Calcimicrolith types and paleoenvironment evolution of the Sinian Dengying Formation in northern margin of Huangling Uplift,Three Gorges of Hubei Province
FAN Chengmeng1, YANG Hailin1, YANG Yang2, WEN Hanjie2, FAN Haifeng2, ZHANG Hongjie2, LI Fanghui3, XIAO Jiaolong3, ZHOU Yu4
1 College of Land Resources and Engineering,Kunming University of Science and Technology,Kuming 650093,China; 2 State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,China; 3 The Seventh Geological Brigade of Hubei Provincial Geological Bureau,Hubei Yichang 443100,China; 4 Kunming University,Kunming 650214, China
Abstract:The Sinian Dengying Formation at the northern margin of the Huangling Uplift not only records the co-evolution of the environment and life during the late Sinian,but also contains a large number of calcimicroliths,which serve as important indicators for studying the paleoenvironment of the Neoproterozoic-Paleozoic transition. In this paper,based on the detailed field investigation and indoor lithofacies analysis and interpretation of the Sinian Dengying Formation along the northern margin of Huangling Uplift,nine types of sedimentary microfacies are identified,including dolomitic microbialite,dolomitic microlithite and dolomitic microallolite,with dolomitic microbialite being the most dominant type. Based on the analysis of calcimicrolith lithology types and their combinatory relationships,it is proposed that a variety of subtidal-intertidal-supertidal stratigraphic sequences have developed,characterized by upward stacking and meter-scale stratigraphic cycles composed of multiple grain beaches and microbial mounds. On this basis,four transgression-regression secondary cycles are described in detail. A shallow water carbonate platform model,exhibiting typical lithofacies characteristics of tidal flat facies,mound beach bodies,and grain beaches during the late Sinian period at the northern margin of the Huangling Uplift,has been established. This carbonate sedimentary model is similar to that of modern microbial carbonate,with a notable characteristic being that the thrombolites are formed in a low-energy subtidal environment,situated below the normal wave base and deeper than dolomitic laminated stone and dolomitic stromatolites. Based on the lithofacies characteristics,lithofacies assemblage,and the evolution of sedimentary facies of calcimicrolith,it is inferred that the palaeoenvironmental evolution in this area is primarily influenced by secondary fluctuations in sea level. The development of calcimicrolith in the Sinian Dengying Formation,located at the northern margin of the Huangling uplift,may respond to the increased oxygen content and the formation of marine rocks abundant in microorganisms following the Neoproterozoic oxidation event. Additionally,it may be closely associated with the emergence of the Shibantan biota and the decrease of microbial content due to the evolution of metazoans. Analyzing the types of calcimicrolith development in the Sinian Dengying Formation at the northern margin of Huangling uplift not only constrains global sea-level changes and the evolution of paleo-ocean environment during the late Sinian,but also holds significant implications for studying the early life evolution. The Dengying Formation is characterized by a high abundance of calcimicrolith,which may provide a substantial basis for future exploration of oil and gas reservoirs.
FAN Chengmeng,YANG Hailin,YANG Yang et al. Calcimicrolith types and paleoenvironment evolution of the Sinian Dengying Formation in northern margin of Huangling Uplift,Three Gorges of Hubei Province[J]. JOPC, 2024, 26(5): 1256-1270.
