Characteristics and origins of soft-sediment deformation structures in the Sinian Dengying Formation,northern Sichuan Basin
SHANG Junxin1, FENG Mingyou1, XIA Maolong2, ZHANG Benjian2, WANG Xingzhi1, JIA Song2, LI Yong2, ZENG Yiyang2, WEI Mingyang1
1 School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China; 2 Research Institute of Exploration and Development,PetroChina Southwest Oil & Gas Field Company,Chengdu 610041,China
Abstract:The mechanisms of soft-sediment deformation structures(SSDS)in the Precambrian Dengying Formation in the northern Sichuan Basin remain poorly understood. This study presents a comprehensive analysis of these structures in the Guangyuan area,examining their characteristics,distribution,and origins through field outcrop studies. The results indicate that these deformation structures,which are predominantly located in the middle to lower strata of the third member of the Dengying Formation,are composed of grey-white thin-layered limestone and purplish-red to grey-green thin-layered mudstone. The identified structures include liquefaction veins,convolute folds,breccias,and intrastratal faults,which are primarily observed in sediments from shallow,low-energy,aquatic environments. These deformations are closely linked to a combination of cyclic shear stress and stratigraphic pressure,suggesting recurrent ancient seismic activity as a key contributor. The finding of two distinct seismic liquefaction sequences suggests a minimum of two significant seismic events within the Member 3 of the Dengying Formation. It is further inferred that there was a period of intensive tectonic activity during the deposition of the member 3 of the Dengying Formation in the northern Yangtze Craton,and the seismic activity seemed to be related to the extension of the Late-Tongwan Movement in the rift.
SHANG Junxin,FENG Mingyou,XIA Maolong et al. Characteristics and origins of soft-sediment deformation structures in the Sinian Dengying Formation,northern Sichuan Basin[J]. JOPC, 2025, 27(1): 72-84.
[1] 陈建书,代雅然,唐烽,彭成龙,张嘉玮,朱和书,陈兴,王文明,龚桂源. 2020. 扬子地块周缘中元古代末—新元古代主要构造运动梳理与探讨. 地质论评,66(3): 533-554. [Chen J S,Dai Y R,Tang F,Peng C L,Zhang J W,Zhu H S,Chen X,Wang W M,Gong G Y.2020. Discussion on the Mesoproterozoic and Neoproterozoic major tectonic events in marginal area of the Yangtze Block. Geological Review,66(3): 533-554] [2] 陈明思,张本健,李智武,刘树根,李勇,宋金民,王瀚,蒋航,王林康,徐少立,丁一. 2023. 四川盆地及周缘震旦系灯影组岩性—碳同位素地层划分及意义. 古地理学报,25(6): 1347-1363. [Chen M S,Zhang B J,Li Z W,Liu S G,Li Y,Song J M,Wang H,Jiang H,Wang L K,Xu S L,Ding Y.2023. Lithol and carbon isotopic stratigraphic division and its sighificance of the Sinian Dengying Formation in Sichuan Basin and surrounding area. Journal of Palaeogeography(Chinese Edition),25(6): 1347-1363] [3] 邓胜徽,樊茹,李鑫,张师本,张宝民,卢远征. 2015. 四川盆地及周缘地区震旦(埃迪卡拉)系划分与对比. 地层学杂志,39(3): 239-254. [Deng S H,Fan R,Li X,Zhang S B,Zhang B M,Lu Y Z.2015. Subdivision and correlation of the Sinian(Ediacaran)System in the Sichuan Basin and its adjacent area. Journal of Stratigraphy,39(3): 239-254] [4] 邓双林,宋金民,刘树根,罗平,李智武,杨迪,孙玮,李金玺,余晶洁,李立基. 2020. 四川盆地灯影组三段混积特征及其地质意义. 