Sand body architecture and controlling factors of shallow water delta in the Member 2 of Xujiahe Formation in Xinchang structural belt,western Sichuan Basin
DENG Wenlong1, YE Tairan1, JI Youliang2,3, ZHOU Yong2,3, WAN Hongfeng2,3, REN Yutao2,3
1 Southwest Petroleum Brach Company,Sinopec,Chengdu 610081,China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 3 National Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing),Beijing 102249,China
Abstract:The sand bodies of the Member 2 of the Upper Triassic Xujiahe Formation in the Xinchang structural belt of western Sichuan Basin are widely distributed,with various types of sand bodies and large thickness differences. This results in uneven distribution of interlayer barrier bed and intraformational bed in gas reservoirs,and strong reservoir heterogeneity. Therefore,it is crucial to investigate the sedimentary microfacies,distribution characteristics and architecture of reservoir sand bodies,so as to lay a foundation for the following reservoir prediction and efficient gas reservoir development. Using core,well logs,3D seismic and laboratory data,and guided by the theory of high-resolution sequence stratigraphy proposed by T.A. Cross,the authors systematically examined the structural characteristics and controlling factors of sand bodies in the second member of Xujiahe Formation in the Xinchang structural belt,western Sichuan Basin. The results show that: The study area was largely located in a shallow water delta front environment,which consists mainly of subaqueous distributary channel sand bodies with subordinate mouth bar sand bodies. These channel sand bodies are characterized by frequent lateral migration,multiple vertical amalgamation and extensive areal coverage. It is concluded that in the study area there are two main categories and nine subcategories of sand body vertical stacking patterns and three lateral contact patterns. The structural characteristics and development patterns of sand bodies are controlled mainly by base-level fluctuation and river energy. Finally,the sedimentary facies and sand body development model of the Xinchang structural belt in western Sichuan Basin are established,which has important applications for guiding exploration and development of gas reservoirs in similar settings.
DENG Wenlong,YE Tairan,JI Youliang et al. Sand body architecture and controlling factors of shallow water delta in the Member 2 of Xujiahe Formation in Xinchang structural belt,western Sichuan Basin[J]. JOPC, 2024, 26(3): 545-566.
[1] 陈诚,齐宇,喻梓靓,王波. 2021. 浅水三角洲河道砂体叠置关系的地震识别: 以鄂尔多斯盆地东缘临兴S区为例. 天然气地球科学, 32(5): 772-779. [Chen C,Qi Y,Yu Z L,Wang B.2021. Seismic identification of superposition relationship of the shallow water delta channel sandbodies: case study of Linxing S area in eastern Ordos Basin. Natural Gas Geoscience, 32(5): 772-779] [2] 陈涛,王河锦,张祖青,王欢. 2005. 浅谈利用黏土矿物重建古气候. 北京大学学报(自然科学版), 41(2): 309-316. [Chen T,Wang H J,Zhang Z Q,Wang H.2005. An approach to paleoclimate-reconstruction by clay minerals. Acta Scientiarum Naturalium Universitatis Pekinensis, 41(2): 309-316] [3] 封从军,鲍志东,代春明,张兆谦. 2015. 三角洲前缘水下分流河道单砂体叠置机理及对剩余油的控制: 以扶余油田J19区块泉头组四段为例. 石油与天然气地质, 36(1): 128-135. [Feng C J,Bao Z D,Dai C M,Zhang Z Q.2015. Superimposition patterns of underwater distributary channel sands in deltaic front and its control on remaining oil distribution: a case study from K1q4 in J19 block,Fuyu oilfield. Oil & Gas Geology, 36(1): 128-135] [4] 郭炳跃,王毅,张斌,张璟,苏晶文,杨洋. 2020. 安徽池州地区下蜀组沉积环境及成因探讨. 华东地质, 41(1): 18-26. [Guo B Y,Wang Y,Zhang B,Zhang J,Su J W,Yang Y.2020. The sedimentary environment and genesis analysis of the Xiashu Formation in the Chizhou area,Anhui Province. East China Geology, 41(1): 18-26] [5] 郭维华. 2006. 