A review about research history, situation and prospects of hydrothermal sedimentation
Zhong Dakang1, Jiang Zhenchang1, Guo Qiang2, Sun Haitao1
1 State Key Laboratory for Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249 2 CNNC Beijing Research Institute of Uranium Geology,Beijing 100029
Abstract:Hydrothermal sedimentation has been studied for over 70 years since being discovered,and its related terminology has been preliminarily unified. It has been classified into the white smoker and the black smoker according to the mineral forming temperature and color,as well as some depositional models. The former deposits light-colored minerals such as silicates and sulfates under lower temperatures(100-320℃),while the latter deposits dark-colored minerals such as sulfides and oxides under relatively higher temperatures(320-400℃). There are some differences in temperature and physics-chemistry between terrestrial and marine hot fluids. The terrestrial thermal fluids are with lower and more various temperatures,higher and relatively fixed pH values,similar Na+K ionic concentrations,and higher and more various Ca and Cl ionic concentrations as to the marine thermal fluids. Some hydrothermal sedimentation models have been set up,such as seafloor thermal fluids convection,compaction brine convection,mixed magma thermal fluid from mid-oceanic ridge-sea water convection,and overflowing-spraying-overflowing. However,due to the specificity and limitation of the hydrothermal sedimentation and its product distribution,the research is not enough. The discussion about the chemical and thermodynamics process of hydrothermal sedimentation is deficient. The origin,source,differentiation of thermal fluids,and the depositional mechanism are not very clear. All of these above should be further studied.
Zhong Dakang,Jiang Zhenchang,Guo Qiang et al. A review about research history, situation and prospects of hydrothermal sedimentation[J]. JOPC, 2015, 17(3): 285-296.
陈多福,陈先沛. 1997. 热水沉积作用与成矿效应[J]. 地质地球化学,4(4):7-12. 陈先沛,陈多福. 1989. 广西上泥盆统乳房状燧石的热水沉积地球化学特征[J]. 18(1):1-8. 陈先沛,高计元,陈多福,等. 1992. 热水沉积作用的概念和几个岩石学标志[J]. 沉积学报,10(3):124-131. 陈先沛. 1988. 热水沉积成岩成矿作用的研究进展[J]. 矿物岩石地球化学通讯,7(2):102-104. 冯胜斌,邢矿,周洪瑞,等. 2007a. 北秦岭二郎坪群重晶石岩热水沉积地球化学证据及其成矿意义[J]. 世界地质,26(2):199-207. 冯胜斌,周洪瑞,燕长海,等. 2007b. 东秦岭二郎坪群硅质岩热水沉积地球化学特征及其地质意义[J]. 沉积学报,25(4):564-573. 郭强,钟大康,张放东,等. 2012. 内蒙古二连盆地白音查干凹陷下白垩统湖相白云岩成因[J]. 古地理学报,14(1):59-68. 何俊国,周永章,聂凤军,等. 2007. 西藏南部热水沉积硅质岩岩石学和地球化学特征及地质意义[J]. 矿物岩石地球化学通报,26(1):74-81. 胡作维,黄思静,李志明,等. 2012. 白云石方解石氧同位素温度计在川东北地区飞仙关组白云岩成因研究中的尝试[J]. 成都理工大学学报(自然科学版),39(1):1-9. 黄思静,李小宁,黄可可,等. 2012. 四川盆地西部栖霞组热液白云岩中的自生非碳酸盐矿物[J]. 成都理工大学学报(自然科学版),39(4):343-352. 焦鑫,柳益群,周鼎武,等. 2013. 白烟型热液喷流岩研究进展[J]. 地球科学进展,28(2):221-231. 李朝阳,王京彬,肖荣阁,等. 1993. 滇西地区陆相热水沉积成矿作用[J]. 铀矿地质,9(1):14-22. 李红,柳益群. 2013. 白云石(岩)问题与湖相白云岩研究[J]. 沉积学报,31(2):302-314. 李红,柳益群,梁浩,等. 2012. 