Reconstructing sea-level changes from types of storm deposits: An example of the Middle and Late Cambrian at Xiaweidian section of Western Hills,Beijing
Jing Yuxuan1, Liu Jianbo1,2,3, Yan Zhen1, Sun Yongchao1, Xu Zhenqing4
1 School of Earth and Space Sciences,Peking University,Beijing 100871; 2 Key Laboratory of Orogenic Belts and Crustal Evolution (Peking University), Ministry of Education, Beijing 100871; 3 State Key Laboratory of Palaeobiology of Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu; 4 Management Office of the Mid-Upper Proterozoic National Nature Reserve in Jixian County, Tianjin 301900
Abstract:Storm deposits were extensively developed in the Middle and Upper Cambrian in North China. However,the sedimentary environments of these storm deposits are a matter of debate. Based on careful observation and measurement of the Xiaweidian section in Western Hills of Beijing,North China,five lithofacies are identified, which are further grouped into three lithofacies associations that were deposited in shallow subtidal zone,deep subtidal zone,and shaly basin, respectively. According to the sedimentary textures and structures,49 layers of storm deposits are recognized in the studied section,which are grouped into 4 types(named as:In-situ unbroken,in-situ broken,proximal,and distal storm deposits)and 12 sub-types that were formed in various sedimentary environments. A new sea-level curve is inferred from the changes of storm deposit sub-types in the Middle and Upper Cambrian at western Beijing. This sea-level curve matches well with the curve reconstructed from facies analysis of fair-weather deposits in the studied section,as well as those inferred by previous researches in Beijing and in western Shandong Province,North China. Thus,types of storm deposits can be utilized to reconstruct long-term sea-level changes in the geological history.
Jing Yuxuan,Liu Jianbo,Yan Zhen et al. Reconstructing sea-level changes from types of storm deposits: An example of the Middle and Late Cambrian at Xiaweidian section of Western Hills,Beijing[J]. JOPC, 2015, 17(5): 653-668.
陈建强,史晓颖,张国仁,等. 1998. 华北地台中寒武统张夏组上部高频层序研究[J]. 地层学杂志,22(2):109-115. 陈小炜,牟传龙,葛祥英,等. 2012. 华北地区寒武系第三统鲕粒滩的展布特征及其控制因素[J]. 石油天然气学报,34(11):8-15. 狄明信,管守锐,黄醒汉. 1986. 华北地区中寒武世张夏期沉积相及古地理[J]. 华东石油学院学报,1(1):1-14. 范开强,尹占国,王成述. 1990. 北京西山下寒武统馒头组角砾岩成因[J]. 中国地质科学院地质研究所所刊,22(1):23-38. 冯增昭,彭勇民,金振奎,等. 2002a. 中国中寒武世岩相古地理[J]. 古地理学报,4(2):1-11. 冯增昭,彭勇民,金振奎,等. 2002b. 中国晚寒武世岩相古地理[J]. 古地理学报,4(3):1-10. 管守锐. 1982. 华北下古生界竹叶灰岩的成因[J]. 华东石油学院学报,1(1):18-26. 李庆平,董仁国,李秀章,等. 2005. 鲁西寒武系—下奥陶统层序地层研究新进展[J]. 地层学杂志,29(4):376-381. 柳永清,孟祥华,葛明. 1999. 华北地台中寒武世鲕粒滩碳酸盐旋回沉积、古海平面变动控制及旋回年代学研究[J]. 地质科学,34(4):442-450. 马永生. 1994. 华北北部晚寒武世沉积旋回分析[J]. 地质评论,40(2):165-172. 梅冥相. 2011. 华北寒武系二级海侵背景下的沉积趋势及层序地层序列:以北京西郊下苇甸剖面为例[J]. 中国地质,38(2):317-337. 梅冥相,马永生. 2003. 华北地台晚寒武世层序地层及其与北美地台海平面变化的对比[J]. 沉积与特提斯地质,23(4):14-26. 孟祥化,葛铭. 2004. 中朝板块层序事件演化—天文周期的沉积响应和意义[M]. 北京:科学出版社,234. 孟祥化,乔秀夫,葛铭. 1986. 华北古浅海碳酸盐风暴沉积和丁家滩相序模式[J]. 沉积学报,4(2):1-23. 彭阳,乔秀夫. 1999. 徐州贾汪地区中—上寒武统藻礁、风暴层与海平面变化[J]. 地质评论,45(2):193-202. 乔秀夫,高林志. 1990. 北京西山寒武系层序地层[J]. 中国地质科学院地质研究所所刊,22(1):1-7. 王成述,范开强,尹占国. 1990. 北京西山中寒武统张夏组鲕粒特征及其环境意义[J]. 中国地质科学院地质研究所所刊,22(1):39-55. 王祥珍. 1981. 关于“竹叶状灰岩”的命名、分类、分布和形成机理的探讨[J]. 矿物岩石,5:31-41. 王宗起,丁孝忠. 1990. 北京西山昌平组成因地层学研究[J]. 中国地质科学院地质研究所所刊,22(1):8-22. 余素玉. 1985. 沉积学研究的新领域—风暴沉积[J]. 地质科技情报,4(2):48-51. 赵鹏沄,刘波,秦善. 2011. 京津晋冀寒武系第三统鲕粒灰岩特征及其环境意义[J]. 北京大学学报(自然科学版),47(5):825-830. 张旭,张宁,杨振鸿,等. 2009. 北京西山下苇甸中寒武统碳酸盐岩微相及沉积相研究[J]. 地质科技情报,28(6):25-30. 章雨旭,万渝生. 1990. 北京西山竹叶状灰岩的成因[J]. 