沉积学报,38(3): 598-609. [Deng S L,Song J M,Liu S G,Luo P,Li Z W,Yang D,Sun W,Li J X,Yu J J,Li L J.2020. Mixed sedimentary characteristics of the third member of Dengying Formation,Sichuan Basin,and tts geological significance. Acta Sedimentologica Sinica,38(3): 598-609] [5] 杜金虎,汪泽成,邹才能,徐春春,沈平,张宝民,姜华,黄士鹏. 2016. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用. 石油学报,37(1): 1-16. [Du J H,Wang Z C,Zou C N,Xu C C,Shen P,Zhang B M,Jiang H,Huang S P.2016. Discovery of intra-cratonic rift in the Upper Yangtze and its coutrol effect on the formation of Anyue giant gas field. Acta Petrolei Sinica,37(1): 1-16] [6] 冯增昭,鲍志东,郑秀娟,王媛. 2017. 中国软沉积物变形构造及地震岩研究简评. 古地理学报,19(1): 7-12. [Feng Z Z,Bao Z D,Zheng X J,Wang Y.2017. Researches of soft-sediment deformation structures and seismites in China: a brief review. Journal of Palaeogeography(Chinese Edition),19(1): 7-12] [7] 高林志,柳永清. 2005. 河南嵩山地区新元古界何家窑组微亮晶脉特征、成因及地质意义探讨. 地质论评,51(4): 373-381. [Gao L Z,Liu Y Q.2005. Microspar Veins in the Neoproterozoic Hejiayao Formation in the Songshan area,Henan Province. Geological Review,51(4): 373-381] [8] 何登发,李德生,张国伟,赵路子,樊春,鲁人齐,文竹. 2011. 四川多旋回叠合盆地的形成与演化. 地质科学,46(3): 589-606. [He D F,Li D S,Zhang G W,Zhao L Z,Fan C,Lu R Q,Wen Z.2011. Formation and evolution of multi-cycle superposed Sichuan Basin,China. Chinese Journal of Geology,46(3): 589-606] [9] 何若玮,孙玮,李泽奇,邓宾,苗如霖,张长俊,田腾振,鲁鹏达. 2023. 川北柳湾乡震旦系灯影组第三段沉积特征及其地质意义. 成都理工大学学报(自然科学版),50(1): 50-64. [He R W,Sun W,Li Z Q,Deng B,Miao R L,Zhang C J,Tian T Z,Lu P D.2023. Sedimentary characteristics and geological significance of the third member of Sinian Dengying Formation in Liuwanxiang area,northern Sichuan. Journal of Chengdu University of Technology(Science & Technology Edition),50(1): 50-64] [10] 旷红伟,刘燕学,孟祥化,葛铭,蔡国印. 2004. 吉辽地区新元古代臼齿碳酸盐岩岩相的若干岩石学特征研究. 地球学报,25(6): 647-652. [Kuang H W,Liu Y X,Meng X H,Ge M,Cai G Y.2004. Sedimentary lithofacies and petrological features of neoproterozoic MT structures-bearing carbonates in Jilin-Liaoning Area. Acta Geoscientica Sinica,25(6): 647-652] [11] 李英强,何登发,文竹. 2013. 四川盆地及邻区晚震旦世古地理与构造-沉积环境演化. 古地理学报,15(2): 231-245. [Li Y Q,He D F,Wen Z.2013. Late Sinian palaeogeography and tectono-sedimentary environment evolution in Sichuan Basin and adjacent areas. Journal of Palaeogeography(Chinese Edition),15(2): 231-245] [12] 李勇,钟建华,邵珠福,毛毳. 2012. 软沉积变形构造的分类和形成机制研究. 地质论评,58(5): 829-838. [Li Y,Zhong J H,Shao Z F,Mao C.2012. An overview on the classification and genesis of soft-sediment deformation structure. Geological Review,58(5): 829-838] [13] 凌文黎,程建萍,王歆华,周汉文. 2002. 武当地区新元古代岩浆岩地球化学特征及其对南秦岭晋宁期区域构造性质的指示. 岩石学报,18(1): 25-36. [Ling W L,Cheng J P,Wang X H,Zhou H W.2002. Geochemical features of the Neoproterozoic igneous rocks from the Wudang region and their implications for the reconstruction of the Jinning tectonic evolution along the south Qinling orogenic belt. Acta Petrologica Sinica,18(1): 25-36] [14] 刘树根,孙玮,罗志立,宋金民,钟勇,田艳红,彭瀚霖. 2013. 兴凯地裂运动与四川盆地下组合油气勘探. 成都理工大学学报(自然科学版),40(5): 511-520. [Liu S G,Sun W,Luo Z L,Song J M,Zhong Y,Tian Y H,Peng H L.2013. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian Strata in Sichuan Basin,China. Journal of Chengdu University of Technology(Science & Technology Edition),40(5): 511-520] [15] 刘燕学,柳永清,旷红伟. 2005. 一种严格受控于环境和时间的特殊碳酸盐岩—臼齿构造碳酸盐岩. 