三塘湖盆地二叠系陆相热水沉积方沸石岩特征及成因分析[J]. 沉积学报,30(2):205-218. 李红,柳益群,朱玉双. 2007. 新疆三塘湖盆地二叠系湖相白云岩形成机理初探[J]. 沉积学报,25(l):75-81. 李江海,初凤友,牛向龙,等. 2005. 河北兴隆中元古代硫化物黑烟囱群发现及其地质成因[J]. 自然科学进展,15(2):179-191. 李江海,冯军. 2003. 华北中元古带硫化物黑烟囱发现的初步报道[J]. 岩石学报,19(1):167-168. 李江海,牛向龙,冯军. 2004. 海底黑烟囱的识别研究及其科学意义[J]. 地球科学进展,19(l):17-24. 李文博,黄智龙,张冠. 2006. 云南会泽铅锌矿田成矿物质来源:Pd、S、C、H、O、Sr同位素制约[J]. 岩石学报,22(10):2567-2580. 梁华英,王秀璋. 2001. 大沟谷钠长石岩型金矿床Pb、S、Sr同位素特征初探[J]. 矿物学报,21(2):246-250. 梁华英,王秀璋,程景平,等. 1997. 大沟谷钠长石岩及金矿床形成分析[J]. 贵金属地质,6(4):255-260. 梁华英,王秀璋,程景平,等. 1998. 广东大沟谷钠长石岩地球化学特征及成因研究[J]. 矿物学报,18(l):113-118. 梁华英,王秀璋,程景平. 2000. 吉林四平银(金)矿床Rb-Sr定年及热液活动的时间跨度[J]. 大地构造与成矿学,25(2):194-195. 梁华英,王秀璋,程景平. 2001. 粤北大沟谷热水沉积钠长石岩岩石化学及稀土元素[J]. 沉积学报,19(3):415-420. 刘建明,叶杰,等. 2001. 一种新类型热水沉积岩: 产在湖相断陷盆地中的菱铁绢云硅质岩[J]. 中国科学(D辑),31(7):570-577. 刘淑文,王涛,曾荣. 2008. 南秦岭旬阳志留系热水沉积钠长石岩地质地球化学特征[J]. 地质与勘探,44(3):40-47. 刘铁庚,张正伟,叶霖,等. 2012. 白云鄂博白云岩地质地球化学特征及成因讨论[J]. 地质学报,86(5):723-734. 刘文均,郑荣才. 2000. 花垣铅锌矿床成矿流体特征及动态[J]. 矿床地质,19(2):173-181. 柳益群,李红,朱玉双,等. 2010. 白云岩成因探讨:新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩[J]. 沉积学报,28(5):861-867. 柳益群,周鼎武,焦鑫,等. 2013. 一类新型沉积岩:地幔热液喷积岩: 以中国新疆三塘湖地区为例[J]. 沉积学报,31(5):773-781. 罗平,杨式升,马龙,等. 2001. 酒西坳陷青西凹陷湖相纹层状泥质白云岩中泥级斜长石成因、特征与油气勘探意义[J]. 石油勘探与开发,28(6):32-33. 罗平,杨式升,苏丽萍. 2002. 酒西盆地湖相纹层状泥质白云岩储集层的形成条件与特征[A]. 见: 油气储集层重点实验室论文集[C]. 北京:石油工业出版社,32-44. 倪志耀,莫怀毅. 1996. 四川冕宁前寒武纪重晶石岩的地球化学特征[J]. 地球化学,25(5):512-519. 潘家永,张乾,马东升,等. 2001. 滇西羊拉铜矿区硅质岩特征及与成矿的关系[J]. 中国科学(D辑),31(l):10-16. 彭军,夏文杰,伊海生. 1999a. 湖南新晃贡溪重晶石矿床地质地球化学特征及成因分析[J]. 成都理工学院学报,2(1):92-96. 彭军,夏文杰,伊海生. 1999b. 湘西晚前寒武纪层状硅质岩的热水沉积地球化学标志及其环境意义[J]. 岩相古地理,(2):29-37. 彭润民,翟裕生. 2004. 内蒙古狼山—渣尔泰山中元古代被动陆缘热水喷流成矿特征[J]. 地学前缘,11(1):257-268. 戚文华,胡瑞忠,苏文超,等. 2003. 陆相热水沉积成因硅质岩与超大型锗矿床的成因: 以临沧锗矿床为例[J]. 中国科学(D辑),33(3):236-246. 时国,田景春,张翔,等. 2013. 南华北盆地上寒武统白云岩岩石学与地球化学特征及其成因探讨[J]. 东华理工大学学报(自然科学版),36(2):168-174. 苏中堂,陈洪德,徐粉燕,等. 2012. 鄂尔多斯盆地马家沟组白云岩稀土元素地球化学特征[J]. 吉林大学学报(自然科学版),42(增刊):53-61. 孙学通,姚慧. 2005. 湖南应溪重晶石矿床地球化学特征及矿床成因[J]. 新疆地质,23(l):50-54. 唐永忠,齐文,刘淑文. 2007. 南秦岭古生代热水沉积盆地与热水沉积成矿[J]. 中国地质,34(6):1091-1101. 涂光炽,等. 1989. 我国南方几个特殊的热水沉积矿床: 中国矿床学[A]. 见: 纪念谢家荣诞辰90周年文集[C]. 北京: 学术期刊出版社,197. 涂光炽,等. 1984. 中国层控矿床地球化学·第二卷[M]. 北京:科学出版社,131-168. 涂光炽,等. 1987. 中国层控矿床地球化学·第三卷[M]. 北京:科学出版社,157-196. 涂光炽,等. 1983. 中国层控矿床地球化学·第一卷[M]. 北京:科学出版社,70-128. 王江海,颜文. 1998. 陆相热水沉积作用: 以云南地区为例[M]. 北京:地质出版社. 王珏,刘金海,陈云名. 2013. 黔北桑木场背斜灯影组热液白云岩稀土元素地球化学特征[J]. 贵州地质,30(2):132-146. 王涛,刘淑文,隗合明,等. 2004. 热水沉积矿床研究的现状与趋势[J]. 地球科学与环境学报,26(4):7-10. 文华国. 2008. 酒泉盆地青西凹陷湖相“白烟型”热水沉积岩地质地球化学特征及成因[D]. 四川成都:成都理工大学. 吴朝东,杨承运,陈其英. 1999. 新晃贡溪—天柱大河边重晶石矿床热水沉积成因探讨[J]. 北京大学学报(自然科学版),35(6):774-784. 夏菲,马东升,潘家永,等. 2004. 贵州天柱大河边和玉屏重晶石矿床热水沉积成因的铭同位素证据[J]. 科学通报,49(24):2592-2595. 夏学惠. 1997. 辽东地区硫铁矿床中电气石岩热水沉积剖面结构序列[J]. 岩石学报,13(2):215-226. 肖荣阁,杨忠芳,杨卫东,等. 1994. 热水成矿作用[J]. 地学前缘,1(3-4):140-147. 熊永柱,夏斌,林丽,等. 2004. 热水沉积成矿研究现状与展望[J]. 矿产与地质,26(4):7-10. 薛春纪,姬金生,张连昌,等. 1997. 北祁连镜铁山海底喷流沉积铁铜矿床[J]. 