Depositional environments and mechanism of differential organic matter enrichment for shale of the Lower Jurassic Quse Formation in Qiangtang Basin,Tibet
ZHENG Mingyu1,2,3, MA Yiquan1,2,3, WEN Huaguo1,2,3
1 Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources,Chengdu University of Technology,Chengdu 610059,China; 2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China; 3 Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China
Abstract:The Lower Jurassic Quse Formation in the Qiangtang Basin is an important source rock series in the basin. However,a systematic study on the mechanism of organic matter enrichment in this source rock is still lacking,which limits the understanding of the material basis of hydrocarbon accumulation in this area. In this paper,the 100-meter thick organic matter-rich shale of the Lower Jurassic Quse Formation in the Biluoqiao area of the South Qiangtang Depression is used as a study subject. we systematically investigated the the palaeoenvironmental and palaeoclimatic characteristics of shale at the time of deposition,analyzed the main controlling factors of the organic matter enrichment in the shale,and established models of differential organic matter enrichment in the shale of Quse Formation based on the integrated core,TOC,major and trace elements data. The results show that the shale can be divided into two intervals by the organic matter content which increased upward at both intervals. The lower interval(59~110 m)had a generally low organic matter content(the TOC contents range from 0.3% to 8.1%,with an average of 2.7%),and contained three thin organic matter-rich intervals. However,the organic matter content in the upper interval(0~59 m)was relatively high(the TOC contents range from 0.8% to 16%,with an average of 4.9%). The deposition of Quse Formation generally occurred in a humid environment,and was influenced by hydrothermal processes. The organic matter enrichment in the lower interval was mainly related to moderate terrestrial inputs,redox conditions and palaeoproductivity,and the organic matter enrichment in the upper interval was mainly controlled by redox conditions and palaeoproductivity. The difference in the organic matter enrichment mechanism between the upper and lower intervals of the Quse Formation may be closely related to the driving forces of palaeoclimate and sea level changes.
ZHENG Mingyu,MA Yiquan,WEN Huaguo. Depositional environments and mechanism of differential organic matter enrichment for shale of the Lower Jurassic Quse Formation in Qiangtang Basin,Tibet[J]. JOPC, 2024, 26(5): 1127-1139.
[1] 白静,徐兴友,陈珊,刘卫斌,刘畅,张昌盛. 2020. 松辽盆地长岭凹陷乾安地区青山口组一段沉积相特征与古环境恢复: 以吉页油1井为例. 中国地质,47(1): 220-235. [Bai J,Xu X Y,Chen S,Liu W B,Liu C,Zhang C S.2020. Sedimentary characteristics and paleo-environment restoration of the first member of Qingshankou Formation in Qian’an area,Changling sag,Songliao Basin: a case study of Jiyeyou 1 Well. Geology in China,47(1): 220-235] [2] 陈诗越,王苏民,金章东,沈吉. 2003. 青藏高原中部湖泊沉积物中Zr/Rb值及其环境意义. 海洋地质与第四纪地质,(4): 35-38. [Chen S Y,Wang S M,Jing Z D,Shen J.2003. Variation of Zr/Rb rations in lacustrine sediments of the central Tibetan Plateau and its environment implications. Marine Geology & Quaternary Geology,(4): 35-38] [3] 杜佰伟,彭清华,谢尚克,郑博. 2014. 羌塘盆地南部下侏罗统曲色组页岩气资源潜力分析. 