,Alibert C.2004. High-resolution coral records of rare earth elements in coastal seawater: Biogeochemical cycling and a new environmental proxy. Geochimica et Cosmochimica Acta, 68(9): 2067-2080. [46] Yao Y J,Liu H L,Yang C P,Han B,Tian J J,Yin Z X,Gong J L,Xu Q Y.2012. Characteristics and evolution of Cenozoic sediments in the Liyue Basin,SE South China Sea. Journal of Asian Earth Sciences,60:114-129. [47] Yi L,Jian Z M,Liu X Y,Zhu Y H,Zhang D J,Wang Z F,Deng C L.2018. Astronomical tuning and magnetostratigraphy of Neogene biogenic reefs in Xisha Islands,South China Sea. Science Bulletin, 63(9): 564-573. [48] Zachos J,Pagani M,Sloan L,Thomas E,Billups K.2001. Trends,rhythms,and aberrations in global climate 65 Ma to present. Science, 292(5517): 686-693.