中国地质科学院地质研究所所刊,22(1):36-44. Aigner T. 1979. Schill-tempestite in oberen muschelkalk (Trias, sw-Deutschland)[J]. Neues Jahrbuch für Geologie und Palontologie, Abhandlungen, 157:326-343. Aigner T. 1985. Storm Depositional Systems[M]. Lecture Notes in Earth Sciences. Springer Verlag,Berlin,174. Boyer D L,Droser M I. 2003. Shell beds of the Kanosh and Lehman Formations of Western Utah:Paleoecological and paleoenvironmental interpretations[J]. BYU Geology Studies,47(1):1-15. Brandt D S,Elias R J. 1989. Temporal variations in tempestite thickness may be a geologic record of atmospheric CO2[J]. Geology,17(10):951-952. Carozzi A V,Gerber M S. 1978. Synsedimentary chert Breccia:A Mississippian tempestite[J]. Journal of Sedimentary Petrology,48(3):705-708. Carr D L, Scott A J. 1990. Late Pennsylvanian storm-dominated shelf sand ridges,Sacramento Mountains,New Mexico[J]. Journal of Sedimentary Petrology,60(4):592-607. Colombie C,Schnyder S,Carcel. 2012. Shallow-water marl-limestone alternations in the Late Jurassic of western France:Cycles,storm event deposits or both[J]. Sedimentary Geology,271-272:28-43. Dalziel I W D. 1997. Neoproterozoic-Paleozoic geography and tectonics:Review,hypothesis,environmental speculation[J]. GSA Bullet,109(1):16-42. Dattilo B F,Brett C E,Tsujita C J,et al. 2008. Sediment supply versus storm winnowing in the development of muddy and shelly interbeds from the Upper Ordovician of the Cincinnati region,USA[J]. Canada Journal of Earth Science,45(2):243-265. Dezileau L,Sabatier P,Blanchemanche P,et al. 2011. Intense storm activity during the Little Ice Age on the French Mediterranean coast[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,299(1-2):289-297. Ding Y,Bai Z,Liu J, et al. 2008. Multiple origins for flat-pebble limestones and sedimentary environments of the Upper Cambrian Gushan Formation at Tangwangzhai in Shandong Province[J]. Journal of Palaeogeography,4(2):125-138. Donnelly J P,Woodruff J D. 2007. Intense hurricane activity over the past 5000 years controlled by El Nino and the West African monsoon[J]. Nature,447(10):465-468. Eolf J D. 2014. Sedimentary facies of the upper Cambrian(Furongian;Jiangshanian and Sunwaptan)Tunnel City Group,Upper Mississippi Valley:Newinsight on the old stormy debate[J]. Sedimentary Geology,302(1):102-121. Flügel E. 2009. Microfacies of Carbonate Rocks[M]. Springer Verlag,Berlin,724-738. Garrison J R,Miller S P,Mestas-nunez A, et al. 2013. Record of historical gulf of mexico storms preserved in the stratigraphy of gum hollow delta,Nueces Bay,Texas,U.S.A.: An example of tropical-cyclone-induced hyperpycnal deposition[J]. Journal of Sedimentary Research,83(10):1-11. Goff J A,Allison M A,Gulick P S. 2008. Offshore transport of sediment during cyclonic storms:Hurricane Ike(2008),Texas Gulf Coast,USA[J]. Geological Society of America,38(4):351-354. Hippensteel S P,Eastin M D,Garcia W J. 2013. The geological legacy of Hurricane Irene:Implications for the fidelity of the paleo-storm record[J]. GSA Today,23(12):4-10. Kazmierczak J,Goldring R. 1978. Subtidal flat-pebble conglomerate from the Upper Devonian of Poland:A multiprovenant high-energy product[J]. Geology Magazine,155(5):359-366. Kelling G, Mullin P R. 1975. Graded limestones and limestone quartzite couplets: Possible storm-deposits from the Moroccan carboniferous[J]. Sedimentary Geology, 13(3):161-190. Kwon Y K,Chough S K,Choi D K, et al. 2002. Origin of limestone conglomerates in the Choson Supergroup(Cambro-Ordovician),mid-east