新疆石油地质,35(2): 144-148. [Du B W,Peng Q H,Xie S K,Zheng B.2014. The Quse shale gas resource potential of Lower Jurassic in Southern Qiangtang Basin,Tibet. Xingjiang Petroleum Geology,35(2): 144-148] [4] 付修根,王剑,宋春彦,刘中戎. 2020a. 羌塘盆地第一口油气科学钻探井油气地质成果及勘探意义. 沉积与特提斯地质,40(1): 15-25. [Fu X G,Wang J,Song C Y,Liu Z R.2020a. Hydrocarbon geological results and exploration significance of the first oil and gas scientific drilling well in Qiangtang Basin. Sedimentary Geology and Tethyan Geology,40(1): 15-25] [5] 付修根,王剑,曾玉红,宋春彦,曾胜强. 2020b. 羌塘中生代盆地大洋缺氧事件及全球对比. 地质论评,66(5): 1130-1142. [Fu X G,Wang J,Zeng Y H,Song C Y,Zeng S Q.2020b. Oceanic anoxic events in the Mesozoic Qiangtang Basin and global comparison. Geological Review,66(5): 1130-1142] [6] 付修根,王剑,文华国,宋春彦,王忠伟,曾胜强,冯兴雷,韦恒叶. 2021. 东特提斯开阔海环境中托尔期大洋缺氧事件的记录: 对全球气候变化和区域环境扰动的启示. 中国科学: 地球科学,51(12): 2184-2196. [Fu X G,Wang J,Wen H G,Song C Y,Wang Z W,Zeng S Q,Feng X L,Wei H Y.2021. A Toarcian Ocean anoxic event record from an open-ocean setting in the eastern Tethys: implications for global climatic change and regional environmental perturbation. Science China: Earth Sciences,51(12): 2184-2196] [7] 黎茂稳,马晓潇,金之钧,李志明,蒋启贵,吴世强,李政,徐祖新. 2022. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义. 石油与天然气地质,43(1): 1-25. [Li M W,Ma X X,Jin Z J,Li Z M,Jiang Q G,Wu S Q,Li Z,Xu Z X.2022. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China. Oil & Gas Geology,43(1): 1-25] [8] 李高杰,夏国清,伊海生,季长军,杨嘉宝. 2020. 西藏南羌塘坳陷泥质烃源岩评价及有利生烃区预测. 地质论评,66(5): 1241-1260. [Li G J,Xia G Q,Yi H S,Ji C J,Yang J B.2020. Evaluation of muddy hydrocarbon source rocks and prediction of favorable hydrocarbon zones in the South Qiangtang Depression,Tibet. Geological Review,66(5): 1241-1260] [9] 李艳青,佘振兵,马昌前. 2011. 石英SEM-CL微结构及其在岩石学中的应用. 地球科学进展,26(3): 325-331. [Li Y Q,Yu Z B,Ma C Q.2011. SEM-CL Analysis of quartz and its application in petrology. Advances in Earth Science,26(3): 325-331] [10] 马义权,杜学斌,刘惠民,陆永潮. 2017. 东营凹陷沙四上亚段陆相页岩岩相特征、成因及演化. 地球科学,42(7): 1195-1208. [Ma Y Q,Du X B,Liu H M,Lu Y C.2017. Characteristics,depositional processes,and evolution of shale lithofaceis of the Upper Submember of Es4 in the Dongying Depression. Earth Science,42(7): 1195-1208] [11] 潘应娣,胡修棉,马安林,梁文博. 2023. 班公湖—怒江缝合带同碰撞海沟盆地砂岩物源分析及其大地构造意义. 地质学报,97(9): 2992-3005. [Pan Y D,Hu X M,Ma A L,Liang W B.2023. Provenance analysis of sandstone in the syncollisional trench basin of the Banggong Lake-NuJiang suture zone and its tectonic implications. Acta Geologica Sinica,97(9): 2992-3005] [12] 彭清华,杜佰伟,谢尚克. 2022. 羌塘盆地昂达尔错古油藏油气来源及成藏模式. 科学技术与工程,22(33): 14599-14607. [Peng Q H,Du B W,Xie S K.2022. Hydrocarbon source and reservoir forming model for the Paleo-reservoir of Angdarco area in Qiangtang Basin. Science Technology and Engineering,22(33): 14599-14607] [13] 彭光荣,陈聪,龙祖烈,张丽丽,汪旭东,马勇,辛志源,翟普强. 2023. 白云凹陷烃源岩有机质富集机理. 地质学报,97(12): 4164-4178. [Peng G r,Chen C,Long Z L,Zhang L L,Wang X D,Ma Y,Xin Z Y,Zhai P Q.2023. Organic matter enrichment of different types of source rocks in the Baiyu sag. Acta Geologica Sinica,97(12): 4164-4178] [14] 沈安江,付小东,张建勇,魏学斌,胡安平,王剑,熊绍云,付修根,谢渊,刘思琪,李茜,王鑫,贺训云,乔占峰,郑剑锋,段军茂. 2023. 羌塘盆地上三叠统—下侏罗统海相页岩油特征及发现意义. 石油勘探与开发,50(5): 962-974. [Shen A J,Fu X D,Zhang J Y,Wei X B,Hu A P,Wang J,Xiong S Y,Fu X G,Xie Y,Liu S Q,Li Q,Wang X,He X Y,Qiao Z F,Zheng J F,Duan J M.2023. Characteristics and discovery significance of the Upper Triassic-Lower Jurassic marine shale oil in Qiangtang Basin,NW China. Petroleum Exploration and Development,50(5): 962-974] [15] 沈安江,熊绍云,胡安平,张建勇,许强,付小东,潘立银,王鑫,刘思琪,李茜,段军茂. 2024. 