矿床地质,16(1):21-30. 薛春纪,刘淑文,冯永忠,等. 2005. 南秦岭旬阳盆地下古生界热水沉积成矿地球化学[J]. 地质通报,24(10-11):927-934. 薛春纪,刘淑文,王涛,等. 2004. 南秦岭下古生界铅锌矿床成矿环境[J]. 北京:科学出版社. 薛春纪,祁思敬,郑明华,等. 2000. 热水沉积研究及相关科学问题[J]. 矿物岩石地球化学通报,19(3):155-163. 杨海生,周永章,杨志军,等. 2003a. 华南热水成因硅质岩建造的稀土元素地球化学特征[J]. 矿物岩石地球化学通报,22(l):61-64. 杨海生,周永章,杨志军,等. 2003b. 热水沉积硅质岩地球化学特征及意义: 以华南地区为例[J]. 中山大学学报(自然科学版),42(6):111-115. 杨振强,陈开旭,蒋德和,等. 1996. 粤北海西早期沉积盆地扩张与热水成矿[J]. 岩相古地理,16(3):58-70. 张汉文. 1991. 秦岭泥盆系中的热水沉积岩及与矿产的关系:概论秦岭泥盆纪的海底热水作用[J]. 西安地质矿产研究所所刊,31. 张汉文. 1993. 热水沉积成因的层状矽卡岩:以青海省铜峪沟铜矿床为例(第五届全国矿床会议论文集)[C]. 北京:地质出版社. 张汉文. 2000. 青海铜峪沟铜矿床的热水沉积规律及形成环境:兼论热水作用与火山活动的关系[J]. 西北地质科学,21(2):46-56. 张晓宝. 1993. 准噶尔盆地南缘东部中二叠统芦草沟组黑色页岩中白云岩夹层的成因探讨[J]. 沉积学报,11(2):133-135. 张志斌,李忠权,李朝阳,等. 2007. 中天山下石炭统马鞍桥组重结晶灰岩热水沉积成因的地球化学初步分析[J]. 矿物岩石,27(2):70-77. 郑荣才,王成善,朱利东,等. 2003. 酒西盆地首例湖相“白烟型”喷流岩:热水沉积白云岩的发现及其意义[J]. 成都理工大学学报(自然科学版),30(1):1-7. 郑荣才,文华国,范铭涛,等. 2006. 酒西盆地下沟组湖相白烟型喷流岩岩石学特征[J]. 岩石学报,22(12):3028-3038. 周永章,刘建明,陈多福. 2000. 华南古海洋热水沉积作用研究概述及若干认识[J]. 西南科技大学学报,19(2):114-119. 周永章,涂光炽,Choen E H. 1994. 粤西古水剖面震旦系顶部层状硅岩的热水成因属性:岩石学和地球化学特征[J]. 沉积学报,12(3):1-11. gata S,Dias D,Fernando J A S, et al. 2006. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field(36834VN;33826VW)at MAR[J]. Marine Geology,225(1-4):157-175. Al-Ausm I S. 2002. Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary Basin[J]. Journal of Geochemical Exploration,78-79:9-15. Al-Ausm I S,Lonnee J S,Clarke J. 2003. Multiple fluid flow events and the formation of saddle dolomite;case studies from the Middle Devonian of the Western Canada Sedimentary Basin[J]. Mar. Pet. Geol,19:209-217. Bernard A J,Dagallier G,Soler E. 1982. Ore Genesis:The State of the Art[M]. Earth-Science Reviews:553-564. Binns R A,Parr J M, et al. 1995. PACMANUS:An active seafloor hydrothermal field on siliceous volcanic rocks in the eastern Manus Basin,Papua New Guinea[C]. Proceedings PACRIM,95. Boni M,Parentea G. 2000. Hydrothermal dolomites in SW Sardinia(Italy):Eevidence for a widespread late-Variscan fluid flow event[J]. Sedimentary Geology,131:181-200. Boni M,Iannacea A,Beehstadtb T, et al. 2000.Hydrothermal dolomites in SW Sardinia(Italy)and Cantabria(NW Spain): Evidence for late to Post:Varisean widespread fluid-flow events[J]. Journal of Geochemical Exploration,69-70:225-228. Bostrom K,Rydell H,Joensuu O. 1979. Langbank:An exhalative sedimentary deposit[J]. Econ-Geol,74(5):1002-1011. Carol A Eddy,Yildirim Dilek, et al. 1998. Seamount formation and associated caldera complex and hydrothermal mineralization in ancient oceanic crust,Troodos ophiolite(Cyprus)[J]. Tectonophysics,292(3-4):189-210. Chenevoy M,Piboule M. 2007. Hydrothermalisme. Spe′ciation me′tallique hydrique et syste′mes hydrothermaux[J]. Collection Grenoble Sciences,624. Crane K. 1991. Hydrothermal vents in Lake Baikal[J]. Nature,350:281. Daesslé L W,Cronan D S, et al. 2000. Hydrothermal sedimentation adjacent to the propagating Valu Fa Ridge,Lau Basin,SW Pacific[J]. Marine Geology,162(2-4):479-500. Daesslé L W,Cronan D S. 2002. Late Quaternary hydrothermal sedimentation adjacent to the Central Lau Spreading Center[J]. Marine Geology,182(3-4):389-404. Edmond J M,Von Damm K L,McDuff R E. 1982. Chemistry of hot Spring on the East Pacific Rise and their effluent dispersal[J]. Nature,279(5863):187-191. Edmond. 