[1] 陈寿铭,尹崇玉,刘鹏举,李猛. 2013. 湖北峡东地区牛坪剖面埃迪卡拉系碳同位素组成及地质意义. 世界地质, 32(4): 641-651. [Chen S M,Yin C Y,Liu P J,Li M.2013. Carbon isotope composition and geological significance of Ediacaran in Niuping section of Yangtze Gorges,Hubei. Global Geology, 32(4): 641-651] [2] 杜金虎,汪泽成,邹才能,徐春春,魏国齐,张宝民,杨威,周进高,王铜山,邓胜徽. 2015. 古老碳酸盐岩大气田地质理论与勘探实践. 北京: 石油工业出版社. [Du J H,Wang Z C,Zou C N,Xu C C,Wei G Q,Zhang B M,Yang W,Zhou J G,Wang T S,Deng S H.2015. Geological Theory and Exploration Practice of Ancient Carbonate Gas Field. Beijing: Petroleum Industry Press] [3] 范正秀,旷红伟,柳永清,彭楠,朱志才,王玉冲,夏晓旭,陈骁帅,郑行海. 2018. 扬子克拉通北缘中元古界神农架群乱石沟组叠层石类型及其沉积学意义. 古地理学报, 20(4): 545-561. [Fan Z X,Kuang H W,Liu Y Q,Peng N,Zhu Z C,Wang Y C,Xia X X,Chen X S,Zheng H H.2018. Types of stromatolites of the Mesoproterozoic Shennongjia Group in northern margin of Yangtze Craton and their sedimentary significance. Journal of Palaeogeography(Chinese Edition), 20(4): 545-561] [4] 郭成贤,胡明毅. 1999. 中扬子台地边缘上震旦统沉积成岩作用研究. 北京: 地质出版社. [Guo C X,Hu M Y.1999. Sedimentary Diagenesis of the Upper Sinian in the Margin of the Middle Yangtze Platform. Beijing: Geological Publishing House] [5] 胡军,孙思远,谷昊东,安志辉,叶琴,王霈. 2021. 峡东南华系南沱组底部冰川底碛沉积特征及其意义. 地球科学, 46(7): 2515-2528. [Hu J,Sun S Y,Gu H D,An Z H,Ye Q,Wang P.2021. Subglacial sedimentary characteristics of the bottom of Nantuo Formation in Three Gorges area and its implications. Earth Science, 46(7): 2515-2528] [6] 李新晨. 2020. 川东中扬子北缘震旦系灯影组岩相古地理及储层研究. 中国石油大学(北京)硕士学位论文. [Li X C.2020. Study on lithofacies paleogeography and reservoirs of Sinian Dengying Formation in North Middle-Yangzi in East Sichuan. Masteral dissertation of China University of Petroleum(Beijing)] [7] 林孝先,彭军,侯中健,韩浩东,李旭杰,马春疆. 2018. 四川汉源—峨边地区上震旦统灯影组藻白云岩特征及成因研究. 沉积学报, 36(1): 57-71. [Lin X X,Peng J,Hou Z J,Han H D,Li X J,Ma C J.2018. Study on characteristics and geneses of algal dolostone of the Upper Sinian Dengying Formation in the Hanyuan-Ebian area of Sichuan Province,China. Acta Sedimentologica Sinica, 36(1): 57-71] [8] 李智武,冉波,肖斌,宋金民,郑玲,李金玺,王瀚,肖斌,叶玥豪,蔡其新,刘树根. 2019. 四川盆地北缘震旦纪—早寒武世隆—坳格局及其油气勘探意义. 地学前缘, 26(1): 59-85. [Li Z W,Ran B,Xiao B,Song J M,Zheng L,Li J X,Wang H,Xiao B,Ye Y H,Cai Q X,Liu S G.2019. Sinian to Early Cambrian uplift-depression framework along the northern margin of the Sichuan Basin,central China and its implications for hydrocarbon exploration. Earth Science Frontiers, 26(1): 59-85] [9] 李忠雄,陆永潮,王剑,段太忠,高永华. 2004. 中扬子地区晚震旦世—早寒武世沉积特征及岩相古地理. 古地理学报, 6(2): 151-162. [Li Z X,Lu Y C,Wang J,Duan T Z,Gao Y H.2004. Sedimentary characteristics and lithofacies palaeogeography of the Late Sinian and Early Cambrian in middle Yangtze region. Journal of Palaeogeography(Chinese Edition), 6(2): 151-162] [10] 马永生,陈洪德,王国力. 2009. 中国南方构造—层序岩相古地理图集. 北京: 科学出版社. [Ma Y S,Chen H D,Wang G L.2009. Atlas of Lithofacies Paleogeography of Tectonic Sequence in Southern China. Beijing: Science Press] [11] 梅冥相. 2007. 微生物碳酸盐岩分类体系的修订: 对灰岩成因结构分类体系的补充. 地学前缘, 14(5): 222-234. [Mei M X.2007. Revised classification of microbial carbonates: complementing the classification of limestones. Earth Science Frontiers, 14(5): 222-234] [12] 齐永安,柴姝,张喜洋,代明月,王敏. 2016. 河南卫辉地区寒武系第三统馒头组二段中的核形石及其沉积特征. 中国科技论文, 11(21): 2416-2421. [Qi Y A,Chai S,Zhang X Y,Dai M Y,Wang M.2016. Oncoids and their depositional features from the second member of Mantou Formation(Cambrian Series 3),Weihui area,Henan Province. China Science Paper, 11(21): 2416-2421] [13] 钱迈平,袁训来,徐学思,胡杰,厉建华. 2002. 徐淮地区新元古代叠层石组合. 