Radial ooids induced by photosynthetic biofilms: an example from the Cambrian Miaolingian Zhangxia Formation at Jiawang section in Xuzhou city of Jiangsu Province,North-China Platform
Mei Ming-Xiang1,2
1 School of Earth Sciences and Natural Resources,China University of Geosciences(Beijing),Beijing 100083,China; 2 State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences(Beijing),Beijing 100083,China
Abstract:Recent continuous studies on the modern marine aragonite ooids in Bahama demonstrate that microbes and extracelluar polymeric substances(EPS)are very important in the formation of ooids,which results in an important scientific understanding,i.e. these ooids can be regarded as “laminated organic sedimentary structures”that own the formation characteristics of microbiolith systems. Nevertheless,the formation of ooids presents many mysteries and complexities caused by many reasons: (1)3.0 billion years’ development history;(2)diversified formation environments;(3)characteristic composition of minerals;(4)a variety of sedimentary structures. There are still many strong debates on where and how do these ooids form,and what kinds of biological and abiotic processes they record. The oolitic beach facies limestone found at the upper part of the Miaolingian Zhangxia Formation at the Jiawang section in Xuzhou city of Jiangsu Province are made of calcite,radiative oolites,which show radial,radial-concentric,and micritic sedimentary structures. Plenty of excellent Girvanella fossils are preserved in the core and cortex of these ooids,as well as the clump or clot among ooids,and the dark micrite that are composed of irregular agglomerate and clots. These dark micrite represent the characteristic photosynthetic biofilm,which provides the direct microbial evidence for the formation of radiate oolites in the Miaolingian calcite sea. Besides,the complex genetic relationships with the photosynthetic biofilm have been established because the Girvanella are the fossils of filamentous cyanobacteria that is similar with the recent calcified Plectonema and the modern Scytonema. Although the deposition of radial-fibrous calcite formed at the cortex of radiate oolites cannot be interpreted as the results of direct microbial precipitation,these radiate oolites present the important evidences that are possibly nourished by the photosynthetic biofilm which promotes the accretion of the cortex made up of radial and fibrous calcite in the Zhangxia Formation. Ultimately,our studies provide an important example for the further understanding of the “ooid dilemma”,which also provides an important evidence for the cayanobacterial bloom in the Cambrian Miaolingian calcite sea that is coincided with metazoan radiation.
Mei Ming-Xiang. Radial ooids induced by photosynthetic biofilms: an example from the Cambrian Miaolingian Zhangxia Formation at Jiawang section in Xuzhou city of Jiangsu Province,North-China Platform[J]. JOPC, 2021, 23(3): 461-488.
[1] 代明月,齐永安,陈尧,李妲. 2014. 豫西渑池地区寒武系第三统张夏组的巨鲕及其成因. 古地理学报, 16(5): 726-734. [Dai M Y,Qi Y A,Chen Y,Li D.2014. Giant ooids and their genetic analysis from the Zhangxia Formation of Cambrian Series 3 in Mianchi area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 16(5): 726-734] [2] 陈百兵,齐永安,郑伟,李小燕. 2019. 豫西宜阳地区寒武系馒头组鲕粒中的泥晶方解石特征及其成因. 古地理学报, 21(4): 603-612. [Chen B B,Qi Y A,Zheng W,Li X Y.2019. Micritic calcites in ooids and their genetic analysis from the Cambrian Mantou Formation in Yiyang area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 21(4): 603-612] [3] 冯增昭,王英华,张吉森,左文岐,张秀莲,洪国良,陈继新,吴胜和,陈玉田,迟元苓,杨承运. 1990. 华北地台早古生代岩相古地理. 北京: 石油工业出版社,28-48. [Feng Z Z,Wang Y H,Zhang J S,Zuo W Q,Zhang X L,Hong G L,Chen J X,Wu S H,Chen Y T,Chi Y L,Yang C Y.1990. Lithofacoes Paleogeography of the Early Paleozoic of North China Platform. Beijing: Petroleum Industry Press,28-48] [4] 冯增昭,彭永民,金振奎,鲍志东. 2004. 中国寒武纪和奥陶纪岩相古地理. 北京: 石油工业出版社,112-121. [Feng Z Z,Peng Y M,Jin Z K,Bao Z D.2004. Lithofacoes Paleogeography of the Cambrian and Ordovician in China. Beijing: Petroleum Industry Press,112-121] [5] 郭芪恒,金振奎,朱小二,王金艺. 2018. 北京下苇甸剖面张夏组鲕粒特征及其白云化机制. 