羌塘盆地中生代岩相古地理研究新进展. 海相油气地质,29(1): 30-44. [Shen A J,Xiong S Y,Hu A P,Zhang J Y,Xu Q,Fu X D,Pan L Y,Wang X,Liu S Q,Li Q,Duan J M.2024. New progress in the study of Mesozoic lithofacies and paleogeography in Qiangtang Basin. Marine Origin Petroleum Geology,29(1): 30-44] [16] 谭富文,张润合,王剑,斯春松,马立桥. 2016. 羌塘晚三叠世—早白垩世裂陷盆地基底构造. 成都理工大学学报(自然科学版),43(5): 513-521. [Tan F W,Zhang R H,Wang J,Si C S,Ma L Q.2016. Discussion on basement strctures of the late Triassic-early Cretaceous Qiangtang rift basin in Tibet,China. Journal of Chengdu University of Technology(Science & Technology Edition),43(5): 513-521] [17] 谭梅,季长军,周冰洋,康少伟. 2023. 南羌塘坳陷上三叠统—下侏罗统碳酸盐岩元素地球化学特征及指示意义. 地质论评,69(3): 943-958. [Tan M,Ji C J,Zhou B Y,Kang S W.2023. Element geochemical characteristics and their indicative ignificance of the Upper Triassic-Lower Jurassic carbonate rocks in the Southern Qiangtang Depression. Geological Review,69(3): 943-958] [18] 唐友军,杨易卓,孟宪新,王霆,何大祥,李梦如,季长军,孙鹏,蔡意兰. 2019. 火山活动对南羌塘盆地曲色组烃源岩地球化学特征影响探讨. 天然气地球科学,30(5): 721-728. [Tang Y J,Yang Y Z,Meng X X,Wang T,He D X,Li M R,Ji C J,Sun P,Cai Y L.2019. Influence of volcanic activity on geochemical characteristics of hydrocarbon source rocks in the Quse Formation in the South Qiangtang Basin. Natural Gas Geoscience,30(5): 721-728] [19] 唐友军,张欣越,季长军,王霆,何大祥,杨易卓,孙鹏,李博偲,裴冰冰. 2022. 南羌塘盆地侏罗系砂糖状白云岩古油藏油源研究: 来自芳烃化合物和单体烃碳同位素的证据. 长江大学学报(自然科学版),19(2): 1-11. [Tang Y J,Zhang X Y,Ji C J,Wang T,He D X,Yang Y Z,Sun P,Li B C,Pei B B.2022. Crdue oil source of granulated dolomite paleo-reservoil from the Jurassic strata in the South Qiangtang Basin: evidence from carbon isotopes of aromatic compounds and monomeric hydrocarbons. Journal of Yangtaze University(Natural Science Edition),19(2): 1-11] [20] 万友利,王剑,付修根,谭富文,王忠伟. 2018. 羌塘盆地南部古油藏带布曲组白云岩地球化学特征及成因机制. 成都理工大学学报(自然科学版),45(2): 129-141. [Wan Y L,Wang J,Fu X G,Tan F W,Wang Z W.2018. The geochemical characteristics and mechanism of dolomite in paleo-reservoir of Buqu Formation,south Qiangtang Basin,Tibet,China. Journal of Chengdu University of Technology(Science & Technology Edition),45(2): 129-141] [21] 万友利,赵瞻,胡志中,李学仁. 2021. 羌塘盆地中侏罗统布曲组白云岩有序度与晶胞参数的影响因素及地质意义. 沉积与特提斯地质,41(4): 512-523. [Wan Y L,Zhao Z,Hu Z Z,Li X R.2021. Controlling factors and their geological significances of order degrees and unit-cell parameters of dolomites in the Middle Jurassic Buqu Formation in Qiangtang Basin. Sedimentary Geology and Tethyan Geology,41(4): 512-523] [22] 王剑,付修根,沈利军,谭富文,宋春彦,陈文彬. 2020. 论羌塘盆地油气勘探前景. 地质论评,66(5): 1091-1113. [Wang J,Fu X G,Shen L J,Tan F W,Song C Y,Cheng W B.2020. Prospect of the potential of oil and gas resources in Qiangtang Basin,Xizang(Tibet). Geological Review,66(5): 1091-1113] [23] 王永胜,郑春子. 2008. 藏北南羌塘盆地毕洛错地区下侏罗统曲色组石膏岩层. 地层学杂志,(3): 321-326. [Wang Y S,Zheng C Z.2008. Gypsum beds of the early Jurassic Quse formation in the biloucuo area of the southern qiangtang basin,Northern Xizang. Journal of Stratigraphy,(3): 321-326] [24] 王子玉,程安进,卓二军,姚琬圭. 1994. 太湖全新世沉积物的古盐度指标及其环境意义. 地层学杂志,(3): 196-202. [Wang Z Y,Chen A J,Zhuo E J,Yao W G.1994. Paleosalinity indicators of Holocene sediments from Lake Taihu and their environmental significance. Journal of Stratigraphy,(3): 196-202] [25] 魏学斌,张小军,张世铭,盛军,伍坤宇,马新民,郭笑,魏巍,王朴,苟迎春. 2024. 南羌塘盆地BK4井曲色组油页岩生物标志物异常组合现象及意义. 