古生物学报, 41(3): 403-418. [Qian M P,Yuan X L,Xu X S,Hu J,Li J H.2002. An assemblage of the Neoproterozoic stromatolites from the Xuzhou-Huainan region. Acta Palaeontologica Sinica, 41(3): 403-418] [14] 孙海涛,谢瑞,钟大康,任影,杨雪琪,钟泞聪,姜杨锦丰. 2018. 中上扬子地区震旦纪末期古海洋环境研究的若干问题. 地质科学, 53(2): 697-713. [Sun H T,Xie R,Zhong D K,Ren Y,Yang X Q,Zhong N C,Jiang Y J F.2018. Some important issues of the research about paleo-ocean environment of Late Sinian in middle and upper Yangtze region,South China. Chinese Journal of Geology, 53(2): 697-713] [15] 童崇光. 1992. 四川盆地断褶构造形成机制. 天然气工业, 12(5): 1-6. [Tong C G.1992. Mechanism of forming fault-folded structure in Sichuan Basin. Natural Gas Industry, 12(5): 1-6] [16] 汪泽成,姜华,陈志勇,刘静江,马奎,李文正,谢武仁,江青春,翟秀芬,石书缘,李琦. 2020. 中上扬子地区晚震旦世构造古地理及油气地质意义. 石油勘探与开发, 47(5): 884-897. [Wang Z C,Jiang H,Chen Z Y,Liu J J,Ma K,Li W Z,Xie W R,Jiang Q C,Zhai X F,Shi S Y,Li Q.2020. Tectonic paleogeography of Late Sinian and its significances for petroleum exploration in the middle-upper Yangtze region,South China. Petroleum Exploration and Development, 47(5): 884-897] [17] 汪正江,王剑,江新胜,孙海清,高天山,陈建书,邱艳生,杜秋定,邓奇,杨菲. 2015. 华南扬子地区新元古代地层划分对比研究新进展. 地质论评, 61(1): 1-22. [Wang Z J,Wang J,Jiang X S,Sun H Q,Gao T S,Chen J S,Qiu Y S,Du Q D,Deng Q,Yang F.2015. New progress for the stratigraphic division and correlation of Neoproterozoic in Yangtze Block,South China. Geological Review, 61(1): 1-22] [18] 王剑. 2000. 华南新元古代裂谷盆地演化: 兼论与Rodinia解体的关系. 中国古陆块构造演化与超大陆旋回专题学术会议论文摘要集. 中国地质学会. [Wang J.2000. Evolution of Neoproterozoic rift basins in South China and its relationship with the disintegration of Rodinia. Abstracts of papers from the Symposium on the Tectonic Evolution of Paleocontinental Blocks and Supercontinental Cycles in China. China Geological Society] [19] 王自强,尹崇玉,高林志,柳永清. 2002. 湖北宜昌峡东地区震旦系层型剖面化学地层特征及其国际对比. 地质论评, 48(4): 408-415. [Wang Z Q,Yin C Y,Gao L Z,Liu Y Q.2002 Chemostratigraphic characteristics and correlation of the Sinian stratotype in the eastern Yangtze Gorges area,Yichang,Hubei Province. Geological Review, 48(4): 408-415] [20] 魏国齐,杨威,杜金虎,徐春春,邹才能,谢武仁,曾富英,武赛军. 2015. 四川盆地震旦纪—早寒武世克拉通内裂陷地质特征. 天然气工业, 35(1): 24-35. [Wei G Q,Yang W,Du J H,Xu C C,Zou C N,Xie W R,Zeng F Y,Wu S J.2015. Geological characteristics of the Sinian-Early Cambrian intracratonic rift,Sichuan Basin. Natural Gas Industry, 35(1): 24-35] [21] 吴亚生,姜红霞,Yang Wan,范嘉松. 2007. 二叠纪—三叠纪之交缺氧环境的微生物和微生物岩. 中国科学(D辑: 地球科学), 37(5): 618-628. [Wu Y S,Jiang H X,Yang W,Fan J S.2007. Microorganisms and microbialites in anoxic environment at the turn of Permian-Triassic. Chinese Science(Series D Geosciences), 37(5): 618-628] [22] 吴亚生,姜红霞,虞功亮,刘丽静. 2018. 微生物岩的概念和重庆老龙洞剖面P-T界线地层微生物岩成因. 古地理学报, 20(5): 737-775. [Wu Y S,Jiang H X,Yu G L,Liu L J.2018. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong,Chongqing,China. Journal of Palaeogeography(Chinese Edition), 20(5): 737-775] [23] 吴亚生,蒋子文,姜红霞. 2020. 湖南慈利晚二叠世松藻类化石古生态. 古生物学报, 59(2): 198-214. [Wu Y S,Jiang Z W,Jiang H X.2020. Paleoecology of codiales fossils in Late Permian limestone from Cili,Hunan Province. Acta Palaeontologica Sinica, 59(2): 198-214] [24] 吴亚生. 2023. 生物岩的分类. 古地理学报, 25(3): 511-523. [Wu Y S.2023. Classification of biolith(biogenic rocks). Journal of Palaeogeography(Chinese Edition), 25(3): 511-523] [25] 余晶洁. 2020. 川东地区灯影组微生物岩建造与储层特征研究. 成都理工大学. [Yu J J.2020. Carbonate rock microbial construction and reservoir characteristics of Sinian Dengying Formation in the eastern Sichuan Basin. Chengdu University of Technology] [26] 周雁,陈洪德,王成善,金之钧,汤良杰,王正元,梁西文. 2004. 中扬子区上震旦统层序地层研究. 