现代地质, 32(4): 766-773. [Guo Q H,Jin Z K,Zhu X E,Wang J Y.2018. Characteristics of oolites and their dolomitization mechanism of the Cambrian Zhangxia Formation at Xiaweidian outcrop in Beijing. Geoscience, 32(4): 766-773] [6] 马永生,梅冥相,周润轩,杨文. 2017. 层序地层框架下的鲕粒滩形成样式: 以北京西郊下苇甸剖面寒武系第三统为例. 岩石学报, 33(4): 1021-1036. [Ma Y S,Mei M X,Zhou R X,Yang W.2017. Forming patterns for the oolitic bank within the sequence-stratigraphic framework: an example from the Cambrian Series 3 at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 33(4): 1021-1036] [7] 梅冥相. 1996. 淹没不整合型碳酸盐三级旋回层序: 兼论碳酸盐台地的凝缩作用. 岩相古地理, 16(6): 24-33. [Mei M X.1996. Carbonate third-order cyclic sequence of the drowning-unconformity type: discussion on the condensation of carbonate platform. Sedimentary Facies and Paleogeography, 16(6): 24-33] [8] 梅冥相,杨欣德. 2000. 强迫型海退及强迫型海退楔体系域: 对传统Exxon层序地层学模式的修正. 地质科技情报, 19(2): 17-21. [Mei M X,Yang X D.2000. Forced regression and forced regressive wedge system tract: revision on traditional Exxon model of sequence stratigraphy. Geological Science and Technology Information, 19(2): 17-21] [9] 梅冥相. 2010. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学的进展之一. 古地理学报, 12(5): 549-564. [Mei M X.2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: the first advance in sequence stratigraphy. Journal of Palaeogeography(Chinese Edition), 12(5): 549-564] [10] 梅冥相,郭荣涛,胡媛. 2011. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构. 岩石学报, 27(8): 2473-2486. [Mei M X,Guo R T,Hu Y.2011. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 27(8): 2473-2486] [11] 梅冥相. 2012a. 从生物矿化作用衍生出的有机矿化作用: 地球生物学框架下重要的研究主题. 地质论评, 58(5): 937-951. [Mei M X.2012a. Organomineralization derived from the biomineralization: an important theme within the framework of geobiology. Geological Review, 58(5): 937-951] [12] 梅冥相. 2012b. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20-32. [Mei M X.2012b. Brief introduction on new advances of studies on the origin of ooids. Acta Sedimentologica Sinica, 30(1): 20-32] [13] 梅冥相. 2012c. 从3个科学理念简论沉积学中的“白云岩问题”. 古地理学报, 14(1): 1-12. [Mei M X.2012c. Brief introduction of “Dolomite Problem”in sedimentology according to three scientific ideas. Journal of Palaeogeography(Chinese Edition), 14(1): 1-12] [14] 梅冥相. 2014. 微生物席的特征和属性: 微生物席沉积学的理论基础. 古地理学报, 16(3): 285-304. [Mei M X.2014. Feature and nature of microbial-mat: theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography(Chinese Edition), 16(3): 285-304] [15] 梅冥相,刘丽,胡媛. 2015. 北京西郊寒武系凤山组叠层石生物层. 地质学报, 89(2): 440-460. [Mei M X,Liu L,Hu Y.2015. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian section in the western suburb of Beijing,North China. Acta Geologica Sinica, 94(4): 999-1016] [16] 梅冥相,张瑞,李屹尧,接雷. 2017. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌. 岩石学报, 33(4): 1073-1093. [Mei M X,Zhang R,Li Y Y,Jie L.2017. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform. Acta Petrologica Sinica, 33(4): 1073-1093] [17] 梅冥相,Muhammad Riaz,孟庆芬,刘丽. 2019a. 鲕粒滩相灰岩特别的核形石灰岩帽: 以山西繁峙茶坊子剖面寒武系张夏组为例. 地质论评, 65(4): 839-856. [Mei M X,Riaz M,Meng Q F,Liu L.2019a. Particular cap oncolitic grainstones of bank oolitic grainstones: an example from the Zhangxia formation of the Cambrian Miaolingian at the Chafangzi Section in Fanshi County of Shanxi Province,North China. Geological Review, 65(4): 839-856] [18] 梅冥相,Muhammad Riaz,刘丽,孟庆芬. 2019b. 辽东半岛复州湾剖面寒武系第二统光合作用生物膜建造的核形石. 古地理学报, 21(1): 31-48. [Mei M X,Riaz M,Liu L,Meng Q F.2019b. Oncoids built by photosynthetic biofilms: an example from the Series 2 of Cambrian in the Liaotung Peninsula. Journal of Palaeogeography(Chinese Edition), 21(1): 31-48] [19] 梅冥相,Muhammad Riaz,刘丽,孟庆芬. 2019c. 蓝细菌微生物席主导的芙蓉统均一石生物丘: 以河北涞源祁家峪剖面为例. 地质论评, 65(5): 1103-1122. [Mei M X,Muhammad R,Liu L,Meng Q F.2019c. Cambrian leiolites dominated by cyanobacterial mats: an example from the Furongian at the Qijiayu section in Laiyuan County of Hebei Province. Geological Review, 65(5): 1103-1122] [20] 梅冥相,Khalid Latif,刘丽,孟庆芬. 2019d. 光合作用生物膜建造的凝块: 来自于辽东半岛芙蓉统长山组凝块石微生物礁中的一些证据. 古地理学报, 21(2): 254-277. [Mei M X,Khalid L,Liu L,Meng Q F.2019d. Clots built by photosynthetic biofilms: some evidences from thrombolite bieherms of the Changshan Formation of the Cambrian Furongian in the Liaotung Peninsula. Journal of Palaeogeography(Chinese Edition), 21(2): 254-277] [21] 梅冥相,Khalid Latif,孟庆芬,胡媛. 2019e. 