1983. The Hot Spring on the Ocean Floors[J]. Science,8:37-50. Fouquet Y. 1999. Where are the large hydrothermal sulphide deposit in the oceans?[J]. Cambridge,United Kingdom:Cambridge University Press,211-224. Goodfellow W D,Lydon J W,Turn er R W, et al. 1993. Geology and genesis of stratiform sediment-hosted(SEDEX)Zn-Pb-Ag sul-phide deposits[J]. Geological Association of Canada Special Paper,40:203-251. Halbach R M,Halbach P. 2002. Sulfide-impregnated and pure silica precipitates of hydrothermal origin from the Central Indian Ocean[J]. Chemical Geology,182:357-375. Hannington M D,Galley A G, et al. 1998. Comparison of the Tag Mound and stockwork complex with Cyprus-type massive sulphide deposits[A]. In:Herzig P M,Humphris S E,Miller D J,et al(eds). Proc[J]. ODP,Scientific Result,158:389-415. Hekinian R. 1982. Petrology of Ocean Floors[M]. Amsterdam:Elsevier,1-382. Herzig P M,Hannington M D, et al. 1998. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc:Implication for magmatic contributions to the seafloor hydrothermal systems[J]. Mineralium Deposita,33:226-237. Hutchinson R W. 1973. Massive base metal sulfide deposits in sedimentary rocks and their metallogenic relationship during Proterozoic time[A]. Paper presented at joint meeting of AIME—SEG,Chicago[C]. Abstract in Econ Geol,68:138. Kaul Gena. 2013. Deep sea mining of submarine hydrothermal deposits and its possible environmental impact in Manus Basin,Papua New Guinea[J]. Procedia Earth and Planetary Science,6:226-233. Lydon J M. 1983. Chemical parameters controlling the origin and deposition of sediment-hosted stratiform lead-zinc deposits[A]. In:Sangster D F(ed). Short Course in Sediment-Hosted Stratiform Lead-Zinc Deposits[C]. Mineralogical Association of Canada,Victoria: 175-250. Miloje Ilich. 1974. Hydrothermal-Sedimentary dolomite:The Missing Link?[J]. AAPG Bulletin,58(7):1331-1347. Naotatsu Shikazono. 2003. Geochemical and Tectonic Evolution of Arc-Backarc Hydrothermal Systems Implication for the Origin of Kuroko and Epithermal Vein-Type Mineralizations and the Global Geochemical Cycle[J]. Developments in Geochemistry,8:1-463. Renaut R W,Jones B. 2002. Sublacustrine precipitation of hydrothermal silica in rift lakes:Evidence from Lake Baringo. central Kenya Rift Valley[J]. Sedimentary Geology,148:235-257. Reyes A G,Massoth G,Ronde et al. 2006. Hydrothermal mineralization in arc-type submarine volcanoes[J]. Geochimica