天然气地球科学,35(2): 327-343. [Wei X B,Zhang X J,Zhang S M,Sheng J,Wu K Y,Ma X M,Guo X,Wei W,Wang P,Gou Y C.2024. Abnormal assemblage of biomarkers in oil shale and its significance in Well BK4,Quse Formation in South Qiangtang Basin. Natural Gas Geoscience,35(2): 327-343] [26] 文华国,郑荣才,唐飞,郑爱萍,桑廷元,陈守春,李瑰丽,李联新. 2008. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析. 矿物岩石,(1): 114-120. [Wen H G,Zheng R C,Tang F,Zheng A P,Sang Y Y,Chen S C,Li G L,Li L X.2008. Reconstruction and analysis of paleosalanity and paleoenvironment of the Chang 6 member in the Gengwan region,Ordos Basin. Mineralogy and Petrology,(1): 114-120] [27] 吴福元,万博,赵亮,肖文交,朱日祥. 2020. 特提斯地球动力学. 岩石学报,36(6): 1627-1674. [Wu F Y,Wan B,Zhao L,Xiao W J,Zhu R X.2020. Tethyan geodynamics. Acta Petrologica Sinica,36(6): 1627-1674] [28] 夏国清,伊海生,黄华谷,李军鹏. 2009. 北羌塘盆地中侏罗统布曲组缓坡相及沉积演化. 岩性油气藏,21(2): 29-34. [Xia G Q,Yi H S,Huang H G,Li J P.2009. Carbonate ramp facies and sedimentary evolution of Middle Jurassic Buqu Formation in northern Qiangtang Basin. Lithologic Reservoirs,21(2): 29-34] [29] 杨易卓,黄志龙,赵珍,唐友军. 2022. 羌塘盆地毕洛错地区古油藏地球化学特征与油源对比. 地球科学,47(5): 1834-1848. [Yang Y Z,Huang Z L,Zhao Z,Tang Y J.2022. Geochemical characteristics and oil source correlation of Paleo-reservoirs in Biluocuo area,Qiangtang Basin. Earth Science,47(5): 1834-1848] [30] 伊海生,夏国清. 2022. 羌塘盆地优质烃源岩和白云岩储油层的层位与分布. 沉积与特提斯地质,42(3): 455-464. [Yi H S,Xia G Q.2022. Stratigraphic position of high-quality source rocks and distribution of oil-bearing dolomites in the Qiangtang Basin. Sedimentary Geology and Tethyan Geology,42(3): 455-464] [31] 张晓,徐桂文,达雪娟,陈兰. 2019. 藏北羌塘盆地侏罗纪含颗石藻黑色岩系地球化学特征与地质意义. 矿物学报,39(5): 520-526. [Zhang X,Xu G W,Da X J,Chen L.2019. Geochemical characteristics of the Jurassic coccolith-bearing black rock series from the Qiangtang Basin,Northern Tibet,China and their significances. Acta Mineralogica Sinica,39(5): 520-526] [32] Adachi M,Yamamoto K,Suigiski R.1986. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: their geological significance as indication of ocean ridge activity. Sedimentary Geology,(47): 125-148. [33] Algeo T J,Lyons T W.2006. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and palaeohydrographic conditions. Paleoceanography, 21(1016): 23. [34] Algeo T J,Tribovillard N.2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology,268(3-4): 211-225. [35] Chen H,Xie X X,hu C Y,Huang J H,Li H J.2012. Geochemical characteristics of Late Permian sediments in the Dalong Formation of the Shangsi Section,Northwest Sichuan Basin in South China: implications for organic carbon-rich siliceous rocks formation. Journal of Geochemical Exploration,112: 35-53. [36] Condie K C.1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology,104: 1-37. [37] Canfield D E.1994. Factors influencing organic carbon preservation in marine sediments. Chemical Geology,114(3-4): 315-329. [38] Dong T,Wang C,Liang X,Wang G C,Jiang S.2022. Paleodepositional conditions and organic matter accumulation mechanisms in the Upper Ordovician-lower Silurian Wufeng-Longmaxi shales,Middle Yangtze region,South China. Marine and Petroleum Geology,143: 105823. [39] Hatch J R,Leventhal J S.1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the upper Pennsylvanian(Missourian)Stark shale member of the dennis limestone,Wabaunsee country,Kansas,USA. Chemical Geology,99(1-3): 65-82. [40] Fu X G,Tan F W,Feng X L,Wang D,Chen W B,Song C Y,Zeng S Q.2014. Early Jurassic anoxic conditions and organic accumulation in the eastern Tethys. International Geology Review,56(12): 1450-1465. [41] Garbán