寒武系张夏组鲕粒滩中微生物碳酸盐岩主导的生物丘: 以河北秦皇岛驻操营剖面为例. 地质学报, 93(1): 227-251. [Mei M X,Khalid L,Meng Q F,Hu Y.2019e. Cambrian bioherms dominated by microbial carbonate within oolitic grainston bank,Zhangxia Formation,Zhucaoying section in Qinhuangdao city of Hebei Province. Acta Geologica Sinica, 93(1): 227-251] [22] 梅冥相,Khalid Latif,孟晓庆,胡媛. 2020a. 鲕粒滩中光合作用生物膜构建的高能核形石: 以辽西葫芦岛三道沟剖面寒武系张夏组为例. 地质学报,94(4): 999-1016. [Mei M X,Latif K,Meng X Q,Hu Y.2020a. High-energy oncoids within the ooid-grained bank built by photosynthetic biofilms: a case study of the Cambrian Zhangxia Formation at the Sandaogou section of Huludao City in the western part of Liaoning Province. Acta Geologica Sinica, 94(4): 999-1016] [23] 梅冥相,孟庆芬,胡媛. 2020b. 大连金州湾寒武系毛庄组微生物碳酸盐岩生物丘复合体. 地质学报, 94(2): 375-395. [Mei M X,Meng Q F,Hu Y.2020b. Bioherm complex madding up of microbial carbonates in the Cambrian Maozhuang Formation at the Jinzhouwan section in dalian city of Liaoning Province in Northeastern China. Acta Geologica Sinica, 94(2): 375-395] [24] 倪胜利. 2017. 北京西郊下苇甸剖面寒武系叠层石中的底栖鲕粒;基本特征和重要意义. 地质通报, 36(2-3): 485-491. [Ni S L.2017. The benthic oolite within the stromatolitic bioherm of the Cambrian strata at the Xiaweidian section in the western suburb of Beijing: essential features and important significance. Geological Bulletin of China, 36(2-3): 485-491] [25] 彭善池. 2009. 华南斜坡相寒武纪三叶虫动物群研究回顾并论中国南、北方寒武系的对比. 古生物学报, 48(3): 437-452. [Peng S C.2009. Review on the studies of Cambrian trilobite faunas from Jiangnan slope belt,south China,with notes on Cambrian correlation between south and north China. Acta Palaeontologica Sinica, 48(3): 437-452] [26] 彭善池,赵元龙. 2018. 全球寒武系第三统和第五阶”金钉子”正式落户中国. 地层学杂志, 42(3): 325-327. [Peng S C,Zhao Y L.2018. The proposed global standard stratotype-section and point(GSSP)for the conterminous base of the Miaoling series and Wuliuan stage at Balang,Jianhe,Guizhou,China was ratified by IUGS. Journal of Stratigraphy, 42(3): 325-327] [27] 齐永安,张喜洋,代明月,王敏. 2017. 豫西寒武系微生物岩中的葛万菌化石及其微观结构. 古生物学报, 56(2): 154-167. [Qi Y A,Zhang X Y,Dai M Y,Wang M.2017. Girvanella fossils and their microstructures from Cambrian microbialites of western Henan. Acta Palaeontologica Sinica, 56(2): 154-167] [28] 宋文天,刘建波. 2020. 碳酸盐鲕粒包壳结构研究综述. 古地理学报, 22(1): 147-160. [Song W T,Liu J B.2020. A review of cortical structure of carbonate ooid. Journal of Palaeogeography(Chinese Edition), 22(1): 147-160] [29] 王龙,吴海,张瑞,李昌伟. 2018. 碳酸盐台地的类型、特征和沉积模式: 兼论华北地台寒武纪陆表海—淹没台地的沉积样式. 地质论评, 64(1): 62-76. [Wang L,Wu H,Zhang R,Li C W.2018. The types,characteristics and depositional models of carbonate platform: implication for Cambrian sedimentary patterns of epeiric-drowned carbonate platform in North China. Geological Review, 64(1): 62-76]. [30] 肖恩照,王皓,覃英伦,Khalid Latif,Muhammad Riaz.2020. 寒武纪芙蓉统均一石沉积组构及环境特征: 以河北涞源长山组为例. 沉积学报, 38(1): 76-90. [Xiao E Z,Wang H,Qin Y L,Khalid L,Muhammad R.2020. Sedimentary fabrics and environmental characteristics of leiolite in Cambrian: a case study from the Changshan Formation in Laiyuan city,Hebei Province. Acta Sedimentologica Sinica, 38(1): 76-90] [31] 颜佳新,孟琦,王夏,刘志臣,黄恒,陈发篧,郭全鼎. 2019. 碳酸盐工厂与浅水碳酸盐岩台地: 研究进展与展望. 古地理学报, 21(2): 232-253. [Yan J X,Meng Q,Wang X,Liu Z C,Huang H,Chen F Y,Guo J D.2019. Carbonate factory and carbonate platform: progress and prospects. Journal of Palaeogeography(Chinese Edition), 21(2): 22-253] [32] 章雨旭. 2001. 试论华北板块寒武纪地层的穿时性. 沉积与特提斯地质, 21(1): 78-87. [Zhang Y X.2001. Diachromism of the Cambrian strata on the North China platform. Sedimentary Geology and Tethysian Geology, 21(1): 78-87] [33] Adachi N,Ezaki Y,Liu J,Cao J.2009. Early Ordovician reef construction in Anhui Province,South China: a geobiological transition from microbial-to metazoan-dominant reefs. Sedimentary Geology, 220: 1-11. [34] Balthasar U,Cusack M.2015. Aragonite-calcite seas: quantifying the gray area. Geology, 43: 99-102. [35] Berner R A,Kothavala Z.2001. GEOCARB Ⅲ: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301: 182-204. [36] Berner R A,Wagonerden Brooks J M,Ward P