Sedimentary characteristics of the Ediacaran microbial carbonates and their geological implications: a case study of the Member 4 of Dengying Formation from Wellblock MX8 in central Sichuan Basin
Luo Yao1,2, Tan Xiu-Cheng1,2, Zhao Dong-Fang1,2, Luo Wen-Jun3, Liu Yun3, Xiao Di1,2, Qiao Zhan-Feng4, Zeng Wei1,2
1 State Key Laboratory of Oil and Gas Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China; 2 Research Branch of Southwest Petroleum University,Key Laboratory of Carbonate Reservoirs,CNPC,Chengdu 610500, China; 3 Research Institute of Exploration and Development,PetroChina Southwest Oil & Gasfield Company,Chengdu 610041,China; 4 Key Laboratory of Carbonate Reseviors, CNPC,Hangzhou 310023, China
Abstract:The Ediacaran microbial carbonate rocks are widely developed in the Dengying Formation in the Gaoshiti-Moxi area of the Sichuan Basin. This paper takes the Member 4 of the Dengying Formation in Wellblock MX8 as an example. By analyzing the macroscopic and microscopic petrological characteristics of the high-frequency upward shallowing sequence,it is found that the microbial dolomite and sequence construction in the Member 4 of Dengying Formation have the following characteristics: (1)The upward shallowing sequence is mainly composed of thrombolites,stromatolites,microbial dolomicrite and a small amount of microbial bonded granular dolomite. (2)The complete typical upward shallowing sequence is composed of six lithologic units from bottom to top,including microbial dolomicrite(A),flat stromatolite(B),small hummocky stromatolite(C),dispersed thrombolite(D),latticed thrombolite(E),microbial bonded granular dolomite(F). A large number of sequences are composed of incomplete lithologic units such as A-C-E,A-C-D,B-D,B-C-D-E,and the top and bottom of the sequence are distinguished by uneven lithologic mutation surfaces or exposure surfaces such as thrombolites-microbial dolomicrite,stromatolites-microbial dolomicrite. (3)The Ediacaran microbial carbonates were developed in relatively high energy areas above the wave base to near the average sea level,and the environmental energy of the thrombolites are much higher than that of the stromatolites. The results reveal that the high-energy shallow water environment not only controls the distribution of large-scale microbial rocks,but also provides guidance for regional reservoir prediction. Meanwhile,the results are of great sedimentological significance in the establishment of an environmental distribution model that is different from modern microorganisms.
Luo Yao,Tan Xiu-Cheng,Zhao Dong-Fang et al. Sedimentary characteristics of the Ediacaran microbial carbonates and their geological implications: a case study of the Member 4 of Dengying Formation from Wellblock MX8 in central Sichuan Basin[J]. JOPC, 2022, 24(2): 278-291.
[1] 陈娅娜,沈安江,潘立银,潘立银,张杰,王小芳. 2017. 微生物白云岩储集层特征、成因和分布: 以四川盆地震旦系灯影组四段为例. 石油勘探与开发, 44(5): 704-715. [Chen Y N,Shen A J,Pan L Y,Zhang J,Wang X F. 2017. Features,origin and distribution of microbial dolomite reservoirs: a case study of 4th Member of Sinian Dengying Formation in Sichuan Basin,SW China. Petroleum Exploration and Development, 44(5): 704-715] [2] 戴永定,陈孟莪,王尧. 1996. 微生物岩研究的发展与展望. 地球科学进展, 11(2): 208-215. [Dai Y D,Chen M E,Wang Y. 1996. Development and perspective of research for microbialites. Advances in Earth Sciences, 11(2): 208-215] [3] 范正秀,旷红伟,柳永清,彭楠,朱志才,王玉冲,夏晓旭,陈骁帅,郑行海. 2018. 