et Cosmochimica Acta,70(18):A528. Robb L J. 2005. Introduction to Ore-forming Processes[M]. Blackwell,Malden: 373. Rona P A,Scott S D. 1993. A special issue of seafloor hydrothermal mineralization:New perspecitive[J]. Economic Geology,88(8):1935-2078. Rona P A. 1983. Hydrothermal Processes at Seafloor Spreading Centers[M]. New York: Plenum Press. Rona P A. 1984. Hydrothermal mineralization at seafloor spreading centers[J]. Earth Science Reviews,20:1-104. Rona P A. 1986. Mineral deposits from seafloor hot spring[J]. Scientific American,254:84-92. Rona P A. 1988. Hydrothermal mineralization at oceanic ridges[J]. The Canadian Mineralogist-Seafloor hydrothermal mineralization,26(3):431-466. Rona P A. 2002. Marine minerals for the 21st centry[J]. Episodes,25:2-12. Ronde C R J,Stoffers P. 2002. Discovery of active hydrothermal venting in Lake Taupo,New Zealand[J]. Journal of Volcanology and Geothermal Research,115:257-275. Russell M J. 1983. Major sediment-host Exhalative Zinc-Lead Deposits:Formation from Hydrothermal Convection Cells That Deepen During Crustal Extension[M]. Canada:Victoria. Russell M J. 1996. The generation at hot springs of sedimentary ore deposits,microbialiates and life[J]. Ore Geology Reviews,10:199-214. Sangster D F. 1976. Sulphur and lead isotopes in strata bound deposits[A]. In: Wolf K H(ed). Handbkook of Strata-bound and Stratiform Ore Deposits[M]. Amsterdam: Elsevier,2:219-266. Schardt C,Yang J,Large R. 2003. Formation of massive sulfide ore deposits on the seafloor:Constraints from numerical heat and fluid flow modeling[J]. Geochem Explore,78-79:257-259. Scott S D. 1997. Submarine Hydrothermal Systems and Deposits[M]. New York:Wiley, 797-935. Scott S D. 2002. Minerals on land,Minerals in the sea[J]. Geotims,47:797-935. Solomon M. 1976. “Volcanic” massive sulphide deposits and the host rock review and an axpkanation[A]. In:Wolf K A(ed). Handbook of Strata-bound and Stratiform Ore Deposits(Ⅱ:Regional Studies and Specific Deposots)[C]. Amsterdam:Elsevier, 21-50. Stoffers P,Botz R. 1994. Formation of hydrothermal carbonate in Lake Tanganyika,East Central Africa[J]. Chemical Geology,115(1-2):117-122. Sven Petersen,Peter M, Herzig, et al. 2004. Hydrothermal precipitates associated with bimodal volcanism in the Central Bransfield Strait,Antarctica[J]. Mineralium Deposita,39(3):358-379. Tiercelin J J,Pflumio C,Castrec M. 1993. Hydrothermal vents in Lake Tanganyika,East African rift system[J]. Geology,21:499-500. Vesselin Dekov. 2011. Mineralogical and geochemical evidence for hydrothermal activity at the west wall of 12°50N core complex(Mid-Atlantic ridge):A new ultramafic-hosted seafloor hydrothermal deposit?[J]. Marine Geology,288:90-102. Zierenberg R A,Fouquet Y,Miller D J, et al. 1998. The deep structure of a seafloor hydrothermal deposit[J]. Nature,392:485-488.