川西坳陷中段上三叠统须二、须三段层序地层学与沉积相研究. 西南石油大学硕士学位论文: 62-87. [Guo W H.2006. Study on sequence stratigraphy and sedimentary facies of the second and third members of Upper Triassic Xujiahe Formation in the middle section of western Sichuan depression. Masteral dissertation of Southwest Petroleum University: 62-87] [6] 黄其胜. 1995. 川北晚三叠世须家河期古气候及成煤特征. 地质论评, 41(1): 92-99. [Huang Q S.1995. Paleoclimate and coal-forming characteristics of the Late Triassic Xujiahe Stage in northern Sichuan. Geological Review, 41(1): 92-99] [7] 井涌泉,蔡文涛,王海峰,张晶玉,马良涛. 2020. 基于地震波形结构特征的浅水三角洲砂体构型预测. 地球物理学进展, 35(6): 2359-2366. [Jing Y Q,Cai W T,Wang H F,Zang J Y,Ma L T.2020. Prediction of shallow water delta sand body configuration based on architectural feature of seismic waveform. Progress in Geophysics, 35(6): 2359-2366] [8] 林良彪,陈洪德,翟常博,胡晓强,李君文. 2006. 四川盆地西部须家河组砂岩组分及其古地理探讨. 石油实验地质, 28(6): 511-517. [Lin L B,Chen H D,Zhai C B,Hu X Q,Li J W.2006. Sandstone compositions and paleogeographic evolution of the upper Triassic Xujiahe Formation in the western Sichuan Basin,China. Petroleum Geology & Experiment, 28(6): 511-517] [9] 梁旭,范廷恩,胡光义,陈飞,王海峰,范洪军. 2018. 海相辫状河三角洲沉积基准面旋回划分及砂体叠置样式分析: 以西江W油田珠江组为例. 现代地质, 32(5): 913-923. [Liang X,Fan T E,Hu G Y,Chen F,Wang H F,Fan H J.2018. Division of base-level cycles and superimposition of sandbodies in marine braided delta reservoir: a case study of Zhujiang Formation in Xijiang W Oilfield,Pearl River Estuary Basin. Geoscience, 32(5): 913-923] [10] 李元昊,刘池洋,独育国,王秀娟,黄锦绣. 2009. 鄂尔多斯盆地西北部上三叠统延长组长8油层组浅水三角洲沉积特征及湖岸线控砂. 古地理学报, 11(3): 265-274. [Li Y H,Liu C Y,Du Y G,Wang X J,Huang J X.2009. Sedimentary characteristics of shallow water delta and lake shoreline control on sandbodies of Chang 8 oil-bearing interval of the Upper Triassic Yanchang Formation in northwestern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 11(3): 265-274] [11] 刘翰林,邱振,徐黎明,王凤琴,童强,蔺嘉昊,尹帅,王文强. 2021. 鄂尔多斯盆地陇东地区三叠系延长组浅水三角洲砂体特征及厚层砂体成因. 石油勘探与开发,48(1): 106-117. |[Liu H L,Qiu Z,Xu L M,Wang F Q,Tong Q,Lin J H,Yin S,Wang W Q.2021. Distribution of shallow water delta sand bodies and the genesis of thick layer sand bodies of the Triassic Yanchang Formation,Longdong Area,Ordos Basin. Petroleum Exploration and Development, 48(1): 106-117] [12] 刘君龙,杨克明,纪友亮,朱宏权,黄富祥,贾浪波. 2015. 川西坳陷上侏罗统浅水漫湖沉积特征与砂体叠置模式. 古地理学报, 17(4): 503-516. [Liu J L,Yang K M,Ji Y L,Zhu H Q,Huang F X,Jia L B.2015. Sedimentary characteristics and sand-body superposed patterns of flood-overlake deposits of the Upper Jurassic in Chuanxi Depression. Journal of Palaeogeography(Chinese Edition), 17(4): 503-516] [13] 刘君龙,孙冬胜,纪友亮,朱宏权,于海跃,王天云. 2018. 川西晚侏罗世前陆盆地浅水三角洲砂体分布特征与叠置模式. 石油与天然气地质, 39(6): 1164-1178. [Liu J L,Sun D S,Ji Y L,Zhu H Q,Yu H Y,Wang T Y.2018. Distribution characteristics and superimposition pattern of the Late Jurassic shallow water deltic sand body in the foreland basin of Western Sichuan Depression. Oil & Gas Geology, 39(6): 1164-1178] [14] 楼章华,卢庆梅,蔡希源,董百万,张立庆. 1998. 湖平面升降对浅水三角洲前缘砂体形态的影响. 沉积学报,16(4): 27-31. [Lou Z H, Lu Q M,Cai X Y, Dong B W, Zhang L Q.1998. Influence of lake level fluctuation on sandbody shapes at shallow-water delta front. Acta Sedimentologica Sinca,16(4): 27-31] [15] 楼章华,袁笛,金爱民. 2004. 松辽盆地北部浅水三角洲前缘砂体类型、特征与沉积动力学过程分析. 浙江大学学报(理学版), 31(2): 211-215. [Lou Z H,Yuan D,Jin A M.2004. Types,characteristics of sandbodies in shallow-water deltafront and sedimentary models in Northern Songliao Basin,China. Journal of Zhejiang University(Science Edition), 31(2): 211-215] [16] 吴胜和,徐振华,刘钊. 2019. 河控浅水三角洲沉积构型. 