G,Martínez M,Márquez G,Rey O,Escobar M,Esquinas N.2017. Geochemical signatures of bedded cherts of the upper La Luna Formation in Táchira State,western Venezuela: assessing material provenance and paleodepositional setting. Sedimentary Geology,347: 130-147. [42] Lézin C,Andreu B,Pellenard P,Bouchez J L,Emmanuel L,Faure P,Landrein P.2013. Geochemical disturbance and paleoenvironmental changes during the early Toarcian in NW Europe. Chemical Geology,341: 1-15. [43] Lei Z H,Dashtgard S E,Wang J,Li M,Feng Q L,Yu Q,Zhao A K,Du L T.2019. Origin of chert in Lower Silurian Longmaxi Formation: implications for tectonic evolution of Yangtze Block,South China. Palaeogeography,Palaeoclimatology,Palaeoecology,529: 53-66. [44] Ma Y Q,Fan M J,Lu Y C,Guo X S,Hu H Y,Chen L,Wang C,Liu X C.2016. Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: implications for depositional controls on organic matter accumulation. Marine and Petroleum Geology,75: 291-309. [45] Nesbitt H W,Young G M.1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature,299: 715-717. [46] Panahi A,Young G M,Rainbird R H.2000. Behavior of major and trace elements(including REE)during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie,Québec,Canada. Geochimica et Cosmochimica Acta,64(13): 2199-2220. [47] Scott C,Lyons T W.2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chemical Geology,324-325: 19-27. [48] Shi J,Zou Y R,Cai Y L,Zhan Z W,Sun J N,Liang T,Peng P A.2022. Organic matter enrichment of the Chang 7 member in the Ordos Basin: insights from chemometrics and element geochemistry. Marine and Petroleum Geology,135: 105404. [49] Tribovillard N,Algeo T J,Lyons T,Riboulleau A.2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology,232(1-2): 12-32. [50] Tribovillard N,Algeo T J,Baudin F,Riboulleau A.2012. Analysis of marine environmental conditions based onmolybdenum-uranium covariation: applications to Mesozoic paleoceanography. Chemical Geology,(324-325): 46-58. [51] Wang Y X,Xu S,Hao F,Lu Y B,Shu Z G,Yan D T,Lu Y C.2019. Geochemical and petrographic characteristics of Wufeng-Longmaxi shales,Jiaoshiba area,southwest China: implications for organic matter differential accumulation. Marine and Petroleum Geology,102: 138-154. [52] Xu L L,Huang S P,Wang Y,Zhou X H,Liu Z X,Wen Y R,Zhang Y L,Sun M D.2023. Palaeoenvironment evolution and organic matter enrichment mechanisms of the Wufeng-Longmaxi shales of Yuanán block in western Hubei,middle Yangtze: implications for shale gas accumulation potential. Marine and Petroleum Geology,152: 106242. [53] Yamamoto K.1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology,52(1-2): 65-108. [54] Yan D T,Chen D Z,Wang Z Z,Li J,Yang X R,Zhang B.2019. Climatic and oceanic controlled deposition of late ordovician-early silurian black shales on the north yangtze platform,south China. Marine and Petroleum Geology,110: 112-121. [55] Zhang L C,Xiao D S,Lu S,Jiang S,Lu S F,Jiang S,Lu S D.2019. Effect of sedimentary environment on the formation of organic-rich marine shale: insights from major/trace elements and shale composition. International Journal of Coal Geology,204: 34-50. [56] Zheng S C,Feng Q L,Tribovillard N,Servais T,Zhang Y,Gao B.2020. New insight into factors controlling organic matter distribution in Lower Cambrian source rocks: a study from the Qiongzhusi Formation in South China. Journal of Earth Science,31(1): 181-194.