成都理工大学学报(自然科学版), 31(1): 53-58. [Zhou Y,Chen H D,Wang C S,Jin Z J,Tang L J,Wang Z Y,Liang X W.2004. Study on sequence stratigraphy in Upper Sinian Series in mid-Yangtze area. Journal of Chengdu University of Technology(Science & Technology Edition), 31(1): 53-58] [27] 张国伟,郭安林,王岳军,李三忠,董云鹏,刘少峰,何登发,程顺有,鲁如魁,姚安平. 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582. [Zhang G W,Guo A L,Wang Y J,Li S Z,Dong Y P,Liu S F,He D F,Cheng S Y,Lu R K,Yao A P.2013. Continental structure and problems in South China. Scientia Sinica Terrae, 43(10): 1553-1582] [28] 张园园,杨海军,王建坡,黄智斌,李越. 2009. 塔里木板块塔中上奥陶统良里塔格组的核形石. 微体古生物学报, 26(3): 234-242. [Zhang Y Y,Yang H J,Wang J P,Huang Z B,Li Y.2009. Oncolites from the Lianglitag Formation(Kaitian,Middle Ordovician),Tazhong,Tarim block,NW China. Acta Micropalaeontologica Sinica, 26(3): 234-242] [29] 朱士兴. 1993. 中国叠层石. 天津: 天津大学出版社,1-263. [Zhu S X.1993. The Stromatolites of China. Tianjin: Tianjin University Press,1-263] [30] Aitken J D.1967. Classification and environmental significance of cryptalgal limestones and dolomites,with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Research(SEPM), 37: 1163-1178. [31] Allwood A C,Walter M R,Burch I W,Kamber B S.2007.3.43 billion-year-old stromatolite reef from the Pilbara Craton of western Australia: ecosystem-scale insights to early life on Earth. Precambrian Research, 158: 198-227. [32] Burne R V,Moore L S.1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 2: 241-254. [33] Callow R H T,Brasier M D.2009. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: implications for Ediacaran taphonomic models. Earth-Science Reviews, 96: 207-219. [34] Chen Z,Zhou C M,Meyer M,Xiang K,Schiffbauer J D,Yuan X L,Xiao S H.2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224: 690-701. [35] Chen Z,Zhou C M,Xiao S H,Wang W,Guan C G,Hua H,Yuan X L.2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Scientific Reports, 4: 4180. [36] Dahanayake K.1977. Classification of oncoids from the Upper Jurassic carbonates of the French Jura. Sedimentary Geology, 18(4): 337-353. [37] Dunham R J.1962. Classification of carbonate rocks according to depositional texture. In: Ham W E(ed). Classification of Carbonate Rocks. AAPG Memoir, 1: 108-121. [38] Dupraz C,Reid R P,Braissant O,Decho A W,Norman R S,Visscher P T.2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96: 141-162. [39] Embry A, Klovan J E.1971. A late Devonian reef tract on northeastern Banks Island,Northwest Territories. Bulletin of Canadian Petroleum Geology, 19: 730-781. [40] Folk R L.1959. Practical petrographic classification of limestones. AAPG Bulletin, 43: 1-38. [41] Folk R L.1962. Spectral subdivision of limestone types. AAPG Memoir, 1: 62-84. [42] Jahnert R J,Collins L B.2012. Characteristics,distribution and morphogenesis of subtidal microbial systems in Shark Bay,Australia. Marine Geology, 303-306: 115-136. [43] Jiang G Q,Shi X Y,Zhang S H,Wang Y,Xiao S H.2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation(ca. 635-551 Ma)in South China. Gondwana Research, 19: 831-849. [44] Kalkowsky E.1908. Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift Deutschen geology Gesellschaft, 60: 68-125. [45] Lee C,Love G D,Fischer W W,Grotzinger J P,Halverson G P.2015. Marine organic matter cycling during the Ediacaran Shuram excursion. Geology, 43: 1103-1106. [46] Logan B W,Rezak R,Ginsburg R N.1964. Classification and environmental significance of algal stromatolites. The Journal of Geology, 72(1): 68-83. [47] Lyons T W,Anbar A D,Severmann S,Scott C,Gill B C.2009. Tracking Euxinia in the ancient ocean: a multiproxy perspective and Proterozoic case study. Annual Review of Earth and Planetary Sciences, 37: 507-534. [48] Meyer M,Elliott D,Wood A D,Polys N F,Colbert M,Maisano J A,Vickers-Rich P,Hall M,Hoffman K H,Schneider G,Xiao S H.2014. Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Research, 249: 79-87. [49] McMenamin M A S. 2004. Climate,paleoecology and abrupt change during the Late Proterozoic: a consideration of causes and effects. In: Jenkins G S,McMenamin M A S,McKay C P,Sohl L. The Extreme Proterozoic: Geology,Geochemistry,and Climate. The Geophysical Monograph Series, 146: 215-229. [50] Riding R.2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47: 179-214. [51] Riding R.2006. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185: 229-238. [52] Riding R,Reitner J,Quéric N V,Arp G.2011. The nature of stromatolites: 3,500 million years of history and a century of research. Advances in Stromatolite Geobiology, 131: 29-74. [53] Riding R,Virgone A.2020. Hybrid carbonates: in situ abiotic,microbial and skeletal co-precipitates. Earth-Science Reviews, 208: 103300. [54] Védrine S,Strasser A,Hug W.2007. Oncoid growth and distribution controlled by sea-level fluctuations and climate(Late Oxfordian,Swiss Jura Mountains). Facies, 53(4): 535-552. [55] Wacey D.2010. Stromatolites in the~3400 Ma Strelley Pool Formation,Western Australia: examining biogenicity from the macro-to the nano-scale. Astrobiology, 10(4): 381-395. [56] Wang J,Li Z X.2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research, 122: 141-158. [57] Wang X P,Pang K,Chen Z,Wan B,Xiao S H,Zhou C M,Yuan X L.2020a. The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China. Journal of Paleontology,94(6). [58] Wang X P,Chen Z,Pang K,Zhou C M,Xiao S H,Wan B,Yuan X L.2021. Dickinsonia from the Ediacaran Dengying Formation in the Yangtze Gorges area,South China. Palaeoworld, 30(4): 602-609. [59] Wang Y,Wang Y E,Tang F,Zhao M S,Liu P.2020b. Lifestyle of the Octoradiate Eoandromeda in the Ediacaran. Paleontological Research, 24: 1-13. [60] Webb G E,Kamber B S.2000. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64: 1557-1565. [61] Wright V P.1992. A revised classification of limestones. Sedimentary Geology, 76: 177-185. [62] Wright V P,Barnett A J.2015. An abiotic model for the development of textures in some South Atlantic Early Cretaceous lacustrine carbonates. In: Microbial Carbonates in Space and Time: Implications for Global Exploration and Production. Geological Society,London,Special Publications, 418(1): 209-219. [63] Wu Y S.2022a. Definition of biopetrology. Biopetrology, 1(1): 3-8. [64] Wu Y S.2022b. Classification of biogenic carbonate rocks. Biopetrology, 1(1): 19-29. [65] Xiao S H,Narbonne G M,Zhou C M,Laflamme M,Grazhdankin D V,Moczydlowska-Vidal M,Cui H A.2016. Towards an Ediacaran time scale: problems,protocols,and prospects. Episodes, 39: 540-555. [66] Xiao S H,Chen Z,Pang K,Zhou C M,Yuan X L.2021. The Shibantan Lagerstätte: insights into the Proterozoic-Phanerozoic transition. Geological Society of London,2021(1). [67] Zhang S,Jiang G,Han Y.2008. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nove, 20: 289-294. [68] Zhao G C,Cawood P A.2012. Precambrian geology of China. Precambrian Research, 222-223: 13-54. [69] Zhu M Y,Zhang J M,Yang A H.2007. Integrated Ediacaran(Sinian)chronostratigraphy of South China. Palaeogeography, Palaeoclimatology palaeoecology, 254: 7-61.