扬子克拉通北缘中元古界神农架群乱石沟组叠层石类型及其沉积学意义. 古地理学报, 20(4): 545-561. [Fan Z X,Kuang H W,Liu Y Q,Peng N,Zhu Z C,Wang Y C,Xia X X,Chen X S,Zheng H H. 2018. Types of stromatolites of the Mesoproterozoic Shennongjia Group in northern margin of Yangtze Craton and their sedimentary significance. Journal of Palaeogeography(Chinese Edition), 20(4): 545-561] [4] 方少仙,侯方浩,董兆雄. 2003. 上震旦统灯影组中非叠层石生态系兰细菌白云岩. 沉积学报, 21(1): 96-105. [Fang S X,Hou F H,Dong Z X. 2003. Non-stromatoltite ecologic system Cyanobacteria dolostone in Dengying Formation of Upper-Sinian. Acta Sedimentologica Sinica, 21(1): 96-105] [5] 费宝生,汪建红. 2005. 中国海相油气田勘探实例之三: 渤海湾盆地任丘古潜山大油田的发现与勘探. 海相油气地质, 10(3): 43-50. [Fei B S,Wang J H. 2005. Cases of discovery and exploration of marine fields in China(Part 3): Renqiu buried-hill oilfield,Bohaiwan Basin. Marine Origin Petroleum Geology, 10(3): 43-50] [6] 韩作振,陈吉涛,迟乃杰,王兆鹏,杨仁超,樊爱萍. 2009. 微生物碳酸盐岩研究: 回顾与展望. 海洋地质与第四纪地质, 29(4): 29-38. [Han Z Z,Chen J T,Chi N J,Wang Z T,Yang R C,Fan A P. 2009. Microbial carbonates: a review and perspectives. Marine Geology and Quaternary Geology, 29(4): 29-38] [7] 黄擎宇,胡素云,潘文庆,刘伟,池英柳,王坤,石书缘,刘强. 2016. 台内微生物丘沉积特征及其对储层发育的控制: 以塔里木盆地柯坪—巴楚地区下寒武统肖尔布拉克组为例. 天然气工业, 36(6): 21-29. [Huang Q Y,Hu S Y,Pan W Q,Liu W,Chi Y L,Wang K,Shi S Y,Liu Q. 2016. Sedimentary characteristics of intra-platform microbial mounds and their controlling effects on the development of reservoirs: a case study of the Lower Cambrian Xiaoerbulake Fm in the Keping-Bachu area,Tarim Basin. Natural Gas Industry, 36(6): 21-29] [8] 李凌,谭秀成,曾伟,周涛,杨雨,洪海涛,罗冰,边立曾. 2013. 四川盆地震旦系灯影组灰泥丘发育特征及储集意义. 石油勘探与开发, 40(6): 666-673. [Li L,Tan X C,Zeng W,Zhou T,Yang Y,Hong H T,Luo B,Bian L Z. 2013. Development and reservoir significance of mud mounds in Sinian Dengying Formation,Sichuan Basin. Petroleum Exploration and Development, 40(6): 666-673] [9] 李英强,何登发,文竹. 2013. 四川盆地及邻区晚震旦世古地理与构造-沉积环境演化. 古地理学报, 15(2): 231-245. [Li Y Q,He D F,Wen Z. 2013. Palaeogeography and tectonic-depositional environment evolution of the Late Sinian in Sichuan Basin and adjacent areas. Journal of Palaeogeography(Chinese Edition), 15(2): 231-245] [10] 刘静江,李伟,张宝民,周慧,袁晓红,单秀琴,张静,邓胜徽,谷志东,樊茹,王拥军,李鑫. 2015. 上扬子地区震旦纪沉积古地理. 古地理学报, 17(6): 735-753. [Liu J J,Li W,Zhang B M,Zhou H,Yuan X H,Shan X Q,Zhang J,Deng S H,Gu Z D,Fan R,Wang Y J,Li X. 2015. Sedimentary palaeogeography of the Sinian in Upper Yangtze Region. Journal of Palaeogeography(Chinese Edition), 17(6): 735-753] [11] 刘树根,宋金民,罗平,Qing H,林彤,孙玮,李智武,王浩,彭瀚霖,余永强,龙翼,万元博. 2016. 四川盆地深层微生物碳酸盐岩储层特征及其油气勘探前景. 成都理工大学学报(自然科学版), 43(2): 129-152. [Liu S G,Song J M,Luo P,Qing H,Lin T,Sun W,Li Z W,Wang H,Peng H L,Yu Y Q,Long Y,Wan Y B. 2016. Characteristics of microbial carbonate reservoir and its hydrocarbon exploring outlook in the Sichuan Basin,China. Journal of Chengdu University of Technology(Science & Technology Edition), 43(2): 129-152] [12] 柳永清,尹崇玉,高林志,王自强. 2003. 峡东震旦系层型剖面沉积相研究. 地质评论, 49(2): 187-195. [Liu Y Q,Yin C Y,Gao L Z,Wang Z Q. 2003. Advances in the study of sedimentary facies of the Sinian candidate stratotype in the eastern areas of the Three Gorges,Hubei. Geological Review, 49(2): 187-195] [13] 罗冰,杨跃明,罗文军,文龙,王文之,陈康. 2015. 川中古隆起灯影组储层发育控制因素及展布. 