地球科学进展,20(7): 710-716. [Liu Y X,Liu Y Q,Kuang H W.2005. Molar-tooth carbonate constrained by depositional environment and geological history. Advances in Earth Science,20(7): 710-716] [16] 柳永清,高林志,刘燕学. 2005. 苏皖辽地区新元古代微亮晶构造碳酸盐岩的沉积岩相与环境约束. 沉积学报,23(1): 49-59. [Liu Y Q,Gao L Z,Liu Y X.2005. Microspar structure carbonate and constrain of sedimentary facies and environments in Jiangsu,Anhui and Liaoning Provinces of the Northern China. Acta Sedimentologica Sinica,23(1): 49-59] [17] 乔秀夫,高林志,彭阳,李海兵. 2001. 古郯庐带沧浪铺阶地震事件、层序及构造意义. 中国科学D辑,31(11): 911-918. [Qiao X F,Gao L Z,Peng Y,Li H B.2001. Seismic events,sequence and tectonic significance of Canglangpu stage in the ancient Tanlu belt. Science China Earth Sciences,31(11): 911-918] [18] 乔秀夫,高林志. 1999. 华北中新元古代及早古生代地震灾变事件及与Rodinia的关系. 科学通报,44(16): 1753-1758. [Qiao X F,Gao L Z.1999. Neoproterozoic and Early Paleozoic seismic disaster events in the North China Platform and their relationship with Rodinia. Chinese Science Bulletin,44(16): 1753-1758] [19] 乔秀夫,宋天锐,高林志,彭阳,李海兵,高劢,宋彪,张巧大. 1994. 碳酸盐岩振动液化地震序列. 地质学报,68(1): 16-34,101-102. [Qiao X F,Song T R,Gao L Z,Peng Y,Li H B,Gao M,Song B,Zhang Q D.1994. Seismic sequence in carbonate rocks by vibrational liquefaction. Acta Geologica Sinica,68(1): 16-34,101-102] [20] 乔秀夫. 2002. 中朝板块元古宙板内地震带与盆地格局. 地学前缘,9(3): 141-149. [Qiao X F.2002. Intraplate seismic belt and basin framework of Sino-Korean Plate in Proterozoic. Earth Science Frontiers,9(3): 141-149] [21] 宋天锐. 1988. 北京十三陵前寒武纪碳酸盐岩地层中的一套可能的地震—海啸序列. 科学通报,33(8): 609-611. [Song T R.1988. A possible seismic-tsunami sequence in the Precambrian carbonate strata of the Ming Tombs in Beijing. Chinese Science Bulletin,33(8): 609-611] [22] 谭磊,刘宏,陈康,倪华玲,钟原,谭秀成,严威,张旋,吕文正,张坤. 2022. 四川盆地高磨地区震旦系灯影组三段+四段镶边台地层序地层、沉积演化与储集层分布预测. 石油勘探与开发,49(5): 871-883. [Tan L,Liu H,Chen K,Ni H L,Zhong Y,Tan X C,Yan W,Zhang X,Lü W Z,Zhang K.2022. Sequence stratigraphy,sedimentary evolution,and reservoir distribution prediction of the third and fourth segments of the Dengying Formation in the Gaomo area of the Sichuan Basin. Petroleum Exploration and Development,49(5): 871-883] [23] 汪泽成,刘静江,姜华,黄士鹏,王坤,徐政语,江青春,石书缘,任梦怡,王天宇. 2019. 中—上扬子地区震旦纪陡山沱组沉积期岩相古地理及勘探意义. 石油勘探与开发,46(1): 39-51. [Wang Z C,Liu J J,Jiang H,Huang S P,Wang K,Xu Z Y,Jiang Q C,Shi S Y,Ren M Y,Wang T Y.2019. Lithofacies paleogeography and exploration significance of Sinian Doushantuo depositional stage in the middle-upper Yangtze region,Sichuan Basin,SW China. Petroleum Exploration and Development,46(1): 39-51] [24] 汪泽成,姜华,陈志勇,刘静江,马奎,李文正,谢武仁,江青春,翟秀芬,石书缘,李琦. 2020. 中上扬子地区晚震旦世构造古地理及油气地质意义. 石油勘探与开发,47(5): 884-897. [Wang Z C,Jiang H,Chen Z Y,Liu J J,Ma K,Li W Z,Xie W R,Jiang Q C,Zhai X F,Shi S Y,Li Q.2020. Tectonic paleogeography of Late Sinian and its significances for petroleum exploration in the middle-upper Yangtze region,South China. Petroleum Exploration and Development,47(5): 884-897] [25] 王龙樟,姚永坚,林卫兵,徐行,肖娇静,沈奥,徐乔. 2018. 南海南部沉积物波: 软变形及其触发机制. 地球科学,43(10): 3462-3470. [Wang L Z,Yao Y J,Lin W B,Xu X,Xiao J J,Shen A,Xu Q.2018. Sediment waves in the south of south china sea: soft sediment deformation and its triggering mechanism. Earth Science,43(10): 3462-3470] [26] 武赛军,魏国齐,杨威,谢武仁,曾富英. 2016. 四川盆地桐湾运动及其油气地质意义. 