Giant ooids are commonly seen in the Precambrian and Lower Triassic,while they are hardly reported in the Cambrian. Recently,we found giant ooid limestone with about 35 cm thick in the Lower Cambrian Tianheban Formation at the Shiliu section in Shizhu area,Chongqing. The diameter of these giant ooids is generally 5-7mm,with a maximum diameter of 9mm. The giant ooids make up 55% of rock components. Meanwhile,the recrystallized normal ooids and calcareous shells are relatively common in the limestone. The cements of sparry calcites can be found between the grains. Abundant Cyanobacteria fossils found in the outermost laminae of a giant ooid,form a sort of protruberance-shaped laminae named as “abortive laminae”,with which the microbial cause of giant ooids is clearly revealed. The recrystallized inner dark laminae of giant ooids similarly contain messy girvanell fossils. So it is thought that the active involvement of microorganisms and frequent strong storms are the necessary conditions for the formation of giant ooids.
Duan Xiong,Shi Zhiqiang,Jin Xin et al. Microbial cause for giant ooids: Evidence from the Lower Cambrian in Shizhu area,Chongqing[J]. JOPC, 2015, 17(2): 241-248.
金振奎, 蒋盘良, 冯增昭. 1993. 黔东湘西寒武纪碳酸盐斜坡上的风暴沉积[J]. 石油大学学报(自然科学版), 19(3): 1-6.代明月, 齐永安, 陈尧, 等. 2014. 豫西渑池地区寒武系第三统张夏组的巨鲕及其成因[J]. 古地理学报, 16(5); 726-734.李飞, 王夏, 薛武强, 等. 2010. 一种新的错时相沉积物; 巨鲕及其环境意义[J]. 沉积学报, 28(3): 587-595.梅冥相. 2008. 显生宙罕见的巨鲕及其鲕粒形态多样性的意义; 以湖北利川下三叠统大冶组为例[J]. 现代地质, 22(5): 683-698.梅冥相. 2012. 鲕粒成因研究的新进展[J]. 沉积学报, 30(1): 21-32.刘育燕, 杨魏然, 森永速男, 等. 1993. 华北、秦岭及扬子陆块的若干古地磁研究结果[J]. 地球科学, 18(5): 635-671.马志鑫, 张万平, 刘伟, 等. 2012. 黔东镇远地区早寒武世清虚洞组潮坪风暴沉积特征及古环境意义[J]. 沉积学报, 30(5): 787-794.蒲心纯, 周浩达, 王熙林, 等. 1993. 中国南方寒武纪岩相古地理与成矿作用[M]. 北京:地质出版社, 40-41.王长生, 龚黎明. 1998. 四川省酉阳和秀山地区的寒武系[M]. 北京:科学技术文献出版社, 37-38.王剑. 1990. 缓坡及其构造背景; 以中国南方早寒武世龙王庙期扬子碳酸盐缓坡为例[J]. 岩相古地理, (5); 13-22.许靖华. 1980. 沉积学讲座[A]. 见; 《沉积学讲座讲稿汇编》编辑组. 许靖华教授沉积学讲座讲稿汇编[R]. 四川成都: 地质部成都地质矿产研究所, 91-92.殷鸿福, 吴顺宝, 杜远生, 等. 1999. 华南是特提斯多岛体系的一部分[J]. 地球科学, 24(1): 1-12.Berner R A. 2006. A combined model for Phanerozoic atmospheric O2 and CO2[J]. Geochimica, 70: 5653-5664.Liu W, Zhang X L. 2012. Girvanellacoated grains from Cambrian oolitic limestone[J]. Facies, 58: 779-787.Lehrmann D J, Minzoni M, Li X W, et al. 2012. Lower Triassic oolites of the Nanpanjiang Basin, south China:Facies architecture, giant ooids, and diagenesis; Implications for hydrocarbon reservoirs[J]. AAPG Bulletin, 96(8): 1389-1414.Marsaglia K M, Klein G D. 1983. The paleogeography of Paleozoic and Mesozoic storm depositional system[J]. The Journal of Geology, 91(2): 117-142.Sumner D Y, Grotzinger J P. 1993. Numerical modeling of ooid size and the problem of Neoprotherozoic giant ooids[J]. Journal of Sedimentary Petrology, 63: 974-982.Trower E J, Grotzinger J P. 2010. Sedimentology, diagenesis, and stratigraphic occurrence of giant ooids in the Ediacaran Rainstorm Member Johnnie Formation, Death Valley region, California[J]. Precambrian Research, 180: 113-124.Woods A D. 2014. Assessing Early Triassic paleoceanographic conditions via unusual sedimentary fabrics and features[J]. EarthScience Reviews, 137; 6-18.