古地理学报, 21(2): 202-215. [Wu S H,Xu Z H,Liu Z.2019. Depositional architecture of fluvial-dominated shoal water delta. Journal of Palaeogeography(Chinese Edition), 21(2): 202-215] [17] 王兴龙,刘磊,林良彪,陈洪德,刘君龙,潘博,王志康,刘开鸾. 2021. 川西拗陷新场地区须二段沉积微相与砂体展布. 成都理工大学学报(自然科学版), 48(1): 23-34. [Wang X L,Liu L,Lin L B,Chen H D,Liu J L,Pan B,Wang Z K,Liu K L.2021. Sedimentary micro-facies and distribution of sand bodies in the 2nd member of Xujiahe Formation,Xinchang area,western Sichuan Depression,China. Journal of Chengdu University of Technology(Science & Technology Edition), 48(1): 23-34] [18] 许淑梅,李萌,王金铎,任新成,池鑫琪,舒鹏程,王杰清,刘弦. 2020. 准噶尔盆地腹部下侏罗统三工河组旋回样式及砂体叠置规律. 古地理学报, 22(2): 221-234. [Xu S M,Li M,Wang J D,Ren X C,Chi X Q,Shu P C,Wang J Q,Liu X.2020. Sedimentary cycle pattern and stacked style of sand-body of the Lower Jurassic Sangonghe Formation in belly of Junggar Basin. Journal of Palaeogeography(Chinese Edition), 22(2): 221-234] [19] 印森林,陈恭洋,张玲,罗迎春,汪超平,刘甜甜. 2016. 岩相构型对致密砂岩优质储层的控制作用: 以川西坳陷须二段为例. 天然气地球科学, 27(7): 1179-1189. [Yin S L,Chen G Y,Zhang L,Luo Y C,Wang C P,Liu T T.2016. The controlling effect of lithofacies architecture on high quality tight sandstone reservoirs: a case study of second member of the Upper Triassic of Xujiahe Formation,western Sichuan Depression,China. Natural Gas Geoscience, 27(7): 1179-1189] [20] 尹太举,张昌民,朱永进,杨威,叶继根,蔡文,代盈营. 2014. 叠覆式三角洲: 一种特殊的浅水三角洲. 地质学报, 88(2): 263-272. [Yin T J,Zhang C M,Zhu Y J,Yang W,Ye J G,Cai W,Dai Y Y.2014. Overlapping delta: a new special type of delta formed by overlapped lobes. Acta Geologica Sinica, 88(2): 263-272] [21] 张昌民,尹太举,朱永进,柯兰梅. 2010. 浅水三角洲沉积模式. 沉积学报, 28(5): 933-944. [Zhang C M,Yin T J,Zhu Y J,Ke L M.2010. Shallow-water deltas and models. Acta Sedimentologica Sinica, 28(5): 933-944] [22] 张兴阳,罗平,顾家裕,罗忠,刘柳红,陈飞,张玄杰. 2006. 三级基准面旋回内三角洲砂体骨架模型的建立: 以陕北安塞三角洲露头为例. 沉积学报, 24(4): 540-548. [Zhang X Y,Luo P,Gu J Y,Luo Z,Liu L H,Chen F,Zhang X J.2006. Establishment of the delta sandbody framework model in a 3rd order baselevel cycle: taking Shaanbei Ansai delta outcrop as an example. Acta Sedimentologica Sinica, 24(4): 540-548] [23] 邹才能,赵文智,张兴阳,罗平,王岚,刘柳红,薛叔浩,袁选俊,朱如凯,陶士振. 2008. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报, 82(6): 813-825. [Zou C N,Zhao W Z,Zhang X Y,Luo P,Wang L,Liu L H,Xue S H,Yuan X J,Zhu R K,Tao S Z.2008. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake basins. Acta Geologica Sinica, 82(6): 813-825] [24] 郑荣才,尹世民,彭军. 2000. 基准面旋回结构与叠加样式的沉积动力学分析. 沉积学报, 18(3): 369-375. [Zheng R C,Yin S M,Peng J.2000. Sedimentary dynamic analysis of sequence structure and stacking pattern of base-level cycle. Acta Sedimentologica Sinica, 18(3): 369-375] [25] 朱筱敏,邓秀芹,刘自亮,孙勃,廖纪佳,惠潇. 2013. 大型坳陷湖盆浅水辫状河三角洲沉积特征及模式: 以鄂尔多斯盆地陇东地区延长组为例. 地学前缘, 20(2): 19-28. [Zhu X M,Deng X Q,Liu Z L,Sun B,Liao J J,Hui X.2013. Sedimentary characteristics and model of shallow braided delta in large-scale lacustrine: an example from Triassic Yanchang Formation in Ordos Basin. Earth Science Frontiers, 20(2): 19-28] [26] Fisk H N.1961. Bar-finger sands of Mississippi Delta 1. Geometry of Sandstone Bodies. American Association of Petroleum Geologists: 29-52. [27] Fleischer R L,Price P B.1964. Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochimica et Cosmochimica Acta, 28: 1705-1714. [28] Postma G.1990. An analysis of the variation in delta architecture. TerraNova, 2(2): 124-130. [29] Kohn B P,Green P F.2002. Low temperature thermochronology: from tectonics to landscape evolution. Tectonophysics, 349: 1-4. [30] Nichols G J,Fisher J A.2007. Processes,facies and architecture of fluvial distributary system deposits. Sedimentary Geology, 195: 75-90. [31] Weeler H E.1964. Baselevel,lithosphere surface,and time-stratigraphy. GSA Bulletin, 75(7): 599-610.