天然气地球科学,27(1): 60-70. [Wu S J,Wei G Q,Yang W,Xie W R,Zeng F Y.2016. Tongwan Movement and its geologic significances in Sichuan Basin. Natural Gas Geoscience,27(1): 60-70] [27] 杨帅,陈洪德,钟怡江,朱筱敏,陈安清,文华国,徐胜林,吴朝盛. 2017. 川西南地区晚震旦世微生物岩及其对桐湾运动Ⅰ幕的响应. 岩石学报,33(4): 1148-1158. [Yang S,Chen H D,Zhong Y J,Zhu X M,Chen A Q,Wen H G,Xu S L,Wu Z S.2017. Microbolite of Late Sinian and its response for Tongwan Movement episode Ⅰ in Southwest Sichuan,China. Acta Petrologica Sinica,33(4): 1148-1158] [28] 张邦花,田洪水,van Loon A J T.2017. 新元古代沂沭海峡地震引发的软沉积物变形及其微量元素信息. 古地理学报,19(1): 99-116. [Zhang B H,Tian H S,van Loon A J T. 2017. Earthquake-induced soft sediment deformations and their trace-element information in the Neoproterozoic Yishu Strait. Journal of Palaeogeography(Chinese Edition),19(1): 99-116] [29] 钟建华,王冠民,王夕宾,吴孔友,洪梅,李勇,倪晋仁. 2002. 黄河下游冰成滑塌与塌陷构造的研究. 沉积学报,20(2): 261-266. [Zhong J H,Wang G M,Wang X B,Wu K Y,Hong M,Li Y,Ni J R.2002. Study on the ice-induced slump and subsidence structures in the lower course of Yellow River. Acta Sedimentologica Sinica,20(2): 261-266] [30] 卓皆文,江新胜,王剑,崔晓庄,熊国庆,陆俊泽,刘建辉,马铭珠. 2013. 华南扬子古大陆西缘新元古代康滇裂谷盆地的开启时间与充填样式. 中国科学: 地球科学,43(12): 1952-1963. [Zhuo J W,Jiang X S,Wang J,Cui X Z,Xiong G Q,Lu J Z,Liu J H,Ma M Z.2013. The opening time and filling pattern of the Neoproterozoic Kangdian Rift basin in the western margin of the Yangtze ancient continent,South China. Science China Earth Sciences,43(12): 1952-1963] [31] 资金平,贾东,魏国齐,杨振宇,张勇,胡晶,沈淑鑫. 2017. 四川乐山震旦系灯影组火山碎屑岩锆石LA-ICP-MSU-Pb定年及盆地裂陷演化讨论. 地质论评,63(4): 1040-1049. [Zi J P,Jia D,Wei G Q,Yang Z Y,Zhang Y,Hu J,Shen S X.2017. LA-ICP-MS U-Pb Zircon ages of volcaniclastic beds of the third member of the Sinian(Ediacaran)Dengying Formation in Leshan,Sichuan,and a discussion on the rift evolution in the Basin. Geological Review,63(4): 1040-1049] [32] Allen J.1986. Earthquake magnitude-frequency,epicentral distance,and soft-sediment deformation in sedimentary basins. Sedimentary Geology,46(1-2): 67-75. [33] Alsop G I,Weinberger R,Marco S,Levi T.2019. Identifying soft-sediment deformation in rocks. Journal of Structural Geology,125: 248-255. [34] Chen J,Lee H S.2013. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits(Shandong Province,China): differential liquefaction and fluidization triggered by storm-wave loading. Sedimentary Geology,288: 81-94. [35] Dasgupta P.2008. Experimental decipherment of the soft-sediment deformation observed in the upper part of the Talchir Formation(Lower Permian),Jharia Basin,India. Sedimentary Geology,205(3-4): 100-110. [36] Greb S F,Archer A W.2007. Soft-sediment deformation produced by tides in a meizoseismic area,Turnagain Arm,Alaska. Geology,35(5): 435-438. [37] Jayanta K P,Anuj K S.2023. Soft-sediment deformation structures in the mesoproterozoic kaimur sandstone,vindhyan supergroup(central india),and their seismotectonic implications. Journal of Palaeogeography,12(3): 463-486. [38] Jiang G,Kennedy M J,Christie-Blick N.2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature,426(6968): 822-826. [39] Jones A P,Omoto K.2000. Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: a case study of Late Pleistocene lacustrine sands and clays,Onikobe and Nakayamadaira Basins,northeastern Japan. Sedimentology,47(6): 1211-1226. [40] Li Z X,Bogdanova S,Collins A,Davidson A,De Waele B,Ernst R,Fitzsimons I,Fuck R,Gladkochub D,Jacobs J,Karlstrom K E,Lu S,Natapov L M,Pease V,Pisarevsky S A,Thrane K,Vernikovsky V.2008. Assembly,configuration,and break-up history of Rodinia: a synthesis. Precambrian Research,160(1-2): 179-210. [41] Moretti M,Owen G,Tropeano M.2011. Soft-sediment deformation induced by sinkhole activity in shallow marine environments: a fossil example in the Apulian Foreland(Southern Italy). Sedimentary Geology,235(3-4): 331-342. [42] Moretti M,Soria J M,Alfaro P,Walsh N.2001. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits(Late Miocene,Guadix Basin,Southern Spain). Facies,44: 283-294. [43] Obermeier S F.1996. Use of liquefaction-induced features for paleoseismic analysis: an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology,44(1-4): 1-76. [44] Oliveira C M,Hodgson D M,Flint S S.2009. Aseismic controls on in situ soft-sediment deformation processes and products in submarine slope deposits of the Karoo Basin,South Africa. Sedimentology,56(5): 1201-1225. [45] Owen G.1987. Deformation processes in unconsolidated sands. Geological Society,London,Special Publications,29(1): 11-24. [46] Owen G,Moretti M.2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology,235(3-4): 141-147. [47] Owen G,Moretti M,Alfaro P.2011. Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology,235(3-4): 133-140. [48] Panja M,Chakrabarti G,Shome D.2019. Earthquake induced soft sediment deformation structures in the Paleoproterozoic Vempalle Formation(Cuddapah basin,India). Carbonates and Evaporites,34(3): 491-505. [49] Rana N,Sati S P,Sundriyal Y,Juyal N.2016. Genesis and implication of soft-sediment deformation structures in high-energy fluvial deposits of the Alaknanda Valley,Garhwal Himalaya,India. Sedimentary Geology,344: 263-276. [50] Sanders J E. 1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In: Middleton G V(ed). Primary Sedimentary Structures and Their Hydrodynamic Interpretation,Gerard V. Middleton. Tulsa,OK: Society for Sedimentary Geology. [51] Shanmugam G.2016. The seismite problem. Journal of Palaeogeography,5(4): 318-362. [52] Wang J,Li Z X.2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research,122(1-4): 141-158. [53] Waldron J W F,Gagnon J F.2011. Recognizing soft-sediment structures in deformed rocks of orogens. Journal of Structural Geology,33(3): 271-279. [54] Yasuda N,Sumita I.2014. Shaking conditions required for flame structure formation in a water-immersed granular medium. Progress in Earth and Planetary Science,1(1): 13. [55] Yang Y,Wang Z C,Wen L,Xie W R,Fu X D,Li W Z.2022. Sinian hydrocarbon accumulation conditions and exploration potential at the northwest margin of the Yangtze region,China. Petroleum Exploration and Development,49(2): 272-284. [56] Zhang R,Sun Y,Zhang X,Ao W,Santosh M.2016. Neoproterozoic magmatic events in the South Qinling Belt,China: implications for amalgamation and breakup of the Rodinia supercontinent. Gondwana Research,30: 6-23. [57] Zhong N,Jiang H C,Li H B,Zhang X B,Yang Z,Yu H.2023. A continuous 18-10.2 ka paleo-earthquake events revealed by the Luobozhai lacustrine sediments,eastern Tibetan Plateau. Quaternary International,673: 40-52.