Biomarkers of bauxite-bearing strata and its geological significance in Wuchuan-Zheng′an-Daozhen area,northern Guizhou Province
Yu Wenchao1 Du Yuansheng1 Zhou Qi2 Jin Zhongguo3 Wang Xiaomei4 Qin Yongjun2
1 State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences(Wuhan),Wuhan 430074,Hubei 2 Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guiyang 550004,Guizhou 3 Non-ferrous Metals and Nuclear Industry Geological Exploration Bureau of Guizhou,Guiyang 550005,Guizhou 4 Faculty of Earth Resource,China University of Geosciences(Wuhan),Wuhan 430074,Hubei
Abstract:The bauxite deposits between the Carboniferous Huanglong Formation and Permian Liangshan Formation in Wuchuan-Zheng′an-Daozhen area,northern Guizhou Province mostly belong to sedimentary bauxite.Abundant biomarkers including n-alkanes,isoprenoid,terpenoids and steroids in drilling core samples are detected by GC and GC-MS.The results of GC reveal that most of n-alkane in ten samples are composed of n-C14~n-C35 and characteristic of double-peak distribution.CPI ranges from 0.90 to 3.45,indicates obvious odd-even carbon number predominance.Pristane to phytane ratios(Pr/Ph)vary from 0.38 to 0.77.According to the results of GC-MS,the relative abundance from higher to lower is pentacyclic triterpanoids,tricyclic terpane,tetracyclic terpane,and C30 hopane is most abundant in the terpanes,meanwhile,small quantities of gammacerane are detected.Regular steroids distributed in “L” or “V” shape includes a small amount of 4-methyl sterane.Combined with petrographical characters of samples,the biomarker parameters indicate a reductive sedimentary environment which shows slant acidity,the organic matter in bauxite deposit originate from both terrestrial plant and bacteria/algae.It clearly shows double influences from terrestrial and aquatic palaeoecosystems during bauxite forming process.
Yu Wenchao,Du Yuansheng,Zhou Qi et al. Biomarkers of bauxite-bearing strata and its geological significance in Wuchuan-Zheng′an-Daozhen area,northern Guizhou Province[J]. JOPC, 2012, 14(5): 651-662.
曹建华,袁道先,潘根兴,等.2001.岩溶动力系统中的生物作用机理初探[J].地学前缘,8(1):203-209. 陈履安.1996.腐殖酸在铝土矿形成中的作用的实验研究[J].沉积学报,14(2):117-123. 陈旭,阮亦萍,布科.2001.中国古生代气候演变[M].北京:科学出版社,68-83. 冯增昭.1994.中国沉积学[M].北京:石油工业出版社,689-717. 连宾.2010.碳酸盐岩风化成土过程中的微生物作用[J].矿物岩石地球化学通报,29(1):52-56. 连宾,陈骏,傅平秋,等.2005.微生物影响硅酸盐矿物风化作用的模拟试验[J].高校地质学报,11(2):181-186. 连宾,陈烨,朱立军,等.2008.微生物对碳酸盐岩的风化作用[J].地学前缘,15(6):90-99. 廖士范.1992.中国石炭纪古风化壳相铝土矿古地理及有关问题[J].沉积学报,10(1):1-10. 廖士范,梁同荣.1991.中国铝土矿地质学[M].贵州贵阳: 贵州科技出版社,1-267. 刘平.1993.三论贵州之铝土矿——贵州北部铝土矿成矿时代,物质来源及成矿模式[J].贵州地质,10(2):105-113. 刘平.2007.黔北务—正—道地区铝土矿地质概要[J].地质与勘探,43(5):29-33. 刘长龄.1999.沉积铝土矿的生物成矿作用[J].冶金地质动态,(9):6-8. 刘长龄,覃志安.1999.论中国岩溶铝土矿的成因与生物和有机质的成矿作用[J].地质找矿论丛,14(4):24-28. 刘长龄,赵国权,王双彬.1992.中国铝土矿和高铝黏土[M].天津:天津科学技术出版社,1-276. 孟凡巍,周传明,燕夔,等.2006.通过C27/C29甾烷和有机碳同位素来判断早古生代和前寒武纪的烃源岩的生物来源[J].微体古生物学报,23(1):51-56. 孟仟祥,房嬛,徐永昌,等.2004.柴达木盆地石炭系烃源岩和煤岩生物标志物特征及其地球化学意义[J].沉积学报,22(4):729-736. 潘根兴,孙玉华,滕永忠,等.2000.湿润亚热带峰丛洼地岩溶土壤系统中碳分布及其转移[J].应用生态学报,11(1):69-72. 盛艳玲,张强,王化军.2006.微生物絮凝剂絮凝铝土矿和石英的比较研究[J].金属矿山,364:31-33. 王春江,刘义梅,刘虹秀,等.2005.煤山二叠—三叠界线地层姥鲛烷相对富集及其碳同位素负偏的地球化学意义[J].科学通报,50(21):2380-2391. 王建.2001.现代自然地理学[M].北京:高等教育出版社,1-441. 王俊达,李华梅.1998.贵州石炭纪古纬度与铝土矿[J].地球化学,27(6):575-578. 王锐良,尚慧芸,傅家谟,等.1990.不同沉积环境中伽马蜡烷的分布特征及其成因探讨[A].见:傅家谟.中国科学院地球化学研究所有机地球化学开放研究实验室研究年报(1988)[C].北京:科学出版社,100-107. 谢树成,赖旭龙,黄咸雨,等.2007.分子地层学的原理、方法及应用实例[J].地层学杂志,31(3):209-221. 谢树成,殷鸿福,史晓颖,等.2011.地球生物学:生命与地球环境的相互作用和协同演化[M].北京: 科学出版社,1-345. 杨慧芬,张强.2004.草分枝杆菌对赤铁矿、石英絮凝能力的比较[J].北京科技大学学报,26(1):7-10. 殷科华.2009.黔北务正道铝土矿的成矿作用及成矿模式[J].沉积学报,27(3):452-457. Bogatyrev B A,Zhukov V V,Tsekhovsky Y G.2009.Formation conditions and regularities of the distribution of large and superlarge bauxite deposits[J].Lithology and Mineral Resources,44(2):135-151. Brooks J D,Gould K,Smith J W.1969.Isoprenoid hydrocarbons in coal and petroleum[J].Nature,222:257-259. Cai J G,Bao Y G,Yang S Y, et al.2007.Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone[J].Science in China Series D:Earth Sciences,50(5):765-775. Cao C Q,Love G D,Hays L E, et al.2009.Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event[J].Earth and Planetary Science Letters,281(3-4):188-201. Chen L,Wang Y B,Xie S C, et al.2011.Molecular records of microbialites following the end-Permian mass extinction in Chongyang,Hubei Province,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,308(1-2):151-159. Eglington G,Hamilton R J.1963.The Distribution of Alkanes[M].In:Chemical Plant Taxonomy,New York:Academic Press,187-208. Goossens H,de Leeuw J W,Schenck P A, et al.1984.Tocopherols as likely precursors of pristane in ancient sediments and crude oils[J].Nature,312:440-442. Han J,Calvin M.1969.Occurrence of C22-C25 isoprenoids in Bell Creek crude oil[J].Geochimica et Cosmochimica Acta,33(6):733-742. Hao X L,Leung K L,Wang R C, et al.2010.The geomicrobiology of bauxite deposits[J].Geoscience Frontiers,1(1):81-89. Hatch J R,Jacobson S R,Witzke B J, et al. 1987.Possible late Middle Ordovician organic carbon isotope excursion: Evidence from Ordovician oils and hydrocarbon source rocks,mid-continent and east-central United States[J].AAPG Bulletin,71(11):1342-1354. Huang W Y,Meinschein W G.1978.Sterols in sediments from Baffin Bay,Texas[J].Geochimica et Cosmochimica Acta,42(9):1391-1396. Laskou M,Economou-Eliopoulos M.2007.The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits,Greece[J].Journal of Geochemical Exploration,93(2):67-77. Moldowan J M,Talyzina N M.1998.Biogeochemical evidence for dinoflagellate ancestors in the Early Cambrian[J].Science,281:1168-1170. Moldowan J M,Dahl J,Bradley J, et al.1994.The molecular fossil record of oleanane and its relation to angiosperms[J].Science,265:768-771. Moldowan J M,Dahl J,Jacobson S R, et al.1996.Chemostratigraphic reconstruction of biofacies:Molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors[J].Geology,24(2):159-162. Moldowan J M, Sundararaman P, Schoell M.1986.Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany[J].Organic Geochemistry,10(4-6):915-926. Nott C J,Xie S C,Avsejs L A, et al.2000.n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation[J].Organic Geochemistry,31(2-3):231-235. Peters K E,Walters C C,Moldowan J M.2005.The Biomarker Guide.Vol.1[M].Cambridge:Cambridge University Press,1-471. Philp R P.1985.Fossil Fuel Biomarkers:Applications and Spectra[M].New York:Elsevier,1-294. Price G D,Gregory D,Valdes J P, et al.1997.Prediction of modern bauxite occurrence:Implications for climate reconstruction[J].Palaeogeography,Palaeoclimatology,Palaeoecology,131(1-2):1-13. Rontani J-F,Volkman J K.2003.Phytol degradation products as biogeochemical tracers in aquatic environments[J].Organic Geochemistry,34(1):1-35. Rubinstein Ⅰ,Sieskind O,Albrecht P.1975.Rearranged sterenes in a shale: Occurrence and simulated formation[J].Journal of the Chemical Society,Perkin Transactions,1(19):1833-1836. Timothy M L, Crouch M,Johnson M, et al.2012.First plants cooled the Ordovician[J].Nature Geoscience,5(2):86-89. van Kaam-Peters H M E,Schouten S,de Leeuw J W, et al.1997.A molecular and carbon isotope biogeochemical study of biomarkers and kerogen pyrolysates of the Kimmeridge Clay Facies: Palaeoenvironmental implications[J].Organic Geochemistry,27(7-8):399-422. Volkman J K,Maxwell J R.1986.Acyclic Isoprenoids as Biological Markers,Biological Markers in the Sedimentary Record[M].In:Johns R B.Methods in Geochemistry and Geophysics 24.New York:Elsevier,1-42. Xie S C,Richard D P,Huang X Y, et al.2007.Molecular and isotopic evidence for episodic environmental change across the Permo/Triassic boundary at Meishan in South China[J].Global and Planetary Change,55(1-3):56-65.