D.2007. Oxygen and evolution. Science, 316: 557-558. [37] Bissett A,Reimer A,de Beer D,Shiraishi F,Arp G.2008. Metabolic microenvironmental control by photosynthetic biofilms under changing macroenvironmental temperature and pH conditions. Applied and Environmental Microbiology, 74: 6306-6312. [38] Bornemann J.1886. Die Versteinerungen des cambrischen Schichtensystems der Insel Sardinien nebst vergeleichenden Untersuchungen uber analoge Vorkommnisse aus anderen Landern 1. Nova Acta der Kaiserslichen Leopoldinisch-Carolinischen Deutschen Akademie der Naturforscher, 51(1): 1-147. [39] Brehm U,Krumbein W E,Palinska K A.2006. Biomicrospheres generate ooids in laboratory. Geomicrobiology Journal, 23: 545-550. [40] Burne R V,Moore L S,Christy A,Troitzsch G,U,King P L,Carnerup A M,Hamilton P J.2014. Stevensite in the modern thrombolites of Lake Clifton,Western Australia: a missing link in microbialite mineralization? Geology, 42: 575-578. [41] Bathurst R G C.1975. Carbonate Sediments and their Diagenesis(Second Ediation),Developments in Sedimentology 12. Amsterdam,Elsevier: 1-658. [42] Campbell I H,Allen C M.2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1(8): 554-558. [43] Castanier S,Métayer-Levrel G L,Perthuisot J.1999. Ca-carbonates precipitation and limestone genesis: the microbiogeologist point of view. Sedimentary Geology, 126: 9-23. [44] Choquette P W,Hiatt E E.2008. Shallow-burial dolomite cement: a major component of many ancient sucrosic dolomites. Sedimentology, 55: 423-460. [45] Cody R M,Noel P J.2012,Autogenic microbial genesis of middle Miocene palustrine ooids;nullarbor plain,Australia. Journal of Sedimentary Research, 82: 633-647. [46] Davies P J,Bubela B,Ferguson J.1978. The formation of ooids. Sedimentology, 25: 703-729. [47] Decho A W.2010. Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecological Engineering, 36: 137-144. [48] Decho A W,Gutierrez T.2017. Microbial Extracellular polymeric substances(EPSs)in ocean systems. Frontiers Microbiology, 8: 1-28. [49] De los Ríos A,Ascaso C,Wierzchos J,Vincent W F,Quesada A.2015. Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodivers Conserv, 24: 841-863. [50] Desjardins P R,Buatois L A,Pratt B R,Mángano M G.2012. Forced regressive tidal flats: response to falling sea level in tidedominated settings. Journal of Sedimentary Research, 82: 149-162. [51] Diaz M R,Wagoner Nordstrand J D,Eberli G P,Piggot A M,Zhou J,Klaus J S.2014. Functional gene diversity of oolitic sands from Great Bahama Bank. Geobiology, 12: 231-249. [52] Diaz M R,Swart P K,Eberli G P,Oehlert A M,Devlin Q,Saeid A, Altabet M A.2015. Geochemical evidence of microbial activity within ooids. Sedimentology, 62: 2090-2112. [53] Diaz M R,Eberli G P,Blackwelder P,Phillips B,Swart P K.2017. Microbially mediated organomineralization in the formation of ooids. Geology, 45: 771-774. [54] Diaz M R,Eberli G P.2019. Decoding the mechanism of formation in marine ooids: a review. Earth-Science Reviews, 190: 536-556. [55] Duguid S M A,Kyser T K,James N P,Rankey E C.2010. Microbes and ooids. Journal of Sedimentary Research, 80: 236-251. [56] Dupraz C,Reid R P,Braissant O,Decho A W,Norman R S, Visscher P T.2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96: 141-162. [57] Dupraz C,Reid R P,Visscher P T.2011. Microbialites,modern. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin: Springer,617-635. [58] Edgcomb V P,Bernhard J M,Beaudoin D,Pruss S,Welander P V,Schubotz F,Mehay S,Gillespie A L,Summons R E.2013. Molecular indicators of microbial diversity in oolitic sands of Highborne Cay,Bahamas. Geobiology,11: 234-251. [59] Fabricius F H.1977. Origin of marine ooids and grapestones. Contribution of Sedimentology, 7: 1-113. [60] Ferrettia A,Messori F,Bella M D,Sabatino G,Quartieri S,Cavalazzi B,Italianoc F,Barbieri R.2019. Armoured sponge spicules from Panarea Island(Italy): implications for their fossil preservation. Palaeogeography,Palaeoclimatology,Palaeoecology,536. https://doi.org/10.1016/j.palaeo.2019.109379 [61] Flannery D T,Allwood A C,Hodyss R,Summons R E,Tuite M,Walter M R,Williford K H.2019. Microbially influenced formation of Neoarchean ooids. Geobiology, 17(2): 151-160. [62] Flemming H C,Wingender J.2010. The biofilm matrix. Nature Reviews Microbiology, 8: 623-633. [63] Flemming H C,Wingender J,Kjelleberg S,Steinberg P,Rice S,Szewzyk U.2016. Biofilms: an emergent form of microbial life. Nature Review-Microbiology, 14: 563-575. [64] Flügel E.2004. Microfacies of Carbonate Rocks: Analysis,Interpretation and Application. Berlin,Heidelberg: Springer-Verlag,1-976. [65] Gallagher K L,Kading T J,Braissant O,Dupraz C,Visscher P T.2012. Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology, 10: 518-530. [66] Gallagher S J,Reuning L,Himmler T,Henderiks J,De Vleeschouwer D,Groeneveld J,Lari A R,Fulthorpe C S,Bogus K.2018. Expedition 356 Shipboard Scientists. The enigma of rare Quaternary oolites in the Indian and Pacific Oceans: a result of global oceanographic physicochemical conditions or a sampling bias? Quaternary Science Reviews, 200: 114-122. [67] Gerdes G,Dunajtschik-Piewak K,Riege H,Taher A G,Krumbein W E,Reineck H E.1994. Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology, 41: 1273-1294. [68] Gerdes G.2010. What are microbial mats? In: Seckbach J, Oren A(eds). Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems,Cellular Origin,Life in Extreme Habitats and Astrobiology 14. Berlin: Springer-Verlag,5-25. [69] Gómez J J,Fernández-López S.1994. Condensed processes in shallow platform. Sedimentary Geology, 92: 147-159. [70] Gregg J M,Bish D L,Kaczmarek S E,Machel H G.2015. Mineralogy,nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology, 62: 1749-1769. [71] Han Z Z,Zhan X L,Chi N J,Yu X F.2015. Cambrian oncoids and other microbial-related grains on the North China Platform. Carbonates Evaporates, 30: 373-386. [72] Hardie L A.1996. Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology, 24: 279-283. [73] Harris P M,Purkis S J,Ellis J.2011. Analyzing spatial patterns in modern carbonates and bodies from Great Bahama Bank. Journal of Sedimentary Research,81: 185-206. [74] Harris P M,Purkis S,Ellis J,Swart P,Reijmer J J G.2015. Mapping bathymetry and depositional facies on Great Bahama Bank. Sedimentology, 62: 566-589. [75] Harris P,Diaz M R,Eberli G P.2019. The formation and distribution of modern ooids on Great Bahama Bank. Annual Review of Marine Science, 11: 1-26. [76] Helland-Hansen W,Gjelberg J G.1994. Conceptual basis and variability in sequence stratigraphy: a different perspective. Sedimentary Geology, 92: 31-52. [77] Hunt D,Tucker M E.1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sedimentay Geology, 81: 1-9. [78] Kah L C,Riding R.2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35: 799-802. [79] Kahle C F J.2007. Proposed origin of aragonite Bahaman and some Pleistocene marine ooids involving bacteria,nannobacteria(?),and biofilms. Carbonates and Evaporites,22: 10-22. [80] Kiessling W.2015. Fuzzy seas. Geology, 43: 191-192. [81] Kromkamp J C,Perkins R,Dijkman N,Consalvey M,Andres M,Reid R P.2007. Resistance to burial of cyanobacteria in stromatolites. Aquatic Microbial Ecology,48: 123-130. [82] Kruse P D,Reitner J R.2014. Northern Australian microbial-metazoan reefs after the mid-Cambrian mass extinction. Memoirs of the Association of Australasian Palaeontologists, 45(45): 31-53. [83] Large R R,Mukherjee I,Gregory D,Steadman J,Corkrey R,Danyushevsky L V.2019. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54: 485-506. [84] Latif K,Xiao E Z,Riaz M, Wang L,Khan M Y,Hussein A A A,Khan M U.2018. Sequence stratigraphy,sea-level changes and depositional systems in the Cambrian of the North China Platform: a case study of Kouquan section,Shanxi Province, China. Journal of Himalayan Earth Sciences, 51(1): 1-16. [85] Latif K,Xiao E Z,Riaz M,Hussein A A A.2019. Calcified cyanobacteria fossils from the leiolitic bioherm in the Furongian Changshan Formation,Datong(North China Platform). Carbonates and Evaporites, 34: 825-843. [86] Lee H S,Chough S K.2011. Depositional processes of the Zhushadong and Mantou formations(Early to Middle Cambrian),Shandong Province,China: roles of archipelago and mixed carbonate-siliciclastic sedimentation on cycle genesis during initial flooding of the North China Platform. Sedimentology, 58: 1530-1572. [87] Lenton T M,Daines S J,Mills B J W.2018. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews, 178: 1-28. [88] Li Q,Li Y,Kiessling W.2015. Early Ordovician lithistid sponge-Calathium reefs on the Yangtze Platform and their paleoceanographic implications. Palaeogeography,Palaeoclimatology,Palaeoecology, 425: 84-96. [89] Liu L J,Wu Y S,Yang H J,Riding R.2016. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin,Northwest China: systematics and significance. Journal of Systematic Palaeontology, 14(3): 183-210. [90] Liu W,Zhang X L.2012. Girvanella-coated grains from Cambrian oolitic limestone. Facies, 58: 779-787. [91] Mariotti G,Pruss S B,Summons R E,Newman S A,Bosak T.2018. Contribution of benthic processes to the growth of ooids on a low-energy shore in Cat Island,the Bahamas. Minerals, 8: 1-21. [92] Maslov V P.1954. On the Lower Silurian of eastern Siberia. In: Shatskiy N S(ed). Voprosy geologii Azii. Moskva,Akademii Nauk SSSR, 1: 495-529[in Russian]. [93] Mazzullo S J.2000. Organogenic dolomitization in peritidal to deep-sea sediments. Journal of Sedimentary Research, 70: 10-23. [94] Mei M X,Liu S F.2017. Late Triassic sequence-stratigraphic framework of the Upper Yangtze Region,South China. Acta Geologica Sinica, 91(1): 51-75. [95] Mei M X,Khalid L,Mei C J,Gao J H,Meng Q F.2020. Thrombolitic clots dominated by filamentous cyanobacteria and crusts of radio-fibrous calcite in the Furongian Changshan Formation,North China. Sedimentary Geology. https://doi.org/10.1016/j.sedgeo.2019.105540 [96] Meng X H,Ge M,Tucker M E.1997. Sequence stratigraphy,sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114: 189-222. [97] Meister P,Johnson O,Corsetti F,Nealson K H.2011. Magnesium Inhibition Controls Spherical Carbonate Precipitation in Ultrabasic Springwater(Cedars,California)and Culture Experiments. In: Reitner J,Quéric Nadia-Valérie,Arp G(eds). Advances in Stromatolite Geobiology,Lecture Notes in Earth Sciences 131. Berlin: Springer-Verlag, 507-524. [98] Michel J,Laugié M,Pohl A,Lanteaume C,Masse J P,Donnadieu Y,Borgomano J.2019. Marine carbonate factories: a global model of carbonate platform distribution. International Journal of Earth Sciences, 108: 1773-1792. [99] Mitchum R M,Vail P R,Thompson S.1977. Seismic stratigraphy and global changes of sea level,part 2: the depositional sequence as a basic unit for stratigraphic analysis. In: Payton C E(ed). Seismic Stratigraphy: Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists, 26: 53-62. [100] Mohr K I,Brinkmann N,Friedl T.2011. Cyanobacteria. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin: Springer,306-311. [101] Nicholson H A,Etheridge R.1878. A Monograph of the Silurian Fossils of the Girvan District in Ayrshire with Special Reference to Those Contained in the‘Gray Collection’. Edinburgh: Blackwood,1-341. [102] O’Reilly S S,Mariotti G,Winter A R,Newman S A,Matys E D,McDermott F,Pruss S B,Bosak T,Summons,R E,Klepac-Ceraj V.2017. Molecular biosignatures reveal common benthic microbial sources of organicmatter in ooids and grapestones from Pigeon Cay,the Bahamas. Geobiology, 15: 112-130. [103] Pacton M,Ariztegui D,Wacey D,Kilburn M R,Rollion-Bard C,Farah R,Vasconcelos C.2012. Going nano: a new step toward understanding the processes governing freshwater ooid formation. Geological Society of America, 40: 547-550. [104] Peng S C,Babcock L E,Cooper R A.2012. The Cambrian Period(Chapter 19). In: Gradstein F M,Ogg J G,Schmitz M D,Ogg G M(eds). The Geologic Time Scale 2012. Amsterdam, Elsevier: 437-488. [105] Perri E,Tucker M E,Słowakiewicz M,Whitaker F,Bowen L,Perrotta I D.2018. Carbonate and silicate biomineralization in a hypersaline microbial mat(Mesaieed sabkha,Qatar): roles of bacteria,extracellular polymeric substances and viruses. Sedimentology,65: 1213-1245. [106] Perry R S,Mcloughlin N,Lynne B Y,Sephton M A,Oliver J D,Perry C C,Campbell K,Engel M H,Farmer J D,Brasier M D,Staley J T.2007. Defining biominerals and organominerals: direct and indirect indicators of life. Sedimentary Geology, 201: 157-179. [107] Peters S E,Gaines