石油学报, 36(4): 416-426. [Luo B,Yang Y M,Luo W J,Wen L,Wang W Z,Chen K. 2015. Controlling factors and distribution of reservoir development in Dengying Formation of paleouplift in central Sichuan Basin. Acta Petrolei Sinica, 36(4): 416-426] [14] 罗平,王石,李朋威,宋金民,金廷福,王果谦,杨式升. 2013. 微生物碳酸盐岩油气储层研究现状与展望. 沉积学报, 31(5): 807-823. [Luo P,Wang S,Li P W,Song J M,Jin T F,Wang G Q,Yang S S. 2013. Review and prospectives of microbial carbonate reservoirs. Acta Sedimentologica Sinica, 31(5): 807-823] [15] 梅冥相. 2007. 微生物碳酸盐岩分类体系的修订: 对灰岩成因结构分类体系的补充. 地学前缘, 14(5): 222-234. [Mei M X. 2007. Revised classification of microbial carbonates: complementing the classification of limestones. Earth Science Frontiers, 14(5): 222-234] [16] 梅冥相. 2014. 微生物席的特征和属性: 微生物席沉积学的理论基础. 古地理学报, 16(3): 286-304. [Mei M X. 2014. Feature and nature of microbial-mat: theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography(Chinese Edition), 16(3): 286-304] [17] 钱迈平. 1991. 苏、皖北部震旦纪叠层石及其沉积环境学意义. 古生物学报, 30(5): 616-629. [Qian M P. 1991. Sinian stromatolites in northern Jiangsu and Anhui Province and its sedimentary environmentary significance. Acta Palaeontologica Sinica, 30(5): 616-629] [18] 钱迈平,袁训来,徐学思,胡杰,厉建华. 2002. 徐淮地区新元古代叠层石组合. 古生物学报, 41(3): 403-418. [Qian M P,Yuan X L,Xu X S,Hu J,Li J H. 2002. An assemblage of the Neoproterozoic stromatolites from the Xuzhou-Huainan region. Acta Palaeontologica Sinica, 41(3): 403-418.] [19] 佘敏,胡安平,王鑫,付小东,王艳清,夏志远,陈薇. 2019. 湖相叠层石生排烃模拟及微生物碳酸盐岩生烃潜力. 中国石油大学学报(自然科学版), 43(1): 12-22. [She M,Hu A P,Wang X,Fu X D,Wang Y Q,Xia Z Y,Chen W. 2019. Thermocompression simulation of hydrocarbon generation and expulsion for lacustrine stromatolite and hydrocarbon generation potential of microbial carbonates. Journal of China University of Petroleum(Edition of Natural Science), 43(1): 12-22] [20] 王文之,杨跃明,文龙,罗冰,罗文军,夏茂龙,孙赛男. 2016. 微生物碳酸盐岩沉积特征研究: 以四川盆地高磨地区灯影组为例. 中国地质, 43(1): 306-318. [Wang W Z,Yang Y M,Wen L,Luo B,Lou W J,Xia M L,Sun S N. 2016. A study of sedimentary characteristics of microbial carbonate: a case study of the Sinian Dengying Formation in Gaomo area,Sichuan Basin. Geology in China, 43(1): 306-318] [21] 吴亚生,姜红霞,Yang Wan,范嘉松. 2007. 二叠纪—三叠纪之交缺氧环境的微生物和微生物岩. 中国科学(D辑): 地球科学, 37(5): 618-628. [Wu Y S,Jiang H X,Yang W,Fan J S. 2007. Microorganisms and microbial rocks of hypoxia environment across the Permian-Triassic boundary. Scientia in China: Earth Science, 37(5): 618-628] [22] 吴亚生,姜红霞,虞功亮,刘丽静. 2018. 微生物岩的概念和重庆老龙洞剖面P-T界限地层微生物岩成因. 古地理学报, 20(5): 737-775. [Wu Y S,Jiang H X,Yu G L,Liu L J. 2018. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong,Chongqing,China. Journal of Palaeogeography(Chinese Edition), 20(5): 737-775] [23] 杨浩,王永标,陈林,董曼. 2007. 地球微生物过程与潜在烃源岩的形成: 钙质微生物岩. 地球科学, 32(6): 797-802. [Yang H,Wang Y B,Chen L,Dong M. 2007. Calci-microbialite as a kind of potential hydrocarbon source rock and its geomicrobiological processes. Earth Science, 32(6): 797-802] [24] 杨孝群,李忠. 2018. 微生物碳酸盐岩沉积学研究进展: 基于第33届国际沉积学会议的综述. 沉积学报, 36(4): 639-650. [Yang X Q,Li Z. 2018. Research progress in sedimentology of microbial carbonate rocks: a review based on the 33rd International Sedimentological Congress. Acta Sedimentologica Sinica, 36(4): 639-650] [25] 余浩元,蔡春芳,郑剑锋,黄理力,袁文芳. 2018. 微生物结构对微生物白云岩孔隙特征的影响: 以塔里木盆地柯坪地区肖尔布拉克组为例. 石油实验地质, 40(2): 233-243. [Yu H Y,Cai C F,Zheng J F,Huang L L,Yuan W F. 2018. Influence of microbial textures on pore characteristics of microbial dolomites: a case study of Lower Cambrian Xiaoerbulake Formation in Keping area,Tarim Basin. Petroleum Geology & Experiment, 40(2): 233-243] [26] 余谦,牟传龙,张海全,谭钦银,许效松,闫剑飞. 2011. 