Korea[J]. Sedimentary Geology,146(3-4):265-283. Li X,Droser M L. 1999. Lower and Middle Ordovician shell beds from the basin and range province of the Western United States(California,Nevada,and Utah)[J]. Palaios,14(3):215-233. Long D G F. 2007. Tempestite frequency curves:A key to Late Ordovician and Early Silurian subsidence,sea-level change,and orbital forcing in the Anticosti foreland basin,Quebec,Canada[J]. Canadian Journal of Earth Science,44(3):413-431. Masselink G,Van Heteren S. 2014. Response of wave-dominated and mixed-energy barriers to storms[J]. Marine Geology,352(1):321-347. McFarland S. 1999. Allogenic versus autogenic processes in the genesis of Middle Ordovician brachiopod-rich shell beds,Verulam Formation,Ontario[J]. Palaios,14(3):282-287. Mohseni H,Al-Aasm I S. 2004. Tempestite deposits on a storm-influenced carbonate ramp:An example from the Pabdeh Formation(Paleogene),Zagros Basin,SW Iran[J]. Journal of Petroleum Geology,27(2):163-178. Mount J F,Kidder D. 1993. Combined flow origin of edgewise peloidal conglomerates:Sellick Hill Formation(Lower Cambrian),South Australia[J]. Sedimentology,40(2):315-329. Myrow P M. 1992. Bypass-zone tempestite facies model and proximality trends for an anancient muddy shoreline and shelf[J]. Journal of Sedimentray Petrology,62(1):99-115. Myrow P M,Hiscott R N. 1991. Shallow-water gravity-flow deposits,Chapel Island Formation,southeast Newfoundland,Canada[J]. Sedimentology,38(5):935-959. Myrow P M,Southard J B. 1996. Tempestite deposition[J]. Journal of Sedimentary Research,66(5):875-887. Myrow P M,Tice L,Archuleta B, et al. 2004. Flat-pebble conglomerate:Its multiple origins and relationship to metre-scale depositional cycles[J]. Sedimentology,51(5):973-996. Myrow P M,Lukens C,Lamb M P, et al. 2008. Dynamics of a transgressive prodeltaic system:Implications for geography and climate within a Pennsylvanian intracratonic basin,Colorado,U.S.A.[J]. Journal of Sedimentar Research,78(8):512-528. Perea-lopez A,Perez-valera F. 2012. Tempestite facies models for the epicontinental Triassic carbonates of the Betic Cordillera(southern Spain)[J]. Sedimentology,59(2):646-678. Plint A G,Macquaker J H S. 2012. Bed load transport of mud across a wide,storm-influenced ramp:Cenomanian-Turonian Kaskapau Formation,Western Canada foreland basin-reply[J]. Journal of Sedimentary Research,83(11):1200-1201. Sabatier P,Dezileau L,Condomines M, et al. 2008. Reconstruction of paleostorm events in a coastal lagoon(Hérault,South of France)[J]. Marine Geology,251(3-4):224-232. Savrda C,Counts J W,Bigham E,et al. 2010. Ichnology of siliceous facies in the Eocene Tallahatta Formation(Eastern United States gulf coastal plain:Implications for depositional conditions,storm processes,and diagenesis[J]. Palaios,25(10):642-655. Tamura T,Masuda F. 2005. Bed thickness characteristics of inner-shelf storm deposits associated with a transgressive to regressive Holocene wave-dominated shelf,Sendai coastal plain,Japan[J]. Sedimentology,52(6):1375-1396. Tsujita C J,Brett C E,Toper M, et al. 2006. Evidence of high-frequency storm disturbance in the Middle Devonian Arkona shale,Southwestern Ontario[J]. Journal of Taphonomy,4(2):49-68. Veizer J,Ala D,Azmy K, et al. 1999. 87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology,161(1-3):59-88. Wanless H R,Tedesco L P,Tyrrell K M. 1987. Production of subtidal tubular and surficial tempestites by Hurricane Kate,Calcos Platform,British West Indies[J]. Journal of Sedimentary Petrology,58(4):739-750.张西娟