R R.2012. Formation of the‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature, 484: 363-366. [108] Plée K,Pacton M,Ariztegui D.2010. Discriminating the role of photosynthetic and heterotrophic microbes triggering low-Mg calcite precipitation in freshwater biofilms(Lake Geneva,Switzerland). Geomicrobiology Journal, 27: 391-399. [109] Pollock J B.1918. Blue-green algae as agents in the deposition of marl in Michigan lakes. Report of the Michigan Academy of Science, 20: 247-260. [110] Pomar L,Hallock P.2008. Carbonate factories: a conundrum in sedimentary geology. Earth-Science Reviews, 87: 134-169. [111] Pratt B R,Raviolo M M,Bordonaro O L.2012. Carbonate platform dominated by peloidal sands: Lower Ordovician La Silla Formation of the eastern Precordillera,San Juan,Argentina. Sedimentology, 59: 843-866. [112] Pufahl P K,Grimm K A.2003. Coated phosphate grains: proxy for physical,chemical,and ecological changes in seawater. Geology, 31: 801-804. [113] Purkis S J,Harris P M.2016. Quantitative interrogation of a fossilized carbonatesand body: the Pleistocene Miami oolite of South Florida. Sedimentology, 64: 1439-1464. [114] Purkis S J,Harris P M.2017. The extent and patterns of sediment filling of accommodation space on Great Bahama Bank. Journal of Sedimentary Reserch, 86: 294-310. [115] Rameil N,Immenhauser A,Warrlich G M D,Hillgätner H,Droste H J.2010. Morphological patterns of Aptian Lithocodium-Bacinella geobodies: relation to environment and scale. Sedimentology,57: 883-911. [116] Rankey E C,Reeder S L.2009. Holocene ooids of Atutaki atolls,Cook Islands,South Pacific. Geology, 37: 971-974. [117] Rankey E C,Reeder S L.2011. Holocene oolitic marine sand complexes of the Bahamas. Journal of Sedimentary Reserch, 81: 97-117. [118] Rankey E C,Reeder S L.2012. Tidal sands of the Bahamian archipelago. In: Davis R A,Dalrymple R W(eds). Principles of Tidal Sedimentology. Berlin: Springer-Verlag,537-565. [119] Reeder S L,Rankey E C.2008. Interactions between tidal flows and ooid shoals,northern Bahamas. Journal of Sedimentary Reserch, 78: 175-186. [120] Reijmer J J G. 2016. Carbonate factories. In: Harff J,Meschede M,Petersen S,Thiede J(eds). Encyclopedia of Marine Geosciences. Dordrecht of Netherlands, Springer: 80-84. [121] Reitner J,Aria G,Thiel V,Gautret P,Galling U,Michaelis W.1997. Organic matter in Great Salt Lake Ooids(Utah,USA): first approach to a formation via organic matrices. Facies, 36: 210-219. [122] Riaz M,Xiao E Z,Latif K,Zafar T.2019a. Sequence-stratigraphic position of oolitic bank of Cambrian in North China Platform: example from the Kelan Section of Shanxi Province. Arabian Journal for Science and Engineering, 44: 391-407. [123] Riaz M,Latif K,Zafar T,Xiao E Z,Ghazi S,Wang L,Hussein A A A.2019b. Assessment of Cambrian sequence stratigraphic style of the North China Platform exposed in Wuhai division,Inner Mongolia. Himalayan Geology, 40(1): 92-102. [124] Rickard D,Mussmann M,Steadman J A.2017. Sedimentary sulfides. Elements, 13: 119-124. [125] Richter D K,Neuser R D,Schreuer J,Gies H,Immenhauser A.2011. Radiaxial-fibrous calcites: a new look at an old problem. Sedimentary Geology, 239: 23-36. [126] Riding R.1977. Calcified Plectonema (blue-green algae),a recent example of Girvanella from Aldabra Atoll. Palaeontology, 20: 33-46. [127] Riding R.1991a. Calcified cyanobacteria. In: Riding R(ed). Calcareous Algae and Stromatolites. Berlin: Springer,55-87. [128] Riding R.1991b. Cambrian calcareous cyanobacteria and algae. In: Riding R(ed). Calcareous Algae and Stromatolites. Berlin: Springer,305-334. [129] Riding R.2002. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers. Geology, 30: 31-34. [130] Riding R.2006a. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185: 229-238. [131] Riding R.2006b. Cyanobacterial calcification,carbon dioxide concentrating mechanisms,and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4: 299-316. [132] Riding R.2011. Calcified cyanobacteria. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin: Springer,211-223. [133] Riding R,Liang L Y,Lee J-H,Virgone A.2019. Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr. Palaeogeography,Palaeoclimatology,Palaeoecology, 514: 135-143. [134] Ries J B,Anderson M A,Hill R T.2008. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time. Geobiology, 6: 106-119. [135] Roberts J A,Kenward P A,Fowle D A,Goldstein R H,González L A,Moore D S.2013. Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proceedings of the National Academy of Sciences of the United States of America, 110(36): 14540-14545. [136] Salama W,Aref E I,Gaupp R.2013. Mineral evolution and processes of ferruginous microbialite accretion: an example fro the Middle Eocene stromatolitic and ooidal ironstones of the Bahariya depression,Western desert,Egypt. Geobiology, 11: 15-28. [137] Samanta P,Mukhopadhyay S,Eriksson P G.2016. Forced regressive wedge in the Mesoproterozoic Koldaha Shale,Vindhyan basin,Son valley,central India. Marine and Petroleum Geology, 71: 329-343. [138] Sandberg P A.1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305: 19-22. [139] Schlager W.1989. Drowning unconformities on carbonate platforms. In: Crevello P D,Wilson J L,Sarg J F, et al(eds). Controls on Carbonate Platform and Basin Development. SEPM Special Publication, 44: 15-25. [140] Schlager W.1998. Exposure,drowning and sequence boundaries on carbonate platforms. In: Camoin G,Davies P(eds). Reefs and Carbonate Platforms in the Pacific and Indian Oceans. International Association of Sedimentologists,Special Publication, 25: 3-21 [141] Schlager W.1999. Type 3 sequence boundaries. In: Harris P,Saller A,Simo A(eds). Carbonate Sequence Stratigraphy: Application to Reservoirs,Outcrops and Models. SEPM Special Publication, 63: 35-46. [142] Schlager W.2003. Benthic carbonate factories of the Phanerozoic. International Journal of Earth Sciences,92: 445-464. [143] Schlager W,Warrlichw G.2009. Record of sea-level fall in tropical carbonates. Basin Research, 21: 209-224. [144] Schmitt K,Heimhofer U,Frijia G,Huck S.2019. Platform-wide shift to microbial carbonate production during the late Aptian. Geology,47: 786-790. [145] Siahi M,Hofmann A,Master S,Mueller C W,Gerdes A.2017. Carbonate ooids of the Mesoarchaean Pongola Supergroup,South Africa. Geobiology, 15(6): 750-766. [146] Simone L.1981. Ooids: a review. Earth-Science Reviews, 16: 319-355. [147] Sipos A A,Domokos G,Jerolmack D J.2018. Shape evolution of ooids: a geometric model. Scientific Reports,8: 1758. DOI: 10.1038/s41598-018-19152-0. [148] Sorby H C.1879. The structure and origin of limestones. Proceeding of Geological Society of London, 35: 5695. [149] Spincer B R.1998. Oolitized fragments of filamentous calcimicrobes and the pseudofossil affinity of Nuia Maslov from the Upper Cambrian rocks of central Texas. Journal of Paleontology, 72: 577-584. [150] Stal L J.2012. Cyanobacterial mats and stromatolites. In: Whitton B A(ed). Ecology of Cyanobacteria Ⅱ: Their Diversity in Space and Time. Netherlands: Springer,65-125. [151] Summons R E,Bird L R,Gillespie A L,Pruss S B,Roberts M,Sessions A L.2013. Lipid biomarkers in ooids from different locationsand ages: evidence for a common bacterial flora. Geobiology, 11: 420-436. [152] Sun Y,Li Y L,Li L, He H P.2019. Preservation of cyanobacterial UVR-shielding pigment scytonemin in carbonate ooids formed in Pleistocene Salt Lakes in the Qaidam Basin,Tibetan Plateau. Geophysical Research Letters,46(17-18): 10375-10383. [153] Swart P,Oehlert A M,Mackenzie G J,Eberli G P,Reijmer J J G.2014 The Fertilization of the Bahamas by Saharan Dust: a trigger for carbonate precipitation? Geology, 42: 671-674. [154] Tourney J,Ngwenya B T.2014. The role of bacterial extracellular polymeric substances in geomicrobiology. Chemical Geology, 386: 115-132. [155] Trower E J,Lamb M P,Fischer W W.2017. Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates. Earth and Planetary Science Letters, 468: 112-118. [156] Tucker M E,Wright V P.1990. Carbonate Sedimentology. Oxford: Blackwell Sciences,2-9. [157] Vail P R,Mitchum Jr R M,Thompson Ⅲ S. 1977. Seismic stratigraphy and global changes of sea level,part 3: relative changes of sea level from coastal onlap. In: Payton C E(ed). Seismic Stratigraphy: Applications to Hyd