上扬子北缘震旦纪—早古生代沉积演化与储层分布特征. 岩石学报, 27(3): 672-680. [Yu Q,Mou C L,Zhang H Q,Tan Q Y,Xu X S,Yan J F. 2011. Sedimentary evolution and reservoir distribution of northern Upper Yangtze plate in Sinian-Early Paleozoic. Acta Petrologica Sinica, 27(3): 672-680] [27] 张亚冠,杜远生,徐亚军,余文超,黄虎,焦良轩. 2015. 湘中震旦纪—寒武纪之交硅质岩地球化学特征及成因环境研究. 地质论评, 61(3): 499-510. [Zang Y G,Du Y S,Xu Y J,Yu W C,Huang H,Jiao L Z. 2015. Geochemical characteristics of siliceous rocks during the transition from Sinian(Ediacaran)to Cambrian in central Hunan and its implication for genesis and sedimentary environment. Geological Review, 61(3): 499-510] [28] 赵东方,胡广,张文济,王利超,李飞,谭秀成,连承波. 2018. 渝北巫溪鱼鳞剖面灯影组鲕粒沉积特征及其地质意义. 地质论评, 64(1): 191-202. [Zhao D F,Hu G,Zhang W J,Wang L C,Li F,Tan X C,Lian C B. 2018. Sedimentary characteristics of ooids of Sinian(Ediacaran)Dengying Formation on the Yulin section in Wuxi,Chongqing,and geological implications. Geological Review, 64(1): 191-202] [29] 赵文智,沈安江,胡安平,周进高,倪新锋. 2015. 塔里木、四川和鄂尔多斯盆地海相碳酸盐岩规模储层发育地质背景初探. 岩石学报, 31(11): 3496-3508. [Zhao W Z,Shen A J,Hu A P,Zhou J G,Ni X F. 2015. A discussion on the geological background of marine carbonate reservoirs development in Tarim,Sichuan and Ordos Basin,China. Acta Petrologica Sinica, 31(11): 3496-3508] [30] 周进高,张建勇,邓红婴,陈娅娜,郝毅,李文正,谷明峰,罗宪婴. 2017. 四川盆地震旦系灯影组岩相古地理与沉积模式. 天然气工业, 37(1): 24-31. [Zhou J G,Zhang J Y,Deng H Y,Chen Y N,Hao Y,Li W Z,Gu M F,Luo X Y. 2017. Lithofacies paleogeography and sedimentary model of Sinian Dengying Fm in the Sichuan Basin. Natural Gas Industry, 37(1): 24-31] [31] 朱士兴. 1993. 中国叠层石. 天津: 天津大学出版社,1-263. [Zhu S X. 1993. The Stromatolites of China. Tianjin: Tianjin University Press,1-263] [32] Aitken J D,Narbonne G M. 1989. Two occurrences of Precambrian thrombolites from the Mackenzie Mountains,northwestern Canada. Palaios, 4: 384-388. [33] Allwood A C,Walter M R,Burch L W,Kamber B S. 2007. 3.43 billion-year-old stromatolite reef from the Pilbara Craton of western Australia: ecosystem-scale insights to early life on Earth. Precambrian Research, 158(3-4): 198-227. [34] Andres M S,Reid R P. 2006. Growth morphologies of modern marine stromatolites: a case study from Highborne Cay,Bahamas. Sedimentary Geology, 185(3): 319-328. [35] Awramik S M. 1971. Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science,174: 825-827. [36] Burne R V,Moore L S. 1987. Microbialites: organosedimentary deposits of bethic microbial communities. Palaios, 2: 241-254. [37] Centeno C M,Legendre P,Beltrán Y,Alcántara-Hernández R J,Lidström U E,Ashby M N,Falcón L I,Notes A. 2012. Microbialite genetic diversity and composition relate to environmental variables. FEMS Microbiology Ecology, 82(3): 724-735. [38] Dickson J A D. 2004. Echinoderm skeletal preservation: calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. Journal of Sedimentary Research, 74(3): 355-365. [39] Guhey R,Sinha D,Tewari V C. 2011. Meso-Neoproterozoic stromatolites from the Indravati and Chhattisgarh basin,central India. In: Tewari V,Seckbach J(eds). Stromatolite: Interaction of Microbes with Sediments. Cellular Origin, Life in Extreme Habitats and Astrobiology,18. Dordrecht: Springer, 21-42. [40] Hudec M R,Jackson M P A. 2007. Terra infirma: understanding salt tectonics. Earth-Science Reviews,82(1/2): 1-28. [41] Jahnert R J,Collins L B. 2012. Characteristics,distribution and morphogenesis of subtidal microbial systems in Shark Bay,Australia. Marine Geology, 303-306: 115-136. [42] Jiang G,Sohl L E,Christie-Blick N. 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya(India)and Yangtze Block(South China): paleogeographic implications. Geology, 31(10): 917-920. [43] Kamber B S,Webb G E,Gallagher M. 2014. The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity. Journal of the Geological Society, 171(6): 745-763. [44] Knoll A H,Wörndle S, Kah L C. 2013. Covariance of microfossil assemblages textures across an Upper Mesoproterozoic carbonate plateform. Palaios, 28(7): 453-470. [45] Kobluk D R,Crawford D R. 1990. A modern hypersaline organic mud- and gypsum-dominated basin and associated microbialites. Palaios, 5: 134-148. [46] Logan B W,Rezak R,Ginsburg R N. 1964. Classification and environmental significance of algal stromatolites. Journal of Geology, 72(1): 68-83. [47] Lowenstein T K,Hardie L A,Timofeeff M N,Demicco R V. 2003. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology, 31(10): 857-860. [48] Lyons T W,Anbar A D,Severmann S,Scott C,Gill B C. 2009. Tracking euxinia in the ancient ocean: a multiproxy perspective and Proterozoic case study. Annual Review of Earth and Planetary Sciences, 37: 507-534. [49] Lyons T W,Reinhard C T,Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506: 307-315. [50] Mancini E A,Lina’s J C L,Parcell W C,Bádenas B,Leinfelder R R,Benson D J. 2004. Upper Jurassic thrombolite reservoir play,northeastern Gulf of Mexico. AAPG Bulletin, 88(11): 1573-1602. [51] Mettraux M,Homewood P,Balushi S A,Erthal M M,Matsuda N S. 2014. Neoproterozoic microbialites in outcrops of the Qarn Alam salt dome,central Oman. GeoArabia, 19(3): 17-79. [52] Riding R. 2002. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology,47(S1): 179-214. [53] Riding R. 2006. Cyanobacterial calcification,carbon dioxide concentrating mechanisms,and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4(4): 299-316. [54] Riding R,Liang L. 2005. Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography,Palaeoclimatology,Palaeoecology, 219(1-2): 101-115. [55] Sandberg P A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305: 19-22. [56] Seilacher A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14(1): 86-93. [57] Shapiro R S. 2000. A comment on the systematic confusion of thrombolites. Palaios, 15: 166-169. [58] Tull S J. 1997. The diversity of hydrocarbon habitat in Russia. Petroleum Geoscience, 3(4): 315-325. [59] Webb G E,Kamber B S. 2000. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64: 1557-1565. [60] Woo J,Chough S K,Han Z Z. 2008. Chambers of Epiphyton thalli in microbial buildups,Zhangxia Formation(Middle Cambrian),Shandong Province,China. Palaios, 23: 55-64. [61] Zhang S,Wang X,Wang H,Bjerrum C J,Hammarlund E U,Costa M M,Connelly J N,Zhang B,Su J,Canfield D E. 2016. Sufficient oxygen for animal respiration 1,400 million years ago. Proceedings of the National Academy of Sciences of the United States of America, 113(7): 1731-1736. [62] Zhao D F,Hu G,Wang L C,Li F,Tan X C,She M,Zang W J,Qiao Z F,Wang X F. 2020. Sedimentary characteristics and origin of dolomitic ooids of the terminal Ediacaran Dengying Formation at Yulin(Chongqing,South China). Palaeogeography,Palaeoclimatology,Plalaeoecology, 544: 109601.